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Abstract--Morphological evolutions controlled by a transformation-induced elastic strain during a solid 
state precipitation are systematically investigated using a prototype binary alloy as a model system. A 
computer simulation technique based on a microscopic kinetic model including the elastic strain effect is 
developed. Without any a priori assumptions concerning shapes, concentration profiles and mutual 
positions of new phase particles, various types of coherent two-phase morphologies such as basket-weave 
structures, sandwich-like multi-domain structures, precipitate macrolattices and GP zones are predicted. 
A wide variety of interesting strain-induced kinetic phenomena are observed during development of the 
above microstructures, including selective and anisotropic growth, reverse coarsening, particle transla- 
tional motion, particle shape transition and splitting. In spite of all simplifications of the model, most of 
the simulation results are confirmed by experimental observations in various alloy systems, indicating that 
this kinetic model can be efficiently used for understanding, interpreting and predicting structural 
evolutions in real alloys. 

Rrsumr--On &udie systrmatiquement les ~volutions morphologiques contr616es par une drformation 
61astique induite par transformation pendant une pr6cipitation fi l'&at solide en utilisant un alliage binaire 
prototype comme syst~me modrle. On drveloppe une technique de simulation numgrique basre su run  
modrle cin&ique microscopique incluant l'effet de drformation 61astique. Sans aucune hypothrse a priori 
concernant les formes, on prrvoit les profils de concentration et les positions mutuelles des particules des 
nouvelles phases, les diffgrents types de morphologies des mrlanges biphasgs cohgrents tels que les 
structures tissres en panier, les structures fi plusieurs domaines en sandwich, les macrorrseaux prrcipitrs 
et les zones de G.P. On observe une grande vari6t6 de ph6nom6nes cin6tiques int6ressants induits par la 
d6formation pendant le d6veloppement des microstructures ci-dessus, y compris une croissance s61ective 
et anisotrope, un grossissement invers6, un mouvement de translation des particules, une transition de 
forme et une scission des particules. Malgr6 toutes les simplifications du mod61e, la plupart des r6sultats 
des simulations sont confirm6s par les observation exp6rimentales dans divers syst6mes d'alliages, ce qui 
indique que ce mod61e cin6tique peut 6tre utilis6 efficacement pour comprendre, interpr6ter et pr6voir les 
evolutions structurales dans les alliages r6els. 

Zasmnmenfassung--An einem Modellsystem einer binfiren Prototyplegierung werden die morphologischen 
Entwicklungen, wie sie von umwandlungsinduzierten, durch Ausscheidungsprozesse hervorgerufenen 
elastischen Verzerrungen im Festk6rper gesteuert werden, systematisch untersucht. Hierzu wird ein 
Simulationsverfahren entwickelt, welches auf einem kinetischen Modell beruht, welches Effekte durch die 
elastischen Verzerrungen einschliel3t. Ohne Annahmen fiber Gestalt, Konzentrationsprofile und gegenseit- 
ige Lage der neuen Phasenteilchen zu machen, werden verschiedene kohfirente zweiphasige Morphologien, 
wie Korbgewebe-Struktur, schichtartige Vieldom/inen-Strukturen, Ausscheidungs-Makrogitter und 
Guinier-Preston-Zonen, vorausgesagt. Eine grol3e Vielfalt interessanter dehnungsinduzierter kinetischer 
Erscheinungen wird w/ihrend der Entwicklung dieser Mikrostrukturen beobachtet, dazu geh6ren selektives 
und anisotropes Wachstum, umgekehrte Vergr6berung, Translationsbewegung der Teilchen, Umwand- 
lung und Aufspalten der Teilchengestalt. Trotz aller Vereinfachungen des Modelles werden die meisten 
Simulationsergebnisse, durch experimentelle Beobachtungen in verschiedenen Legierungssystemen 
bestfitigt. Mit diesem Modell krnnen also die strukturellen Entwicklungen in wirklichen Legierungen 
verstanden, interpretiert und vorausgesagt werden. 

1. INTRODUCTION 

Solid state precipi ta t ion is one of  the mos t  efficient 
ways to develop desirable microst ructures  for ad- 
vanced engineering materials,  such as nickel based 

tPermanent address: Department of Materials Science and 
Engineering, Pennsylvania State University, University 
Park, PA 16802, U.S.A. 

h igh- tempera ture  superalloys and  a luminum and 
magnes ium based ul tral ight  alloys. The thermo-  
dynamic  driving forces for precipi ta t ion result  in an  
extensive a tomic  rea r rangement  towards  a stable 
equi l ibr ium cor responding  to a m i n i m u m  in free 
energy. Depending  on  the t r ans fo rmat ion  kinetics, 
however,  a series of  in termediate  metas table  and  
t ransient  morphologica l  states of  a mixture  of  
precipitate and  matr ix  phases can be formed in the 
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path to equilibrium. Study of the structural trans- 
formations along this path continues to be a subject 
of wide interest in materials science. 

The kinetics of morphological evolution depends 
strongly on the thermodynamic driving force. If there 
are no external fields (such as stress or magnetic), 
the driving forces for precipitation are reductions 
of bulk free energy, interfacial energy and trans- 
formation-induced strain energy. According to classi- 
cal thermodynamics, the bulk free energy determines 
compositions and volume fractions of equilibrium 
phases in a two-phase mixture. Unlike the bulk free 
energy, the interfacial energy depends on a two-phase 
morphology. As for the transformation-induced 
strain energy, it has an unconventional dependence 
on both the volume and morphology of the product 
phases. Being volume-dependent, the strain energy 
contributes to the equilibrium compositions and vol- 
ume fractions of the coexisting phases, whereas being 
morphology-dependent, it also affects the mesoscale 
alloy microstructure. 

According to the classical Lifshitz-Slyozov- 
Wagner (LSW) theory, if the interfacial energy is the 
only driving force, the linear dimension of any micro- 
structural feature of g new phase particle increases in 
time following a simple dynamic scaling law. It leaves 
the equilibrium shapes and mutual arrangement 
of new phase particles unaltered. The situation is, 
however, significantly different if the microstructural 
changes are controlled by an accommodation of 
the transformation-induced elastic strain. It is well 
known that if the atomic rearrangement in a precipi- 
tate reaction gives rise to a new phase whose crystal 
lattice parameter differs from that of its parent phase 
and is coherently embedded in it, elastic strain fields 
are generated around the new phase particles. Over- 
lap of these strain fields results in a strain-induced 
interaction between finite elements of the product 
phases. Being strongly orientation dependent and 
having an infinite radius of interaction decaying as 
l / r  3, the strain-induced interaction is similar to the 
magnetic or electric dipole~tipole interactions. Ac- 
cordingly, the strain energy is strongly dependent on 
sizes, shapes, orientations and mutual arrangements 
of precipitate particles [1]. In such a case, complicated 
morphological changes are expected. The TEM and 
X-ray studies of many technologically important 
alloy systems have demonstrated that this is exactly 
the case. Various types of elaborate coherent two- 
phase morphologies (such as precipitate macrolattice 
in Fe-Be [2,3] and basket-weave structures in 
ALNICO [4] and fl-brass [5]) as well as different 
kinds of strain-induced kinetic phenomena (such as 
particle shape transition and splitting [6, 7] and 
strong precipitate correlations [8-10]) were observed. 

Theoretical study of the elastic strain effects on 
a multi-particle morphology of two-phase systems 
originated from the classical work by Cahn [11] who 
studied an early stage isostructural spinodal de- 
composition in a cubic alloy. He solved the linearized 

diffusion equation with a strain energy contribution 
and first demonstrated that spinodal decomposition 
in an elastically anisotropic system occurs by devel- 
oping concentration waves along the elastically soft 
directions. These concentration waves lead to satel- 
lites near the Bragg reflections along the soft direc- 
tions in reciprocal space. 

A close equation describing the strain energy of a 
two-phase mixture of an arbitrary morphology was 
derived by Khachaturyan [12] and Khachaturyan and 
Shatalov [13]. They showed that a strain accommo- 
dation leads to a development of certain optimal 
microstructures. So far, the equilibrium shape and 
habit of a single coherent new phase particle in an 
anisotropic crystal [1, 12, 14] and the mutual arrange- 
ments of a group of precipitates (e.g. the so-called 
modulated structures [1, 15-18] and the tweed and 
twin structures [19]) were predicted by minimizing the 
strain energy. Although these thermodynamic ap- 
proaches could explain origins of some strain-in- 
duced morphologies, they cannot account for details 
of the morphological evolution along the transform- 
ation path. Since the most interesting morphologies 
almost always appear at intermediate stages of a 
phase transformation, this is a substantial disadvan- 
tage. 

