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Three-Dimensional Dynamic Calculation of the Equilibrium Shape of a
Coherent Tetragonal Precipitate in Mg-Partially Stabilized Cubic ZrO,
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The equilibrium shape of a tetragonal precipitate coher-
ently embedded in a cubic matrix is examined in three
dimensions by a computer simulation. Independent exper-
imental data of Mg-partially stabilized ZrO, are used as
the input parameters. The equilibrium shape is obtained
by diffusional relaxation of an initially nonequilibrium
spherical shape. The relaxation is described through a
generalized field kinetic model which takes into account
the transformation-induced elastic strain arising from a
cubic — tetragonal crystal lattice rearrangement. Without
any a priori constraint on the geometry of the particle, the
equilibrium shape is shown to be a rotation disk formed by
two cones with the common base. It is far from the ellipsoi-
dal shape assumed in the conventional analytical calcula-
tions based on Eshelby’s model.

I. Introduction

QUANTITATIVE theoretical prediction of the optimal shape

of a low-symmetry precipitate coherently embedded in a
high-symmetry matrix is an interesting and important problem
of materials science. It has many applications in material pro-
cessing and in service performance analysis, since the majority
of high-performance structural materials in modern technology
are two-phase or multiphase coherent composites of metal and
ceramic systems. The coexisting phases usually have not only
different compositions and structures, but also different point
group symmetries, for example, cubic and tetragonal. A typical
example is transformation-toughened partially stabilized zirco-
nia (PSZ). It is a cubic solid solution at high temperatures.
Upon cooling or aging at temperatures within the two-phase
field of the cubic (c-) and tetragonal (z-) phases in the equilib-
rium phase diagram, it decomposes into a coherent two-phase
mixture with the low-symmetry z-precipitates dispersed in the
high-symmetry parent phase matrix. Under service conditions,
e.g., in the presence of stress fields of propagating cracks,
the t-particles are unstable with respect to further martensitic
transformation into monoclinic phase particles.' This stress-
induced martensitic transformation has a volume dilatation
which may produce a back stress on the crack tip and hence
toughen the material. Since particles of different morphology
may have different stress fields associated with them and hence
behave differently in the stress-induced martensitic transforma-
tion, a correct characterization of their shape is essential in the
micromechanical analysis and property prediction.
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Most of the existing theoretical analyses based on Eshelby’s
theory find the optimal shape of a coherent t-particle by min-
imizing the sum of interfacial and strain energies under a con-
straint that all adjusting shape changes keep the particle shape
within a class of ellipsoidal forms.* Although such an ellipsoi-
dal particle shape approximation allows an analytical treatment
of the problem, it can be misleading in predicting the micro-
mechanical properties.” Recently, computer simulation tech-
nique based on a generalized field kinetic model has been
utilized to characterize the dynamic shape evolution of the
coherent tetragonal precipitates in Mg-PSZ in two dimensions
(2-D) without any constraint on particle shapes.® It has been
shown that the equilibrium shape in 2-D differs quite signifi-
cantly from an ellipsoid. It is a rhombus bounded by facets.
Recent bifurcation analysis based on total energy (the sum
of strain and interfacial energies) minimization using a sharp
interface approach yields a similar result.” However, these 2-D
studies can describe only an infinitely long cylindrical shape
and yield no information in the third dimension. In reality, the
tetragonal precipitates in Mg-PSZ are never cylindrical. They
usually have a disklike shape with the smallest dimension along
their c-axis.

In this paper, we have extended the 2-D field kinetic model
developed in Ref. 6 into 3-D and applied it to examine the
equilibrium shape of a single tetragonal precipitate coherently
embedded in a cubic matrix. In the next section, we briefly
discuss how the generalized field kinetic model can be used,
free from any a priori constraint, to determine the equilibrium
shape of a coherent precipitate which has an arbitrarily different
point group symmetry from the matrix. For the details of the
model, the readers should refer to references.® We then set up a
model system using the experimental data of Mg-PSZ. The
obtained 3-D optimal shape is compared with the experimental
observations.