The linear diffusion theory by Cahn gives certain 
important information on the initial stages of 
spinodal decomposition. However, when the local 
compositions become close to the equilibrium values, 
further decomposition of a system is controlled by 
nonlinear effects. It is coarsening, particularly strain- 
induced coarsening that determines the morpho- 
logical evolution of a two-phase mixture after the 
short initial linear stage. Extension of the linear 
approach to the nonlinear stage of spinodal de- 
composition has been proposed by Miyazaki e t  al. 
[20]. These authors obtained numerical solution of 
the nonlinear Cahn-Hilliard equation. Kinetics of a 
strain-induced coarsening starting from randomly 
distributed elementary particles (finite elements) of 
the precipitate phase has been investigated by Wen 
et  al. [21]. By assuming that the morphological 
changes occur along the steepest total free energy 
descent path (strain energy+interfacial  energy), 
evolutions of the randomly distributed precipitates 
into modulated structures and tweed structures were 
predicted by a computer simulation. McCormack e t  
al. [22] analyzed the kinetics of particle splitting 
phenomenon using the same technique. However, this 
approach cannot describe the early stage decompo- 
sition where the concentration waves first develop. 
Evolution of concentration profiles during the coars- 
ening was also ignored. These aspects may have a 
profound influence on the later stage coarsening. 

The effect of strain on the Ostwald ripening 
kinetics of two spherical particles in an infinite 
anisotropic crystal was recently examined by Johnson 
e t  aL [23] who used an analytical approach. In this 
approach, shapes of the particles are assumed 
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unchanged during the whole coarsening process. 
However, a spherical shape of a particle can be 
expected only if an isotropic interfacial energy 
rather than strain energy dominates the coarsening 
process (this may be the case in the initial stage of 
coarsening). When the particles grow above a certain 
critical size, the strain energy dominates over the 
interfacial energy and the particles are no longer 
spherical. Some preliminary results, free from any of 
these limitations, have been obtained in our computer 
simulations [24]. 

It is the purpose of this paper to investigate the 
effects of coherent elastic strains on the kinetics 
of morphological transformations in solid state pre- 
cipitations without any a priori assumptions on the 
possible morphologies that could develop. To reach 
such an objective, a kinetic model based on the 
microscopic diffusion theory [25] and microscopic 
elasticity theory of an arbitrary solid solution 
[1, 12, 13] is constructed. In this model, all structural 
changes, both atomic and mesoscale, are described in 
terms of a single-site occupation probability function 
of finding a solute atom at a crystal lattice site. The 
problems of morphological transformation are then 
reduced to a temporal evolution of this function. This 
approach is actually universal in a sense that it 
can simultaneously describe a wide variety of very 
different structural transformations, such as ordering, 
decomposition, growth and coarsening, within the 
same formalism. The diffusional relaxation of this 
function towards its equilibrium state is described by 
the Onsager-type microscopic diffusion equations 
[25]. Because the driving force of the crystal lattice 
diffusion process is a highly nonlinear functional of 
the occupation probability function, the diffusion 
equations are strongly nonlinear and can only be 
solved numerically by using computer simulation 
techniques. The reciprocal space formulation of the 
microscopic diffusion theory and the microscopic 
elasticity theory allows a straightforward computer 
simulation. The advantages of such a kinetic model 
has been demonstrated in the study of precipitation 
of an ordered intermetallic phase from a disordered 
solid solution without elastic strain [26, 27]. To focus 
on the coherent elastic strain effect, however, we shall 
only consider a simple case in this paper, i.e. an 
isostructural decomposition of a cubic disordered 
phase into a mixture of two cubic disordered phases 
in a binary alloy. 

The results may also be applied to a more compli- 
cated case when the precipitate phase is an ordered 
intermetallic. It has been shown [26, 27] that precipi- 
tation of an ordered intermetallic from a disordered 
matrix is preceded by a congruent ordering, which 
results in an ordered single-phase forming a 
nanoscale mixture of antiphase domains. The de- 
composition is heterogeneous. It is dominated by an 
antiphase domain boundary (APB) instability which 
leads to the replacement of APBs by the equilibrium 
disordered phase. The situation, however, changes if 

a stable high-temperature ordered phase rather than 
the disordered state is quenched into the two-phase 
field. The initial high-temperature ordered phase may 
consist of large ordered domains and thus the 
spinodal decomposition may occur homogeneously 
within the bulk of the initial ordered phase. This 
decomposition is isostructural and is controlled by a 
conditional spinodal suggested by Allen and Cahn 
[28]. An example is the isostructural decomposition 
of an ordered phase occurred in ALNICO alloys. 
In such cases the morphological evolution should 
not be different from that predicted in this paper. 
Some effects of transformation-induced elastic strain 
on precipitation of an ordered intermetallic from a 
disordered matrix has recently been studied [29]. 

2. THEORETICAL BASIS 

2.1. Formulation of the kinetic model 
According to [25], the crystal lattice site diffusion 

in a binary substitutional alloy is determined by a 
diffusional relaxation of the nonequilibrium single- 
site occupation probability of finding a solute atom 
at crystal lattice site, r, and at time, t, which is given 
by n(r, t). The diffusional relaxation is described by 
the Onsager equation 

dn(r, t) c(1 - c) 6F 
- kB--T- ,~, L°(r - r ' ) - -  (1) dt , ~n(r', t) 

where c is the atomic fraction of solute atoms, kB is 
the Boltzmann's constant, T is the absolute tempera- 
ture, L 0 ( r - r ' )  is a matrix of kinetic coefficients 
related to probabilities of elementary diffusional 
jumps from lattice site r to r" of a Bravais lattice 
during a time unit, and F is the total free energy 
including the strain energy contribution. The sum- 
mation over r" is carried out over all N lattice sites of 
a crystal. The conservation of atoms in the system 
gives a relation 

Y~ L 0 ( r  - r ' )  = 0. 
t 

In the case of an ideal solid solution, equation (1) 
describes a random walk problem. In the long-wave 
approximation, equation (1) gives the conventional 
Cahn-Hilliard equation. The solution of equation (1) 
is substantially simplified if the Fourier transform 
technique is used. The Fourier representation of 
equation (1) reads 

dri(k,t)  c (1 -c )  F,o(k){ 6F } 
dt - k BT ~ ~ (2) 

where k is the reciprocal lattice vector, and ~(k, t), 
/~0(k), and {6F/6n(r, t)} k are Fourier transforms of 
the corresponding real space functions. 

2.2. The free energy approximation 
To describe the free energy entering equation 

(1), we utilize the mean-field approximation. In the 
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mean-field approximation, the free energy for an 
inhomogeneous solid solution is given by 

F = ½ ~ W(r -- r')n (r)n (r') + k B T ~ [n (r)ln n (r) 
rr' r 

+ (1 -- n(r))ln(1 -- n(r))] (3) 

where W(r - r') = w(r - r')f + w(r - r')~j is a pairwise 
interaction energy between two atoms at lattice sites 
r and r', including a finite radius ("chemical") inter- 
action w ( r -  r') r and an infinite radius strain-induced 
interaction w(r - r')~ I. Since the focus of this paper is 
on the main characteristics of a two-phase morpho- 
logical evolution during a precipitation reaction, any 
free energy approximation which provides a convex 
segment on the free energy vs composition curve 
corresponding to a miscibility gap can be used. The 
mean-field approximation seems to be the simplest 
model to work with. It should be noted that 
differences between various free energy models with 
convex segments on their free energy vs composition 
curve would not affect the sequence of transient 
structures along the transformation path that we 
are primarily interested in. It may only affect the 
rate of transformation. The bulk free energy, 
interfacial energy and strain energy used in the 
phenomenological Cahn-Hilliard model are auto- 
matically described by equation (3). For example, 
they can be obtained by a limit transition of (3) to the 
continuum theory [1]. 

2.3. Elastic strain energy 

In the microscopic elasticity theory [1, 12, 13], the 
strain energy of a binary solid solution is given as a 
sum of two physically distinct terms: (i) the configur- 
ation-independent term describing the self-energy 
and image force-induced energy, (ii) the configur- 
ation-dependent term associated with concentration 
inhomogeneity. The first term is not affected by 
spatial redistribution of solute atoms and therefore it 
can be ignored. The second term however gives a 
substantially nonlocal strain energy change associ- 
ated with spatial distribution of solute atoms. Since 
such a strain energy also depends on the volume of 
the precipitate phase, it plays a key role in structural 
transformations. Therefore, we shall concentrate on 
only this part of the strain energy in this study. 

For a cubic substitutional solid solution, solute 
atoms are dilatational centers and their introduction 
leads to an isotropic crystal lattice expansion charac- 
terized by a stress-free strain tensor E ° = Eoro, where 
eo = da/a dc is the concentration coefficient of crystal 
lattice expansion caused by the atomic size difference, 
a is the crystal lattice parameter of a solid solution, 
c is the atomic fraction of solute atoms and 6 o is the 
Kronecker delta symbol. Under these conditions, the 
configuration-dependent strain energy associated 
with an arbitrary atomic distribution, n(r), is [1] 

Eel ---- ~ 1  ~,  V(k)cllr~(k)[2 (4) 

where V(k)~ is the Fourier transform of the infinite 
radius strain-induced interaction energy, w(r)el, and 
r~(k) is the Fourier transform of n(r). The prime in 
the summation (4) implies that the point k = 0 is 
excluded. 