II. Field Kinetic Equations

The field theory of phase transformation kinetics is a major
advance in materials science. It allows a theoretical character-
ization of the dynamic evolution of microstructures during pro-
cessing or in-service performance of advanced multiphase
materials without any a priori assumptions on the microstruc-
ture and its evolution path.® In this approach, an arbitrary two-
phase morphology evolving with time is described through
continuous fields of concentration {c(r)} (characterizing the
compositional heterogeneity) and/or structure order (SO)
parameters {m,(r)} (characterizing the structural heterogene-
ity), where r is the coordinate and o = 1, 2,...v numerates a
complete set of SO parameters needed to characterize the struc-
tural heterogeneity. For example, a cubic — tetragonal transfor-
mation is characterized by three SO parameters m,(r), M,(r),
and m,(r), each of them describing the corresponding orienta-
tion variant of the tetragonal phase. The temporal evolution of
these fields can be described by the time-dependent Ginz-
burg-Landau (TDGL) equations
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where M and L are kinetic constants characterizing the diffu-
sional and structural relaxations, respectively, V is the differen-
tial operator, and F is the total nonequilibrium free energy. The
solution of these nonlinear field kinetic equations will yield all
the information about the microstructure development during a
phase transformation, including all the metastable and transient
structures.

Although the field method is able to deal with arbitrary
morphological pattern dynamics, there is a major limitation in
the current formalisms: the transformation-induced elastic
strain effect is generally not taken into account in them. This
limitation drastically reduces the predicting power and realism
of the theory because, in most cases, it is the accommodation of
the coherency strain that dominates the microstructural devel-
opment, e.g., particle shapes and spatial collective patterns.
There have been several attempts to include the misfit strain
effect into the field equations (e.g., Cahn’ for linearized equa-
tions and Nishimori and Onuki'® for nonlinearized equations).
However, they were made only for a particular case of isostruc-
tural spinodal decomposition in cubic systems characterized
by a sole concentration field. Recently, this method has been
advanced to a more general model by (i) introducing the multi-
component SO parameter 1, (r) and (ii) incorporating the trans-
formation strain generated by the crystal lattice misfit between
the product and parent phases as well as between different
orientation domains of the low symmetry product phase.® These
advances make the model applicable to more general cases
where, besides composition, structural rearrangement produc-
ing a low-symmetry phase with several orientation variants
is involved.

One of the simplest applications of the coherent field kinetic
model is determining the equilibrium shape of an arbitrary
coherent precipitate without any constraint on its optimal shape.
It follows from Egs. (1a) and (1b) that when c(r,?) and m(r,?)
do not correspond to an equilibrium state, the variational deriv-
atives of the total free energy with respect to them, 8F/dc(r,t)
and 8F/dm(r,t), which are the thermodynamic driving forces
for the microstructure evolution, will have finite values and
therefore they will drive the system toward the equilibrium state
where 3F/dc(r,r) and 8F/dm(r,r) vanish. Therefore, we may
start from any reasonable initial guess of the equilibrium shape,
e.g., an isotropic sphere, characterized by c(r,0) and m,(r,0).
Then their relaxation toward equilibrium will automatically
yield the optimal shape. To avoid the system stacking into
possible metastable states, Langevin noise terms®'' can be
introduced into the TDGL equations.

The closed forms of Egs. (1a) and (1b) are obtained if the
total nonequilibrium free energy including the strain energy is
formulated as a functional of ¢(r) and m(r). Below, we first
construct the free-energy functional for a generic two-phase
system and then fit those input parameters that determine an
equilibrium shape to the Mg-PSZ.

III. Model System and Input Parameters

If there are no external fields, the independent thermody-
namic parameters determining the equilibrium shape of a coher-
ent precipitate include the interfacial energy and the misfit
strain energy. They enter the total nonequilibrium free energy
in (1a) and (1b). The interfacial energy which is a part of the
“chemical” free energy originates from a short-range atomic
interaction. The “coarse-grained” representation of the chemi-
cal free energy for the cubic — tetragonal transformation can
be formulated as

+f(C,Th,le,m)]d3r 2)

where a;; and b, (o) are coefficients of the gradient terms which
are responsible for the field continuity (nonlocal contribution to
the free energy), i, j are indexes of Cartesian coordinates, and
f(c,my,m,,M;) is the local specific free energy. The integration
in (2) is carried out over the entire system volume V.