Since a decomposition process is determined by 
development of a packet of concentration waves with 
wave vectors close to zero, the long-wave (contin- 
uum) approximation for V(k), l [1] can be used 

V(k)¢ l ~ B(e) = -a~[eif~(e)oe j -  (e,n(e)vej)e] (5) 

where a0 = (Cll + 2c12)£0, Cll and ct2 are elastic con- 
stants of a cubic crystal, e = k/k is a unit vector in the 
k direction, f~(e)u is a Green tensor reciprocal to 
Cokteke t (Cok t is a tensor of the elastic constants) and 
( . . . ) .  is a symbol of averaging over all directions e. 
In (5), the Einstein suffix notation is used. At k = 0, 
the function B(e) has a singularity since its limit 
at k--,  0 depends on the k vector direction. This 
singularity results in a long-range asymptotic behav- 
ior of the strain-induced interaction in real space [13]. 
Rewriting equation (4) in a real space representation 
gives 

Eel = ½ ~ we1 (r - r')n (r)n (r'). (6) 
rd 

The Fourier transform of the variational derivative 
of (3) yields 

~F kB T{ln n(r, t) 
{ ~ } t = V ( k ) n ( k , t ) +  1 _--n~, t ) j  k (7) 

where 

V(k) = ~ [w (r)r + w (r)ellexp(- ikr) 
r 

= r o o f  + a(e)  (8a) 

V(k)f = ~ w (r)f exp( -  ikr) (8b) 
r 

{ln(.l n(r, t_._) " ~ =  ~ In(; n(r--r',t-) .-7"~exp(-ikr ). 
-n(r, t),]J~ . \ l - - n ( r , t ) /  

(8c) 

Substituting (8) to (7) and (7) to (2) yields a reciprocal 
space representation of the kinetic equation 

drT(k,dt t ) _  c(1 kB 7 )  ff°(k)[ (V(k)f + B(e))r~(k, t) 

+ k B T  In 1 _n( r ,  t) k 

The mean field approximation which results in 
equation (9) is good for any system with long-range 
interactions. The longer the interaction range, the 
more accurate the equation. It is especially accurate 
in the presence of long-range strain-induced inter- 
actions [30]. Due to the nonlinear term in the square 
bracket, equation (9) is a nonlinear equation with 
respect to rT(k, t). It is obvious that a numerical 
solution would be preferred for dealing with any 
problems of practical significance. 
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The significant advantage of equation (9) for the 
study of morphological transformation is that the 
only input needed is the information concerning 
interaction potentials. They are the finite radius and 
strain-induced infinite radius interactions described in 
the reciprocal space by functions V(k)f and B(e), 
respectively. A solution of it, r~(k, t), completely 
describes the temporal and spatial evolution of the 
concentration wave amplitudes within the entire first 
Brillouin zone. The back Fourier transform of the 
function, r~(k, t), gives the occupation probabilities, 
n(r, t), which describe both the atomic scale and 
mesoscale microstructure transformations, including 
changes of crystal structures, shapes, habits, concen- 
tration profiles and mutual distributions of the pre- 
cipitates. Any a priori assumptions concerning the 
above information become unnecessary. 

3. MODEL SYSTEMS 

In the present work we consider 2D binary substi- 
tutional solid solution of an isostructural decompo- 
sition in a square lattice consisting of 128 x 128 unit 
cells. Periodic boundary conditions are applied along 
both dimensions. This is the simplest model approxi- 
mating the main features of morphological trans- 
formation in a cubic system. We assume that the two 
disordered product phases have the same disordered 
structure and elastic moduli, but different compo- 
sitions and thus different crystal lattice parameters. 
A coherency between the precipitate and matrix 
phases is assumed. The interaction energies of the 
system are chosen in such a way that they lead to an 
isostructural decomposition when the system is 
quenched to a lower temperature. This means that the 
function V(k)f in (9) assumes its minimum value at 
k = 0 .  

Since g(k)f describes the finite radius atomic inter- 
action, its back Fourier transform, the interchange 
energies w(r)f, have nonvanishing values only for 
a few coordination shells. Therefore we assume a 
2-neighbor interaction model in this study (inter- 
actions beyond the second coordination shell are 
assumed to be zero). The function V(k)f in this 2D 
model could be written as 

V0t)f = 2wl (cos kx a + cos ky a) + 4w 2 cos kx a cos ky a 

00) 

where k = (k x, ky), k x and Icy are components of the 
vector k along the x and y axes parallel to the [10] and 
[01] directions in the reciprocal space, w 1 and w 2 are 
the nearest and next nearest neighbor pairwise inter- 
change energies and a is the crystal lattice parameter. 
Both wi and WE are assumed negative and w,/WE ratio 
is chosen to be x/~. This particular choice of w~ and 
WE results in a miscibility gap in the phase diagram 
and provides equal interfacial energies of {10} and 
{l l} interfaces. The condition of equal interfacial 
energies of the {10} and {01} interfaces allows us to 

simulate a nearly isotropic interfacial energy within 
the assumed 2-neighbor interaction model and thus, 
to exclude all anisotropic effects other than those 
caused by the elastic strain. 

The infinite radius strain-induced interaction de- 
scribed by equation (5) for this 2D model can be well 
approximated as 

B ( e ) ~  2 2 l B(exe? - ~) (11) 

where e~ and ey are components of the unit vector e 
along the x and y axes in the reciprocal space and 

4(c,t + 2C12) 2 
B =  C11(C11+C12+2C44)£2A (12) 

is a material constant. It characterizes the elastic 
properties and the crystal lattice mismatch and is 
defined as strain energy parameter in this paper. In 
(12), A = Clj - c12 - 2c44 is the elastic anisotropy con- 
stant and cn, c12, co are elastic contants of the model 
system. In our simulation B > 0 which occurs for 
alloys with a negative elastic anisotropy. The term 1/8 
in (11) is 2 2 (e~ey>. 

Since the interatomic interaction chosen provides 
decomposition, the phase diagram can be determined 
simply by minimizing the free energy 

F = N[½ V(0)c 2 + k B T(c In c + (1 - ¢) ln(1 - c))] 

(13) 

which follows equation (3) with n(r) ~ c [1]. How- 
ever, due to involvement of the infinite radius strain- 
induced interaction characterized by the function 
B(e) which has a singularity at k = 0, the situation 
is complicated. Instead of V(0), we have to use 
min[V(k)]= V(0)f+B(e0), where e 0 = ( 0 1 )  is the 
"soft" directions providing the minimum value of 
B(e) [according to ( l l ) ,  B ( e 0 ) = - B / 8 ] .  It should 
be noted that the singularity of V(k)=  V(k)f + B(e) 
at k = 0 is responsible for the dependence of the 
bulk free energy on the two-phase morphology, 
leading to a very unconventional situation where the 
mesoscale morphology (shape, habit and spatial 
arrangement of the second phase particles) deter- 
mines the phase identity. In other words, different 
morphologies can be regarded as different phases. 
The stable coherent diagram calculated from the free 
energy model 

+ kB T(c in c + (1 - c) ln(1 - c)) ]  (14) 

is shown in Fig. 1, which corresponds to infinite thin 
precipitates normal to % =  <01>. All other mor- 
phologies correspond to metastable states whose 
miscibility gaps are inside the one presented in Fig. 1. 
The diagram is presented in terms of a reduced 
temperature T* = kB T/I V(0)f-- B/8 I. 
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Fig. 1. Coherent equilibrium phase diagram for plate-like 
precipitates of {01} habits of the model system. The misci- 
bility gap is designated by a solid line and the dashed line 
describes the spinodal. The diagram is presented in terms 
of a reduced temperature T* (see text for the definition of 
T*). Open circles marked a-g represent the alloy compo- 
sitions and "aging" temperatures chosen for the computer 

simulations. 