Since we consider here a single particle problem, i.e., a
situation where m,(r) = m(r), n,(r) = n;(r) = 0, Eq. (2) can
be simplified as
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where the gradient energy coefficient matrices have been
assumed to be isotropic:

a; = ad; @
bz’j(a) = bSij

which provide an isotropic interfacial energy. The specific free
energy at a given temperature can be approximated by the
Landau free-energy expansion polynomial. A simple form for a
first-order transition is
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where A, B, D, and G are positive constants with a dimension of
energy, and ¢’ and ¢” are close to the equilibrium compositions
of the c- and #-phases, respectively. These phenomenological
constants should be chosen in such a way that the free energy
(5) has a correct hypersurface in the c— space. For example, it
should yield an equilibrium two-phase mixture of c- and
t-phases and the dependence of f on m should have a local
minimum at = 0 and two global minima at n = *m,,
where 1, is the equilibrium SO parameter. These features are
illustrated in Figs. 1(a) and (b). The invariance of f with respect
to  — —m characterizes degeneracy of the free energy with
respect to two antiphase domains of an orientation variant of
the #-phase, which correctly represents the case of PSZ. A
particular set of the constants A = 80, B = 5.0,D = 0.5,G =
0.14 (in the unit &, T, where T = 1420°C), ¢’ = 0.16 and ¢" =
0.04 has been chosen to meet the above geometrical require-
ment of the free-energy hypersurface and to fit the observed
equilibrium compositions of Mg-PSZ. It provides equilibrium
compositions ¢, = 0.045 for the t-phase and ¢, = 0.155 for
the c-phase, which are close to the equilibrium compositions of
Mg-PSZ at 1420°C."?

When the phenomenological constants in Eq. (5) are chosen,
the parameter a in the gradient coefficient matrices (4) will
dictate the value of interfacial energy caused by the concentra-
tion change at the interface between different phases and b
will determine the value of interfacial energy caused by SO
parameter change at the same interface. The latter also deter-
mines the interfacial energy between two orientation variants
and between two antiphase domains of the tetragonal phase.
Since we have considered a single-domain particle, there are
no different orientation variants and antiphase domains in the
system. Therefore, the parameter b contributes to the interfacial
energy only. In this case, any choice of the coefficients a and b
is good as long as they provide the required interfacial energy.
For the sake of simplicity, we have chosen @ = b = 0.2 in the
unit a3 kT, where a, is the length unit of the cubic computa-
tional unit cells (one grid length of the cubic mesh). The dimen-
sional value of a, can be characterized by fitting the interfacial
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Fig. 1. (a) Specific free energy vs composition curves (on f—c plane) for both the tetragonal and cubic solid solutions calculated according to Eq. (1)
with m = m,(c) (where 1, is the equilibrium SO parameter at given c¢) and A = 80.0, B = 0.8,C =0.5,D = 0.14, G = 5.0. (b) Specific free energy

vs SO parameter curve (on f-m plane) at given composition.

energy obtained in the simulation into the experimental data.
For example, with y, = 150 ergs/cm?,"* a, comes up to ~40 A.

In the general strain energy analysis for inhomogeneous
coherent solids proposed by Khachaturyan and Shatalov,' the
strain energy of an arbitrary coherent multiphase system for the
homogeneous modulus case is expressed as a functional of the
transformation-induced stress free strain €{(r) which is pre-

sented through an arbitrary shape function 6,(r), e.g.,

e5m) = ) 6,0eN(p) ©)

where 6,(r) equals unity if a point, r, is within a new phase
particle of type p and zero outside it, the tensor €]°(p) describes
the stress-free transformation strain transforming the parent
phase into the pth orientation variant of the low-symmetry
product phase.

In fact, the stress-free strain Eq. (6) is formulated for the
conventional description of a multiphase system, e.g., a coher-
ent aggregate of internally homogeneous particles of constit-
uent phases and their orientation variants with sharp interfacial
boundaries between them. In the field approach, however, the
multiphase mixture is described by continuous fields of concen-
tration and SO parameters. To incorporate the strain energy into
the field kinetic equations, we have to modify the theory'* by
expressing the stress-free strain through the continuum fields of
c(r) and/or m(r). Since the strain in ZrO, is predominantly
caused by the SO parameter heterogeneity, e.g., the lattice mis-
fit is caused by the symmetry breaking “soft” displacive modes,
we may express the stress-free strain through n(r), i.e.,

ej) = ) mmel(p) @

where the fact that the  — —m) transition (e.g., an antiphase
domain shift) does not affect the transformation strain in PSZ
has been taken into account.

Keeping in mind the correspondence between m.(r) and
6,(r) in Egs. (6) and (7) and following the same line of reason-
ing as in Ref. 14, we can express the strain energy as a func-
tional of the SO parameter fields

1 *k k
Ey= Ezmepq(;>{nﬁ(r)}k{ni(l‘)}*k (®)

rq

where {MZ2(r)}, is the Fourier transform of n>(r), {n2(r)}% is
the complex conjugate of {m2(r)}, and

qu(e) = Cijkze?p(p)gg?(Q) - erg(P)Q/k(e)ng(Q)ez (&)

e = k/k is a unit vector in the reciprocal space and e; is its ith
component, c;,, is the elastic moduli tensor, oi(p) =
Ciu€n (p), and ), (e) is a Green function tensor which is inverse
to the tensor (e);' = c,;,e,e,. The sign f in Eq. (9) indicates
that a volume of (2m)*/V about k = 0 is excluded from the
integration. When V is large, this exclusion defines the “princi-
ple value” of the integral.

It can be seen from Egs. (8) and (9) that the function B, (e)
carries all the information on the elastic properties of a system
and the crystallography of the phase transformation taking
place. It is actually the Fourier transform of the strain-induced
interaction potential, W2/(r — r'), between finite elements of
particles of type p and g at points r and r’. It should be men-
tioned that B, (k/k) has a singularity at k = 0, since its limit at
k — 0 depends on the direction of k. This singularity yields a
1/r* dependence of its back Fourier transform and hence is
responsible for the dipole—dipole-like infinitely long-ranged
asymptotic behavior of the strain-induced interaction Wiy (r).
Such an interaction, in principle, cannot be reduced to the
gradient terms in the continuum limit. Therefore, the strain
energy is very different from the interfacial energy. It is a bulk
free energy which is proportional to the particle volume while
the interfacial energy is proportional only to the total interfacial
area. The strain energy is also different from the bulk chemical
free energy because it is morphology-dependent. Owing to
these particular features, the shape of a coherent particle is
volume-dependent, and the equilibrium shape in a coherent
system is actually an equilibrium shape at fixed volume.

The elastic constants and lattice parameters of Mg-PSZ at
1420°C,"? ¢,, = 3.08, ¢, = 0.69, c,, = 0.36 (10" erg/cm’) and
a, =5.094, a, = 5.091, and ¢, = 5.204 (A) are employed. The
kinetic constants M and L are not important in determining an
equilibrium shape, since they only affect the time to reach the
equilibrium shape, but not the equilibrium shape itself. We have
defined a reduced time T = #(Lk,T) in the simulation and the
ratio M/(La3) is fixed to 0.4. With those chosen parameters, the
kinetic equations (1a) and (1b) are solved numerically using
their Fourier space (reciprocal space) representation for a 3-D
model system consisting of 64 X 64 X 64 mesh points of a
cubic grid. The system size is 64 X a, ~ 0.25 wm. Periodic
boundary conditions are applied along all three dimensions in
the simulation.

IV. Results and Discussion

We start with a r-particle of equilibrium composition and SO
parameter coherently embedded in an equilibrium c-matrix. It
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has initially a spherical shape. Its size is 30a, in diameter.
The c-axis of the particle is directed along the [001] vertical
direction. The spherical shape is the equilibrium shape for a
stress-free particle in the system since, as has been mentioned
before, the form of the gradient terms and the choice of the
gradient energy coefficient provide an isotropic interfacial
energy. It is also a good approximation of particle shapes at
initial stages of precipitation when particles are small and the
interfacial energy plays a more important role in the energy
balance. However, the spherical shape is certainly a non-
equilibrium shape for the misfitting particle at the given size
considered here. According to Eqs. (1a) and (1), the initial
nonequilibrium spherical shape characterized by c(r,0) and
1(r,0) should gradually evolve into their equilibrium configu-
rations determined by the interplay between the isotropic
interfacial energy and the anisotropic strain energy. Since such
a shape relaxation is a spontaneous process, the total free
energy of the system continuously decreases in our simulation.
When the total free energy change with time reaches a plateau,
we assume that the particle shape has reached the equilibrium
shape.