By assuming that the elementary diffusional jumps 
occur only among the nearest and next nearest 
neighbor sites and utilizing the relation 

L o ( r )  = 0 ,  
T 

the function/~0(k) in (9) for this 2D model may be 
expressed as follows 

/],(k) 0 = ~ L 0 (r) exp ( -  ikr) 
r 

= - 2 L  l [(2 - cos k~a - cos kya) 

+ ~(2 - cos(kxa + kya) 

- cos(k~a - k~a))] (15) 

where ~ = L2/L1, LI and L 2 are kinetic coefficients of 
elementary diffusional jumps to the nearest and next 
nearest neighbor sites, respectively. In this study L 1 
and L2 are assumed to be independent of alloy 
composition. This conventional approximation for 
atomic mobilities in diffusion kinetics may affect the 
transformation rate but not a sequence of the struc- 
tural evolutions. The value of ~ is assumed to be 0.1. 
The purpose of using such a 2-neighbor jump model 
instead of the nearest-neighbor jump model is to 
accelerate the numerical calculations. The features 
and sequences of the simulated morphological evol- 
ution do not depend on ~. Using (10)-(12) and (15) 
in (9) and introducing the reduced strain energy 
parameter, B* =B/IV(O)-B/81 ,  and reduced time 
t* = t/z, where T = [L 1 (c(1 - c)/kB T) I V(0) - B/8 I]-l 
is a typical time of an elementary diffusion event, the 
kinetic equation (9) for this 2D model system may be 
written in a dimensionless form 

dr~(k, t*) 
dt------ ~ -  = -2[(2 - cos kxa - cos kya) 

+~(2-cos(kxa + kya) 

-cos(kxa - kya))] 

I 2w~ (cos kxa + 
× I v ( 0 ) -  B/81 

COS kya) 

4w,/  
-t- IV(0) - B/81 cos kxa cos kya 

, 2 2 +B (exey-~)a(k ,  t*) 

f n'r'"tl ,,6, + T *  In l - n ( r , t * )  k " 

Solution of this equation is carried out using the 
Euler method relating occupation probabilities at the 
time moments t* and t * + A t *  by a recurrence 
equation 

d~(k, t* ) 
g ( k , t * + A t * ) = ~ ( k , t * ) q  -At* (17) 

dt* 

where At* is a time increment and d~(k, t*)/dt* is 
expressed in terms of ~(k, t*) through equation (16). 

4. SIMULATION RESULTS 

4.1. Morphological evolution during spinodal de- 
composition 

Spinodal decompositions are simulated by iso- 
thermally "aging" the homogeneous disordered solid 
solutions below the spinodal line of the phase 
diagram shown in Fig. 1. The as-quenched state 
of the system is determined by an initial condition 
n(r, 0 )=  c + ~c(r), where c is the average compo- 
sition of the solution and ~c(r) are small pertur- 
bations generated by a random number generator. 
Typical spatial and temporal evolutions of the as- 
quenched microstructures are presented in Figs 2 
and 3. In these figures and the following ones, 
completely dark regions in the simulated micro- 
structures represent a zero occupation probability, 
n(r, t*), for solute atoms, while completely white 
regions describe an occupation probability of one. All 
the intermediate values of n(r, t*) are represented by 
different shades of grey. Small dark squares in the 
lower right corners of each piccture in Fig. 2 and the 
following figures are simulated diffraction patterns 
around k = 0 ,  described by [~(k,t*)l 2. In order to 
give a better image, the Bragg reflection intensity is 
removed from the diffraction pattern and only diffuse 
scattering due to concentration heterogeneities is 
shown. The intensities of satellites are normalized to 
their maximum values for each pattern. 

4.1.1. Spinodal decomposition in a symmetrical 
case. An alloy with composition c = 0.5 is aged at a 
temperature, T* = 0.08. The corresponding point in 
the phase diagram is shown in Fig. 1 by point "a", 
which sits right in the middle of the miscibility gap. 
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Fig. 2. Simulated temporal isothermal evolutions of  microstructures in alloys undergoing symmetrical 
spinodal decomposition at point "a"  in Fig. 1. Various shades of  grey represent different values of  
occupation probability of  solute atoms (completely white represents a value of  one while completely dark 
represents a value of  zero)• The insets represent normalized diffuse scattering intensities around reciprocal 
lattice origin• ( a l ~ ( e l )  correspond to reduced transformation time t* (see text for definition) = 8, 10, 15, 
30, 50, and (a2)-(e2) correspond to t * = 4, 5, 6, 20, 50. 1 and 2 refer to two different cases where the reduced 

strain energy parameter B* equals to 0.0 and 2.0, respectively• 
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Several simulations with different values of B* have 
been performed. Two typical results with B * =  0.0 
and B* = 2.0 are presented in Fig. 2. The finite radius 
interchange energies, Wl and w~ are kept the same in 
both cases. Therefore a change in B* actually means 
a change in the balance between the strain-induced 
infinite radius interaction and the finite radius 
"chemical" interaction. Starting from the same initial 
morphology of a homogeneous state, which is not 
shown in the figures, the computer simulations show 
gradual transformations of the two alloys into totally 
different spatial patterns of a mixture of the two 
equilibrium phases. Let us first consider decompo- 
sition in an extreme case of B* = 0.0, i.e. no strain 
energy contribution is included. As shown in Fig. 2 
(al-el),  the spinodal decomposition starts by devel- 
oping concentration waves along all directions. The 
corresponding side-bands shown in the diffraction 
patterns form rings. The amplitudes of these concen- 
tration waves keep growing until the occupation 
probabilities reach values equal to equilibrium com- 
positions. The growth stage then comes to an end and 
the system starts to coarsen. There is a considerable 
increase in the wave length at this stage [see, e.g. 
Fig. 2(cl-el)], which is clearly indicated by the 
shrinkage of the side band rings in the diffraction 
patterns. However, the general features of the mor- 
phology do not change during the entire coarsening 
pro~ess. For example, the two product phases 
maintain to be highly interconnected and randomly 
oriented. This kind of morphology is quite similar to 
that predicted by Cahn [31] using a simple linearized 
theory of spinodal decomposition in elastically 
isotropic systems, and is reminiscent of those ob- 
served in many experimental studies of phase separ- 
ations in isotropic systems such as glasses. 

When a significant lattice mismatch between the 
two product phases is assumed, e.g. B * =  2.0, a 
highly anisotropic structure composed of alternative 
{01} thin strips of the two product phases is obtained 
[Fig. 2(a2-e2)]. In the early stage of decomposition, 
only concentration waves along the elastically soft 
directions (i.e. [10] and [01]) develop. The side-band 
formed in the diffraction pattern in this case consists 
of  only satellites along the (01) directions. Super- 
position of these waves while they grow towards their 
equilibrium amplitudes generates an interesting inter- 
mediate structure which looks like a "basket weave" 
(see a2--c2 in Fig. 2). It consists of solute-rich white 
strips and solute-lean dark strips weaving together 
along the soft directions. This morphology is in 
striking agreement with experimental observations by 
de Vos in ALNICO alloy [4], Butler and Thomas [32], 
Livak and Thomas [33] in Cu-Ni-Fe, Enami et aL 
[34] in Ni-AI, Higgins et al. [35] in Fe-Be, and Kubo 
and Wayman in fl-CuZn [5]. One example is given in 
Fig. 6(al). 

It is also interesting to note that the superposition 
of the mutually perpendicular concentration modu- 
lations locally generates a transient microstructure 

which looks like a 2D square "macrolattice" [arrows 
in Fig. 2(b2, c2)]. The macrolattice sites are formed 
by particles of "dark" and "white" phases which 
appear at nodes of overlaps of the two ID modu- 
lations along [10] and [01] directions, e.g. the "dark" 
phase particles at intersections of two minimum 
amplitudes and the "white" phase particles at inter- 
sections of two maximum amplitudes. In addition to 
the "dark" and "white" phases whose compositions 
are close to the equilibrium compositions, there are 
"grey" linkages of an intermediate composition 
between the "dark" and "dark" or "white" and 
"white" particles. A possibility of such a transient 
"three-phase" modulated structure has already been 
predicted from the thermodynamic stability analysis 
[36]. It was also observed by many investigators 
using TEM and particularly by de Vos in ALNICO 
alloys [4]. 

Later development of this intermediate structure 
leads to a sandwich-like multi-domain structure 
consisting of alternating strip-like domains of two 
equilibrium phases [Fig. 2(d2)]. All domains are well 
orientated along either [10] or [01] elastically soft 
directions forming different colonies. A similar struc- 
ture was obtained by Nishimori and Onnki [37] from 
a numerical solution to the Cahn-Hilliard equation. 
The next stage of morphology evolution (e.g. struc- 
tures from d2 to e2 in Fig. 2) consists of coarsening 
of both domains and colonies. The coarsening occurs 
by growth of bigger domains and colonies at the 
expense of smaller ones. As a result, the average 
thickness of different domains and average size of 
colonies increase. The domain coarsening is driven by 
an interfacial energy reduction while the colony 
coarsening is driven by a reduction of the part of 
energy which is proportional to the colony boundary 
area. Ultimately, the system should reach a stable 
structure with a single colony of alternating {01} 
domains. 

When B* is assumed to have values between 0 and 
2.0, some intermediate structures in between the two 
cases shown in Fig. 2 are obtained. The larger the 
value of B*, the stronger the anisotropy of the 
structure formed. 

4.1.2. Spinodal decomposition in asymmetrical 
cases. This simulation describes a precipitation in an 
alloy whose composition, c = 0.14, is close to one side 
of the spinodal line. The aging temperature T* is 
again chosen to be 0.08. The representative point on 
the phase diagram is shown by point "b" in Fig. 1. 
According to the phase diagram, the volume fraction 
of the precipitate phase is about 13.8%. Several 
simulations with the same Wl and w2 but different 
B* are performed. Some of the results are shown 
in Fig. 3. In the first row of Fig. 3, where the strain 
energy parameter B* is assumed to be zero, randomly 
oriented concentration waves develop first. An inter- 
connected structure [Fig. 3(al)] which is similar to 
that obtained in the symmetrical case is predicted at 
the initial stage of decomposition. Upon further 
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aging, however, the connectivity is broken while the 
two phases grow towards their equilibrium compo- 
sitions. Instead of an interconnected morphology, 
isolated circular precipitate particles embedded in the 
solute-lean dark matrix are formed [Fig. 3(bl-el)] .  
These results are different from that predicted by the 
linear theory [31]. According to [31], connectivity 
between the two product phases in spinodal de- 
composition is maintained over a very wide range of 
volume fraction of the second phase (approximately 
15-85%). In our simulations, however, discrete 
equiaxed particles are obtained even when the volume 
fraction of the precipitate phase is up to 25%. 
Therefore, the morphologies developed at later stages 
of decomposition could be quite different from that 
formed in the initial stages. 

Coarsening of the uniformly distributed equiaxed 
particles simply follows the LSW mechanism, i.e. 
larger particles grow and smaller particles shrink to 
provide an interfacial energy relaxation. As a result, 
there is a gradual shrinkage of the side-band rings in 
the diffraction patterns which implies a continuous 
increase in the mean particle size. The coarsening also 
results in a wider particle size distribution which is 
indicated by a transformation of the initially sharp 
side-bands into diffuse ones. 

If finite values of B* are assumed, totally different 
morphologies develop. Two examples with B* = 1.25 
and B * =  1.70 are shown in the second and third 
rows of Fig. 3, respectively. In general, the effect of 
the elastic strain on the initial stage of decomposition, 
as demonstrated in Fig. 3(a2, a3), is similar to that in 
the symmetrical case. Fine and diffuse concentration 
modulations along the elastically soft directions de- 
velop first. The larger the strain energy contribution, 
the stronger the modulation alignment. A noteworthy 
result of this simulation, however, is the appearance 
of a regular array of solute-rich "white" equiaxed 
particles within the solute-lean "dark" matrix in the 
case of a moderate strain energy contribution 
( B * =  1.25). The particles are formed at nodes pro- 
duced by intersections of maxima of the two mutually 
perpendicular concentration modulations along [10] 
or [01] directions [Fig. 3(b2)]. The nodes develop into 
isolated particles by absorbing solute atoms from all 
connecting linkages. As a result, an array of precipi- 
tates which can be best described as a square precipi- 
tate macrolattice is formed. The macrolattice 
generates Laue diffraction maxima with the most 
intense satellites located at the (01)  soft directions 
around the Bragg reflection of the atomic lattice. This 
result is similar to that obtained from a thermodyn- 
amic analysis for cubic alloys [16]. Based on the strain 
energy minimization in a 3D space, a simple cubic 
precipitate macrolattice was predicted in [16]. How- 
ever, it should be noted that the precipitate macro- 
lattice obtained here from the kinetic consideration 
is far from perfect. There is a fairly large amount of 
macroscopic defects similar to "macrodislocations" 
and "macrovacancies". The structures shown in 

Fig. 3(b2--d2) are in excellent agreement with the 
corresponding electron microscopic image of the 
macrolattice formed in Fe-Be alloys obtained by 
Tyapkin et al. [2, 3] [see, e.g. Fig. 6(bl)]. 

As compared to the uniformly distributed particles 
obtained in the previous case (first row of Fig. 3), the 
size distribution of this regular array of particles is 
narrower and its coarsening proceeds discontinuously 
by two mechanisms different from Ostwald ripening. 
The first one is a "macrodislocation" climb. For 
example, the structural evolution from c2 to d2 in 
Fig. 3 demonstrates disappearance of some particles 
at the ends of certain rows. The second mechanism is 
an aggregation of closely located particles. These 
processes generate "macrovacancies". 

The shape of the particles is equiaxed during the 
early stage of coarsening, but some particles in 
the same row or column start to aggregate during the 
later stages forming elongated particles along one of 
the (01) soft directions. As a result, a morphology 
consisting of a mixture of equiaxed and elongated 
particles is obtained [Fig. 3(e2)]. 

Increasing B* has a similar effect on the micro- 
structural development as increasing the "aging" 
time. The morphological evolution with B * =  1.70 
(third row in Fig. 2) shows that elongated particles 
are formed at an earlier stage of coarsening and 
the number of elongated particles increases as 
the "aging" time increases. When t* reaches 180 
[Fig. 3(e3)], almost all the particles exist in the 
form of {01 } strips, forming a rough Widmanstiitten 
structure. 

If the value of B* is much smaller than 1.25 e.g. 
about 0.7, the equiaxed particles formed are not well 
aligned along the (01) directions. On the other hand, 
if B* is very large, e.g. >2.0, the intermediate 
macrolattice structure does not appear. The system 
directly decomposes into a structure consisting of 
individual strip-like particles with {01 } habits embed- 
ded in the matrix. 

All these results indicate that the precipitate 
macrolattice appears only as a temporal morpho- 
logical state during a phase transformation. The 
appearance of such a morphological state depends on 
both the lattice mismatch characterized by B* and 
the aging time. 

4.2. Morphological evolution during decomposition 
above spinodal 

The cases considered above demonstrate that if the 
strain effect is taken into account, quasi-periodic 
concentration modulations aligned along the elasti- 
cally soft directions always appear in the beginning 
of a spinodal decomposition. Experimental obser- 
vations, however, show that some modulated 
structures are formed from initially randomly dis- 
tributed precipitates as well [8-10]. Such a morpho- 
logical evolution most likely follows a nucleation and 
growth mechanism which is operative above the 
spinodal line. Therefore, it is interesting to investigate 
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and 1000. I and 2 here designate differences in density of nuclei. 

isothermal "aging" of an alloy in this part of the 
phase diagram. This is the case when an alloy with 
composition c =0.12 is quenched to a point "c" 
shown in the phase diagram (Fig. 1). Since our kinetic 
equations always drive a system towards states with 
lower free energies, it cannot describe an activation 
process such as nucleation which requires overcoming 
an energy barrier. Therefore, nuclei have to be intro- 
duced artificially. This is done by randomly placing 
nuclei into a homogeneous disordered solution. The 
size of the nuclei has been chosen to be larger than 
the critical size. 

Evolutions of the initially randomly distributed 
small particles under the influence of a moderate 
elastic strain effect are demonstrated in Fig. 4. Two 
different cases are presented. In the first case where 
a lower density of nuclei is assumed, an interesting 
multi-particle effect, i.e. selective growth and transla- 
tional motion of particles during their growth and 
coarsening processes is observed. It is demonstrated 
in the first row of Fig. 4. In order to see clearly 
this effect, we superimposed Fig. 4 (dl) onto (al). 
The result is presented in Fig. 5. It is shown that the 
initially randomly distributed particles have a ten- 
dency to grow and migrate along certain directions to 
form regular arrays along the (01) directions. As 
a result, a rough precipitate macrolattice is formed. 
It is reflected by a gradual appearance of satellites 
in the diffraction patterns shifted from the Bragg 
reflection along the (10) directions. The directions of 
the growth and translational motion of particles are 
determined by their relative displacements from the 
macrolattice sites. 

In addition to the selective growth and transla- 
tional motion, the entire coarsening process of the 
particles is quite different from Ostwald ripening. 

Examining the microstructural development from 
(bl) to (dl) shown in Fig. 4, one may see that the 
coarsening is determined by the relative position of a 
particle rather than by its size. For example, if we 
concentrate on the three particles marked a, b and c, 
or the two particles marked d and e in those pictures, 
it can be readily seen that the initially smaller par- 
ticles a and e grow larger at the expense of the initially 
larger particles b, c and d. Such a coarsening process 
is just opposite to that of Ostwald ripening. It is 
unique and is caused by the strain energy relaxation. 
We call this process the strain-induced reverse coars- 
ening. A possibility of such a reverse coarsening 

O 4) 

Fig. 5. Superimposition of (al) and (dl) of Fig. 4 showing 
the selective growth and translational motion of particles 
during strain-induced growth and coarsening in a multi- 

particle system. 
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behavior has been predicted by Khachaturyan and 
Shatalov [13] from the strain energy consideration. 
But this prediction is not quite convincing since it was 
based on thermodynamic arguments only. Johnson et 

al. [23] obtained the reverse coarsening effect by 
considering diffusion kinetics, but they analyzed only 
a two-particle system• Indeed, as shown in Fig. 5, the 
strain-induced reverse coarsening in a multi-particle 
system could be substantially different from that in a 
two particle system. It is directed to restore the 
periodical particle arrangement. 

When a higher density of nuclei is assumed, a 
more regular precipitate macrolattice is formed by 
selective growth and selective coarsening processes 
[Fig. 4(a2-d2)]. Here by selective growth we mean that 
the particles which sit at or close to the "macrolattice 
sites" grow much faster than those who are located at 
the "interstitial sites". The selective coarsening means 
that all "interstitial" particles disappeared during the 
coarsening process. The microstructures shown in Fig. 
4 are in excellent agreement with the observations by 
Tyapkin et al. in Ni-Cu Si alloys [9] and in F e - M n -  
A1-C alloys [10]. One example is given in Fig. 6(cl). 