The equilibrium shape obtained in this way for the given
particle size and given set of material parameters is shown in
Fig. 2. It is visualized by an iso-SO parameter plot. The three
cross sections of the particle by (100), (010), and (001) planes
are given in Figs. 3(a—c). They are visualized through the
shades of gray in accordance with the SO parameter field n(r);
i.e., the completely dark regions represent n(r) = 0, which
denotes the equilibrium c-matrix while completely white ones
represent m(r) = 1,, which denotes the equilibrium ¢-particle.
The steps shown on the particle are due to the fact that the scale
of the mesh used in the simulation is commensurable with the
particle size. It can be readily seen from these figures that the
predicted optimal shape is far from an ellipsoid as assumed in
the conventional analytical treatments. In fact, it is a rotation
disk formed by two cones with the common base (see also the
schematic drawing in Fig. 3(d)). The rotation axis coincides
with the c-axis direction of the z-particle and is parallel to the
[001] direction of the cubic phase matrix. Along this direction,
the lattice misfit between the s-precipitate and the c-matrix is
maximum, and the ¢-particle has its minimum dimension.

Fig. 2. Equilibrium shape of a tetragonal particle coherently embed-
ded in a cubic matrix of Mg-PSZ at fixed size characterized by an
interfacial-to-strain energy ratio 1.1.

Vol. 79, No. 4

010} [001]
[100]

Fig. 3. (a—) Cross sections of the tetragonal particle shown in Fig. 2
by (100), (010), and (001) planes. (d) Schematic drawing of the rotation
disklike particle shape.

This simulation prediction is in agreement with electron
microscope observations'>**'>'¢ which have shown that the pre-
cipitates in Mg-PSZ have a faceted lenslike shape rather than
ellipsoidal shape. The (100) and (010) cross sections of the
particle shown in Figs. 3(a) and (b) practically coincide with
the one reviewed by TEM using a (001) foil containing
t-particles of similar sizes.'® They also agree well with our 2-D
simulation predictions.®

It should be mentioned that if the initial configuration is far
from equilibrium, the particle may reach its equilibrium shape
through a different dynamic evolution path. For example, a
transient concave shape and “splitting” pattern have been
observed in the simulation when we start from a highly non-
equilibrium shape, a cylinder of r/h = 1, where r is the radius
and h is the height of the cylinder. Instead of gradual evolving,
the cylinder initially splits into two particles whose shapes
are much closer to the equilibrium one. This configuration is,
however, not the equilibrium one, since it has higher energy
than the equilibrium single particle obtained in Fig. 2. If we
wait long enough, the two transient particles should coalesce
into a single particle of the equilibrium shape. The transient
concave particle shape and splitting phenomena have also been
obtained in our simulation studies of particle shape evolution in
superalloys.®"” They are also observed experimentally.'*'?

It should also be emphasized that the result obtained above is
confined to the given particle size, since the equilibrium shape
of a coherent particle is size-dependent. Our previous 2-D simu-
Jation study has shown that, when the particle is relatively
small, the equilibrium shape in 2-D is a rhombus with smoothly
curved interfaces and corners. As the particle size increases, the
aspect ratio of the particle increases and its interfaces become
straight and corners become sharp. According to the 2-D ener-
getic analysis,” a shape bifurcation where the rhombus sponta-
neously transforms into a lower symmetry elongated shape
should be expected when the size of the ¢-particle exceeds a
certain critical value.

The strain-induced and diffusional multiparticle interactions
are not considered in this study. As has been shown by both the
TEM micrographs®'2'> and our 2-D simulations,’ the shape of
the t-particle in Mg-PSZ can be strongly influenced by the
interactions between particles. It should be interesting to inves-
tigate how the strain accommodation among the three orienta-
tion variants of the t-precipitates affect the particle shape and
their spatial distribution. Corresponding work is under way.
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