Figure 7 shows a temporal morphological evol- 
ution in a case that involves both nucleation and 
growth and spinodal mechanisms. This is realized by 
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Fig. 6. Comparison between experimental observations 
[(al)-(cl)] and computer simulation results [(a2)-(c2)], (al) 
basket-weave structure formed in ALNICO alloy, foil orien- 
tation (001) (from [4]), (bl) precipitate macrolattice formed 
in Fe-Be alloy, foil orientation (001) (from [3], Engl. Transl.), 
(cl) formation of regular array of 7'(L12) particles from 
originally randomly distributed precipitates in Ni~Cu-Si 
alloy, foil orientation (001) (from [8], Engl. Transl.); (a2) copy 
of Fig. 2(b2), (b2) copy of Fig. 3(d2), (c2) copy of Fig. 4(d2). 
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Fig. 7. Temporal morphological evoluation in an alloy of 
B * =  2.0 which undergoes a two step "aging treatment" 
described by point "d" and "e" in Fig. 1, (a)-(d) correspond 

to t* =2,  I0, 50 and 100. 
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a two step "aging treatment". An alloy with compo- 
sition c = 0.14 and B* = 2.0 is first "aged" at a higher 
temperature above the spinodal line (point d in 
Fig. 1). The nucleation process of this alloy is simu- 
lated by artificially introducing randomly distributed 
nuclei. After a certain period of time, the alloy is 
"aged" at a lower temperature well below the 
spinodal line (point e). As shown in Fig. 7(a), a highly 
anisotropic growth is obtained. The nuclei grow only 
along the two elastically soft directions. The diffusion 
fields around each particle have a four-fold sym- 
metry, i.e. solute atoms around the particle diffuse 
from all the other directions towards the [10] and [01] 
soft directions. As a result, linkages between growing 
precipitates occur along the soft directions, resulting 
in formation of individual strip-like particles with 
{01} habits. 

4.3. Morphological development dominated by elastic 
strain energy and formation of  GP zones 

As has been demonstrated above, two-phase mor- 
phologies developed in precipitation reactions are 
determined by a balance between the strain-induced 
infinite radius interaction and the "chemical" finite 
radius interaction. The effect of the finite radius 
interaction on morphology in macroscopic terms is 
described by the interfacial energy. A limit case 
when the strain energy contribution is zero and the 
morphological evolution is totally controlled by the 
interfacial energy has been investigated above. It 
would be interesting to investigate the other extreme 
case when the morphological development is primar- 
ily controlled by the strain energy and the interfacial 
energy contribution is almost negligible. In the fol- 
lowing simulation we choose a dilute solid solution 
with c = 0.05 (point f in Fig. 1) in which the reduced 
strain energy parameter B* reaches an extremely high 
value 7.0. 

Figure 8 illustrates the computer simulation results 
of spinodal decomposition in such a system driven 
primarily by the strain energy relaxation. At the 
initial stage of decomposition [Fig. 8(a)], (01) satel- 
lites appear in the diffraction pattern before any 
visible phase separation occurs. In order to under- 
stand the origin of these satellites, we magnified the 
concentration inhomogeneities in Fig. 8(a). As shown 
in Fig. 8(b), very diffused concentration modulations 
are resolved. As aging proceeds, solute-rich "white" 
phase starts to precipitate as very thin strips along 
the elastically soft directions. What is surprising is 
that all the precipitates have a thickness of one 
atomic layer and the concentration profiles are step 
functions. This is particularly reflected by rod-like 
streaks along the (01) directions which appear in 
the diffraction patterns. There is no coarsening 
(thickening) during the entire "aging" process. These 
results could be used for explaining the origin of the 
{001} GP zones formed in A1-Cu and C u B e  alloys 
characterized by extremely high crystal lattice mis- 
match (da/adc ~ 10%). As is known, the GP zones 

in these materials are Cu rich and Be rich single 
atomic layers [38-40]. 

If the atomic size mismatch is not so high and 
the finite radius interaction plays a greater role, 
multi-atomic layer strip-like precipitates that may be 
referred to as multi-layer GP zones are obtained. 
They are formed by either a direct precipitation or a 
subsequent coarsening (thickening) from the initially 
precipitated strip particles of one or two atomic 
layers. The thickening follows a ledge-growth 
mechanism as observed by Garg and Howe in 
A1-Cu-Mg-Ag alloy [41], i.e. by nucleation and 
lateral growth of ledges parallel to the {01 } interface. 
The equilibrium number of atomic layers depends on 
the balance between the finite radius interaction 
energy and the infinite radius strain-induced inter- 
action energy at the aging temperature. Formations 
of the multi-layer GP zones in both A1-Cu and 
Cu-Be alloys have recently been reviewed by Koo 
and Cohen [42]. 

4.4. Shape evolution of  a single coherent new phase 
particle during strain-induced coarsening 

Recent TEM studies [6, 7] have revealed a very 
interesting instability which occurs in the phase trans- 
formation of Ni-AI alloys. It is observed that y '  
phase first precipitates as cuboidal particles. Then 
during the coarsening process, some large particles 
resist further coarsening and split into doublets of 
parallel plates [6] or octets of smaller cubes [7]. 
Typical TEM pictures showing this process are given 
in Fig. 9(a). The thermodynamic analysis of this 
phenomenon [6, 43] suggests that splitting of the large 
cuboidal ~' particles is caused by a relaxation of 
the transformation-induced elastic strain. However, 
kinetics of the splitting process is not well under- 
stood. The following simulation is an attempt to 
show kinetically how a particle splits, e.g. where the 
instability starts and how it develops. 

We start the simulation with a single circular 
particle which has an equilibrium composition, 
c 0 = 0.982 (corresponding to an aging temperature 
T*=0.12),  and a radius, r =25a,  where a is the 
lattice parameter. The particle is embedded in a 
128a × 128a matrix with an equilibrium composition 
c~ = 0.018. The representative point "g" on the phase 
diagram (Fig. 1) is just above the spinodal line. The 
coarsening of this particle is then simulated by 
its diffusional relaxation at different values of the 
reduced strain energy parameter B*. According to 
the thermodynamic analysis [43], the equilibrium 
shape of a coherent particle at a given volume V is 
determined by the strain energy to interracial energy 
ratio 

K = Ee--2 ~ B_ff_V (18) 
Es ),S 

where 7 is the specific interfacial energy and S is 
the total interfacial area. The parameter, K, is a 
scaling factor charaterizing the combined effects of 



WANG e t  al.: STRAIN-INDUCED MORPHOLOGICAL TRANSFORMATION 291 

b c 

d e 

Fig. 8. Morphological evolution in a dilute solid solution during decomposition driven primarily by strain 
energy relaxation. The thickness of the "white" precipitates is one atomic layer. (a) and (b) represent the 
same morphology developed at t* = 170 but with concentration inhomogeneity magnified in (b) to resolve 

the satellites appeared in the diffraction pattern. (c)-(e) correspond to t* = 190, 200, 500. 

interfacial tension and elastic strain. It shows that an 
increase in the strain energy parameter, B, may 
produce the same effect on the equilibrium shape as an 
increase in the precipitate volume upon coarsening. 
Therefore the sequences of shape relaxation of a 
coherent particle with respect to an increase in B 
actually simulate effects which should be observed 
due to an increase in the particle volume during 
the coarsening process at a fixed value of B. This 
scaling concept dramatically simplifies the numerical 
calculations. 

The assumed initial circular shape actually rep- 
resents the initial stage of a coarsening process where 
small and sparsely distributed particles are usually 
obtained. Shapes of these particles are primarily 
determined by the interfacial energy minimization. 

Being volume dependent, however, the strain 
energy contribution increases considerably with 
coarsening and eventually dominates over the 
interfacial energy during the later stages when the 
surface to volume ratio is small. A strain-induced 
shape transformation of the spheroidal particles 
should then be expected. 

The simulated results are shown in Fig. 10. In the 
first row of Fig. 10, the dependence of equilibrium 
shapes of the particle on B* (which characterizes the 
strain energy contribution at a certain volume) is 
illustrated. The initial value of B* is assumed to be 
zero. In this case the diffusional relaxation does not 
result in shape changes [Fig. 10(a)]. The only change 
is a transformation of the initially sharp interface into 
a diffuse one. As B* increases, there is a continuous 
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Fig. 9. (a) A TEM dark field image of splitting sequence ofy' 
particles in Ni-12 at.% AI single crystal (from [6]), (b) com- 
puter simulation results [copies of (g), (h) and (j) of Fig. 10]. 

change in the curvature of the particle interface, 
which gradually transforms the circular particle 
into a square with {10} interfaces [Fig. 10(b~l)]. At 
each increment of B*, the system is "aged" for a 
time duration which is long enough to establish an 
equilibrium configuration. The squares formed at 
larger values of B* are more pronounced, having 
sharper comers and slightly concave edges. 
The concentration profiles inside the particle and 
around it are homogeneous for small values of 
B* but inhomogeneous for greater values. For  
example, concentration inhomogeneities are devel- 
oped both inside and outside the particle at B* = 2.2 
[Fig. 10(d)]. 

With a further increase of B*, the square configur- 
ation shown in Fig. 10(d) becomes unstable. Develop- 
ment of the instability and formation of the plate 
doublet at B* = 2.3 are presented in the second and 
third rows of Fig. 10. When B* reaches the value 
of 2.3, the concentration inhomogeneity inside the 
particle is so high that a matrix phase (dark) particle 
reversely precipitates at the center of the square 

a b c d 

e f g h 

II ii 
i .j k 1 

Fig. 10. Simulated sequences of shape relaxation and splitting of a coherent particle during its strain-induced 
coarsening. Pictures shown in the first row represents equilibrium shapes of the particle at different reduced 
strain energy parameters, (a)-(d) correspond to B* = 0.0, 0.2, 0.9, 2.2. Pictures shown in the second and 
third rows represent splitting sequences of the particle at B* = 2.3, (e)-(l) correspond to t* = 200, 260, 

300, 400, 650, I000, 1500, 2000. 
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particle. This matrix phase particle grows anisotrop- 
ically along the two elastically soft directions in a 
similar fashion as that shown in Fig. 7(a). The 
four-fold symmetry growth demonstrates a tendency 
to split the square into a quartet of smaller squares 
with the same {01 } interfaces. However, the four-fold 
symmetry of the anisotropic growth is broken and the 
growth along one of the (10)  direction prevails. It 
results in the appearance of an ellipse-like particle of 
the matrix phase in the center of the square precipi- 
tate [see Fig. 10(h)]. Further growth of the elliptical 
particle along [01] direction splits the square into a 
rectangular doublet with {01} interfaces. These 
configurations are shown in Fig. 10(e-l). As soon as 
the square is split into the doublet, the concentration 
inhomogeneity inside the precipitates disappears. 
When the doublet approaches its equilibrium 
configuration, the concentration inhomogeneity 
within the matrix phase disappears as well. 

5. DISCUSSION 

When the coherent elastic strain effect is taken 
into account, a wide variety of morphological states 
can be developed at different stages of a precipitation 
reaction in systems with a miscibility gap. To study 
the strain-induced morphological transformation in 
such systems, the microscopic kinetic model em- 
ployed in this paper has been proved to have several 
obvious advantages over the conventional methods. 
First, it does not need any a p r i o r i  assumptions about 
the possible morphologies that develop in a precipi- 
tation reaction such as shapes, habits, concentration 
profiles and spatial distributions of the precipitate 
particles. All the structural changes are described 
by a relaxation of the nonequilibrium occupation 
probability function, n(r, t). Second, the model is 
quite general since it simultaneously describes several 
kinetic processes involved in a precipitation reaction 
such as ordering (if the precipitate phase is an ordered 
intermetallic), decomposition, growth and coarsen- 
ing. These processes are usually treated using differ- 
ent mathematical formulations and models. Finally, 
it allows us to investigate all the intermediate mor- 
phological states that appear during the development 
of a stable microstructure. The main limitation of 
this approach is that it cannot describe activation 
processes and particularly nucleation. Therefore, 
artificial nuclei have to be introduced to describe 
temporal evolution of a metastable state. 

The simulations performed in the framework of the 
adopted kinetic model demonstrate that the trans- 
formation-induced elastic strain results in certain 
spatial precipitate patterns in a multi-particle system 
irrespective of the decomposition mechanisms. Typi- 
cal examples are the formation of basket weave 
structures, sandwich-like multi-domain structures, 
precipitate macrolattices and GP zones. These results 
cannot be obtained by using the classical thermo- 
dynamic approaches to phase transformations based 

on consideration of the finite radius interactions only. 
The pattern formation is caused by the long-range 
interactions between the strain fields generated by 
different concentration heterogeneities. These long- 
range interactions tend to arrange or rearrange the 
new phase particles in such a way that the strain fields 
from individual particles are nullified to provide a 
strain relaxation. The shapes of the individual par- 
ticles forming the patterns are, however, determined 
by both the strain and interfacial energies. Therefore, 
it is actually the interplay between the elastic and 
interfacial energies that determines the entire charac- 
teristics of a microstructure. According to the balance 
between these two energies, morphological develop- 
ments may be roughly divided into three cases in 
which the development is controlled by (i) relaxations 
of interfacial energy, (ii) both interfacial and strain 
energies and (iii) strain energy. 

(i) In the first case, microstructures with an 
isotropic characteristic are formed and the morpho- 
logical development simply follows the LSW mechan- 
ism to provide a relaxation of the assumed isotropic 
interfacial energy (see, e.g. the pictures shown in 
Figs 2 and 3 for B * =  0.0). When the two product 
phases have approximately the same volume fraction 
as in the symmetrical spinodal decomposition, the 
two phases are highly interconnected. But if the 
volume fraction of one phase is considerably different 
from the other, randomly distributed discrete 
equiaxed particles are formed. 

(ii) Typical morphological development in the sec- 
ond case, where both the strain energy and interfacial 
energy contributions are significant, is formation of 
the precipitate macrolattices in both asymmetrical 
spinodal decomposition and nucleation and growth 
processes. These results should not be surprising 
if we follow the energy analysis proposed by 
Khachaturyan and Airapetyan [16]. According to 
[16], if a new phase precipitates as equiaxed particles 
coherently embedded in a matrix, a minimum energy 
state is reached when the particles form one of the 14 
Bravais lattices. In the asymmetrical cases, structures 
developed in both processes, spinodal decomposition 
and nucleation and growth studied above, have a 
common characteristic, i.e. a minor phase forms 
discrete particles embedded in a major phase matrix. 
These particles should arrange or rearrange them- 
selves to form a macrolattice, providing a strain 
energy relaxation. However, it should be noted that 
in order to form a macrolattice, the strain energy 
cannot be too large since shapes of the discrete 
particles forming the lattice are determined by com- 
petition between the interfacial and strain energies. 
As demonstrated in our computer simulation (Fig. 3), 
the macrolattice exists only in alloys which have a 
moderate degree of atomic size mismatch and only 
temporarily at certain stages of decomposition when 
the strain energy effect is balanced by the interfacial 
energy. Therefore in order to form a precipitate 
macrolattice, the strain energy should be small 
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enough to preserve the equiaxed particle shape mini- 
mizing the isotropic interfacial energy, but it should 
be sufficient to provide a regular spatial distribution 
of precipitates. This is a general condition applied 
irrespective of the decomposition mechanisms, 
although the kinetic evolution paths may be different 
in different cases. For example, in spinodal decompo- 
sition, the macrolattice is formed by a superposition 
of the (01) concentration waves developed in the 
initial stage of decomposition. The position of 
the particles are predetermined by intersections of the 
maximum amplitudes of the two kinds of concen- 
tration waves. In the case of nucleation and growth, 
the macrolattice is formed by the strain-induced 
selective growth, reverse coarsening and translational 
motion of the initially randomly distributed particles. 

Several interesting kinetic phenomena, such as the 
selective and anisotropic growth, particle transla- 
tional motion, "macrodislocation" climb coarsening 
and reverse coarsening are revealed during the strain- 
induced growth and coarsening of the precipitate 
macrolattice. These phenomena cannot be inter- 
preted in terms of the LSW coarsening theory. A 
significant particle translational motion is observed in 
the rearrangement of the initially randomly dis- 
tributed particles. According to [1], this translational 
motion is caused by a strain-induced variation of 
chemical potential along the precipitate boundaries. 
Driven by this chemical potential inhomogeneity, 
solute atoms diffuse from one side of the particle 
to the other side to equalize the chemical potential. 
This phenomenon was discussed in [44]. For a two 
particles system, the kinetics of translational motion 
caused by the elastic strain was studied by Johnson 
et al. [23]. They obtained a motion of two particles 
towards one another when they are aligned along the 
elastically soft direction. 

To the best of our knowledge, the present study is 
the first attempt to investigate such kinetics for a 
multi-particle system. Figure 5 demonstrates that 
particles aligned along the soft directions may even 
move away from each other during the strain-induced 
coarsening process. The directions of motion of par- 
ticles in a multi-particle system are actually domi- 
nated by their tendency to form a "macrolattice". In 
general, the growth and coarsening behaviors of the 
particles forming the precipitate macrolattice are 
determined by their displacements from the more 
stable macrolattice sites. The macrolattice sites are 
determined by thermodynamic factors characterizing 
the competition between the strain and interfacial 
energies and kinetic factors controlling the diffusion 
distance as well. 

(iii) The origin of Guinier-Preston zones in AI-Cu 
and Cu-Be dilute alloys, in spite of more than four 
decades of research, is still a controversial issue in 
physical metallurgy. GP zones in these systems are 
single {001 } planes enriched by Cu or Be atoms which 
are imbedded in the AI and Cu f.c.c, matrix, respect- 
ively. Our computer simulation seems to suggest an 

explanation for this phenomenon. When the strain 
energy makes a dominant contribution over the finite 
radius interaction energy, the decomposition leads 
to an appearance of single-layer {01} precipitates. 
According to their structural characteristics, these 
single atomic layer precipitates are just GP zones 
[Fig. 8(c-e)]. This theoretical prediction makes AI--Cu 
and Cu-Be systems prime candidates for alloys where 
GP zones could be expected. Indeed, these systems 
have negative elastic anisotropy, which provides the 
{001} orientations of GP zones perpendicular to the 
(001) elastically soft directions. But what is most 
important is that these systems belong to a group of 
very rare alloys whose crystal lattice mismatch, 
characterized by the crystal lattice expansion co- 
efficient da/adc, is extremely high, e.g. larger than 
0.1. This value approaches the theoretical limit of a 
solid solution, da/adc ~ 0.15, above which no solu- 
bility can exist. With the value da/adc ~0.1, the 
strain energy exceeds (by orders of magnitude) the 
typical mixing energies of substitutional alloys. 
Under this condition the thermodynamic behavior of 
the system and particularly its miscibility gap is 
determined by the strain-induced interaction only. 
Increasing the contribution of the finite-radius inter- 
action results in thickening of the GP zones to two or 
more number of atomic layers. Therefore, our results 
show that GP zone morphology occurs as a result of 
the usual decomposition under the condition that the 
strain-induced interaction far exceeds all other inter- 
change interactions. Then GP zones are just thin 
platelike precipitates whose thickness reaches the 
least limit permitted by the crytallography, one 
atomic layer. 

Another interesting morphology developed, when 
the morphological evolution is controlled by the 
strain energy, is the so-called basket-weave structure 
[Fig. 2(a2--c2)]. It is obtained during a symmetrical 
spinodal decomposition where the volume fractions 
of the two product phases are equal. The origin of 
this structure is a superposition of concentration 
waves developed along the two elastically soft 
directions in the early stage of decomposition. The 
basket-weave structure is unstable with respect to 
transformation into sandwich-like multi-domain 
structures [Figs 2(d2) and (e2)]. 

The interplay between the interfacial and strain 
energies is also clearly demonstrated by the shape 
evolution of a single circular coherent particle during 
its coarsening process. The coarsening provides a 
consequent realization of the three cases discussed 
above. For example, the process can be divided into 
three stages, i.e. initial, intermediate and final stages 
corresponding to the first, second and third cases, 
respectively. During the initial stage, the particle is 
very small and the interfacial energy contribution is 
dominant. In this case the particle shape is primarily 
controlled by the interfacial energy relaxation. As 
a result, the particle maintains a circular shape 
as demonstrated in Fig. 10(a). This stage may be 
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described by the LSW theory. According to the strain 
energy-to-interfacial energy ratio (18), growth of the 
particle (increase of its volume V) increases the strain 
energy contribution. It becomes comparable with the 
interfacial energy at the intermediate stage of coars- 
ening. During this stage, a significant shape change 
from a circle to a square gradually occurs [see 
Fig. 10(b~l)]. Such a coarsening process, which is 
controlled by the balance between the interfacial 
energy and strain energy relaxations, cannot be de- 
scribed by the LSW theory. In the third stage of 
coarsening, the precipitate volume increases to such 
an extent that the strain energy contribution becomes 
dominant and the coarsening process reverses. The 
reverse coarsening is manifested by splitting the 
square particle into doublets, which is just opposite 
to what is traditionally expected. 

Splitting from a square to a doublet starts by 
reverse precipitation of a matrix phase particle in 
the center of the square [Fig. 10(e-h)]. Since our 
computer simulation cannot describe a nucleation 
process, as mentioned before, the shape transform- 
ation from the square to the doublets really occurs 
with a hysteresis, i.e. at a substantially larger volume 
compared to those from thermodynamic calculations 
[24]. It indicates a metastable character of the "over- 
grown" square. The absolute instability of the 
metastable square with respect to infinitesimal con- 
centration fluctuations results in a concentration 
inhomogeneity in the center of the square. It is in 
equilibrium at each given particle size. The infinitesi- 
mal fluctuations appear in our computer simulation 
automatically due to a finite accuracy of the com- 
puter computations. The inhomogeneity keeps grow- 
ing until the square particle is split into a doublet. 
These simulation results are in surprisingly good 
agreement with the electron microscopic observations 
(see, e.g. Fig. 9). The electron microscopic images in 
the (001) plane [Fig. 9(a)] clearly demonstrate split- 
ting of the cuboidal ;~' (Ni3AI) precipitates in Ni-A1 
alloy into plate doublets by nucleation of a "hole" in 
the center of a particle. This is also in agreement with 
the computer simulation based on the elementary 
particle approximation [22]. Since the overgrowth 
square is metastable in a certain size range, the 
splitting within this range may occur by nucleation of 
a matrix phase particle within the square. 

It should be mentioned that the situation may 
be different in a 3D case. For example, we could 
speculate that the instability could also start in the 
center of cube faces. The electron microscopic 
observations by Kaufman et  al. [7] show that such 
an interpretation is also possible. The extension of 
this 2D simulation to 3D will not pose any ad- 
ditional difficulties except longer computation 
time. Corresponding work on 3D simulation is under 
way. 

Some preliminary results on the shape evolution of 
a coherent particle and its splitting were published in 
our work [24]. This phenomenon has also been 

recently investigated by Voorhees et  al. [45] who used 
a continuum approximation. These authors obtained 
a shape transition from a circle to a square with 
rounded angles. But they could not predict splitting 
since they postulated homogeneous equilibrium 
composition within the particle. 

In the present work, a homogeneous modulus 
approximation is used. As has been shown by 
Voorhees and Johnson for two spherical particle 
coarsening [46, 47] and by Kawasaki and Enomoto 
for multiple sphere particle coarsening [48] in elasti- 
cally isotropic systems, and more recently by Onuki 
and Nishimori in their 2D computer simulations of 
spinodal decomposition based on a time-dependent 
Ginzburg-Landau model [49], the modulus mismatch 
between the two phases has a substantial effect on the 
coarsening kinetics. 

6. CONCLUSION 

The kinetics of isostructural decompositions in the 
presence of elastic strain was studied using a com- 
puter simulation technique based on the nonlinear 
microscopic diffusion theory. Results show that the 
transformation-induced elastic strain drastically 
affects the two-phase morphology during both 
spinodal decomposition and nucleation and growth 
processes. Controlled by the interplay between the 
interfacial energy and the strain energy, various 
types of coherent two-phase morphologies as well as 
different kinetic phenomena are predicted. 

1. Below the spinodal, well-defined modulated 
structures start to form during the incipient stage of 
decomposition. The structure is highly anisotropic if 
its growth is dominated by the strain energy. The 
larger the crystal lattice mismatch, the more pro- 
nounced the structural anisotropy. The well known 
basket-weave structures are obtained as an intermedi- 
ate morphological state during the development of 
sandwich-like multi-domain structures in a symmetri- 
cal spinodal decomposition. It is formed by a super- 
position of the concentration waves along the [10] 
and [01] "soft" directions. In the asymmetrical case, 
spinodal decomposition results in a quasi-periodic 
precipitate macrolattice if the strain energy contri- 
bution is balanced by the interfacial energy. The 
superposition of the concentration modulations pre- 
determines the occurrence of the macrolattice in the 
later stages of aging. The coarsening of this structure 
follows a "macrodislocation climb" mechanism. 

2. The computer simulation allows us to predict 
the formation of GP zones. Single-layer GP zones are 
formed in the extreme case of a very high crystal 
lattice mismatch. When the finite radius chemical 
interaction is strong and cannot be ignored, multi- 
layer GP zones could be expected. These results 
suggest that the GP zone formation is a particular 
case of decomposition within a miscibility gap given a 
condition that the strain-induced interaction domi- 
nates the thermodynamics. 
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3. Above  the spinodal, a rearrangement of  initially 
randomly distributed particles due to the strain- 
induced selective growth, particle translational 
motion and reverse coarsening is predicted. The 
rearrangement also results in a rough precipitate 
macrolattice in the case of  a moderate crystal lattice 
mismatch. 

4. A shape transformation of  a single coherent 
particle during strain-induced coarsening caused by 
a competit ion between the elastic and interfacial 
energies is obtained. Specifically for this 2D model 
system, a circular precipitate shape was found to 
transform to a square and then to a plate doublet. 
The transformation from the square to the doublet 
starts by reverse precipitation of  a matrix phase 
particle at the center of  the square, while the trans- 
formation from the circle to the square is continuous. 

All these results seem to be in good agreement with 
experimental observations, indicating that this 2D 
model describes fairly well the most essential features 
of  the strain-induced microstructural developments 
in alloys with a miscibility gap. Regardless of  its 
oversimplification, it can be efficiently used in many 
cases for understanding, interpreting, and predicting 
structural evolution in real alloys. 
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