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Mixed-space approach for calculation of vibration-induced dipole-dipole interactions
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By explicitly taking into account the effects of vibration-induced dipole-dipole interactions between periodic
supercells, we derive an efficient formulation to calculate the phonon frequencies of an ionic crystal. We
demonstrate that the vibration-induced dipole-dipole interactions lead to a constant contribution to the interatomic
force constant in real space. It recovers the result of Cochran and Cowley [Cochran and Cowley, J. Phys. Chem.
Solids 23, 447 (1962)] at the long wavelength limit. Using MgO as the prototype, we demonstrate that a 16-atom
2 × 2 × 2 supercell of the primitive unit cell is sufficient to obtain the phonon dispersions when the dipole-dipole
interactions are considered. We find that not properly taking into account the dipole-dipole interaction leads to
oscillations along the (0,0,q) direction for the longitudinal optical phonon dispersion in a 128-atom elongated
1 × 1 × 16 supercell with a cubic structure.
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I. INTRODUCTION

The phonon approach1,2 is currently the most efficient
method for predicting thermodynamic properties of a solid at
finite temperatures. It has been implemented under the frame-
work of first-principles theories: the linear-response3,4 and
supercell5,6 methods. In the literature, the supercell method is
also referred to as the direct approach, the small displacement
method, or the frozen phonon approach. In the linear-response
method, the dynamical matrix is calculated in reciprocal space
assuming that the electronic wave functions respond linearly
to the change in atomic positions. In comparison, the supercell
method calculates the interatomic force constants (IFC) in
the real space using the Hellmann–Feynman theorem7 for
finding the force acting on an atom after perturbation from
its equilibrium position.

The present work focuses on a long-standing problem
within the supercell method, i.e., how to account for the
effects of vibration-induced dipole-dipole interactions on the
phonon frequencies of an ionic crystal or a polar material.
For an ionic crystal, the longitudinal optical vibrations can
induce the dynamical electric dipoles along the wave vector
(q) direction. These dipoles, in turn, can act on the longitudinal
optical vibrations, resulting in frequency splitting between
the longitudinal optical (LO) and the transverse optical (TO)
phonons.3 Efforts to formulate or account for this effect dated
back to the 1930s. Lyddane et al.8 first accurately formulated
the polar vibrations of cubic alkali halides in the long wave-
length limit. Cochran and Cowley9 demonstrated a systematic
formulation suitable for a crystal with general symmetry. The
computational formulations presented by Gonze and Lee4 are
suitable for an arbitrary q point in the Brillouin zone by
explicitly considering the dipole-dipole interactions, although
they are presently only implemented within the framework
of the linear-response method. Other important works10–13

involve calculations using an elongated supercell specific for
a particular material or calculations of the phonon frequencies
at specific rather than arbitrary q points in the Brillouin zone.
To put it simply, calculating the phonon frequency of an
ionic crystal at an arbitrary q point in the Brillouin zone
using a general supercell is still a challenge in the supercell
method.

In a recent publication, we14 proposed a mixed-space
approach which could properly account for the contribution
of the vibration-induced dipole-dipole interactions to the IFC
in real space. In the present work we provide a systematic
formulation by reconsidering the fundamental dipole-dipole
interactions. Section II summarizes the general phonon theory
of lattice vibrations in a crystal, emphasizing the concepts of
Hamiltonian, exact wave vector point, and Fourier interpola-
tion. In Sec. III, we demonstrate that the effect of vibration-
induced dipole-dipole interactions on phonons is the addition
of a constant to the IFC in real space. In Sec. IV, we discuss
the formulation in terms of analytic and nonanalytic contri-
butions and how to properly interpret the calculated phonon
dispersions for MgO in the literature without considering the
vibration-induced dipole-dipole interactions. As examples, in
Sec. V two calculations for MgO are discussed, one with a
16-atom regular supercell and one with a 128-atom elongated
supercell, demonstrating the accuracy of the mixed-space
approach. Finally, Sec. VI is a summary.

II. GENERAL PHONON THEORY

We start with a brief review of the phonon theory. For a
system made up of infinitely repeating primitive unit cells
with lattice vectors a, b, and c, the Hamiltonian in a harmonic
approximation can be expressed as1,3

H = −1

2

∞∑

P

M∑

j

h̄2

μj

∇2

+ 1

2

∞∑

P,Q

M∑

j,k

3∑

α,β

C
jk

αβ(P,Q)uj
α(P )uk

β(Q), (1)

where h̄ is the Planck constant, P and Q index the primitive
unit cells within a crystal, j and k label the atoms within
the primitive unit cell containing M atoms, μj is the mass
of atom j , u

j
α(P ) (α = 1, 2, 3) is the Cartesian displacement

from its static position of the j th atom in the P th primitive
unit cell, and C

jk

αβ(P,Q) is the real-space IFC between the j th
atom within the primitive unit cell P and the kth atom within
the primitive unit cell Q. Because of translational invariance
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C
jk

αβ(P,Q) depends on P and Q only through the difference3

R = RP − RQ, where RP represents position of the P th
primitive unit cell in the crystal.

In principle, Eq. (1) cannot be solved directly since it has
infinite dimensions. To reduce the dimension of the problem,
the widely adopted solution1,15 is the periodic supercell
approach in which the individual phonon vibration is described
in the wave vector space. Considering the fact that phonon
vibrations are periodic, we can choose to solve those vibrations
at the exact wave vector (q) point, qS, defined for a specific
system or a supercell, S, built by enlarging the primitive unit
cell by Na, Nb, and Nc times, along the direction of the
primitive lattice vector a, b, and c, respectively, as

qi
S · Si = 2π∗Integer (i = a,b,c). (2)

To mimic a crystal, such a system is implicitly further
enlarged by making infinitely exact copies of the supercell
S over the whole space, including the atomic displacements.
Within this periodic supercell system, we can separate the P

dependent part of u
j
α(P ) in Eq. (1) by rewriting it as

uj
α(P ) = uj

α exp(iqS · RP ), (3)

noting that the term u
j
α on the right-hand side of Eq. (3) is

now only dependent on the internal atomic position within
the primitive unit cell. Substituting Eq. (3) into Eq. (1), the
phonon problem is then reduced to the diagonalization of the
3M-dimensional dynamical matrix D by finding roots of the
secular determinant:1,15

det
∣∣Djk

αβ(q) − ω2(q)
∣∣ = 0, (4)

where

D
jk

αβ(qS) =
N∑

P

eiqS·RP
1√

μjμk

�
αβ
st (P,0), (5)

in which N = N∗
a N∗

bNc and we have utilized the results derived
from the conditions of Eq. (2), i.e., at all qS’s,

eiqS·S = 1. (6)

�
αβ
st (P,0), on the right-hand side of Eq. (5), is called the

accumulative IFC16 since it represents the summation of
C

jk

αβ(P,0), counting P and all its images resulted from
repeating the supercell S over the whole space as

�
αβ
st (P,0) =

∞∑

S

C
jk

αβ(P + S,0). (7)

The solutions of Eq. (4), ωj (qS) (j = 1,2, . . . ,3M), are the
phonon frequencies.

The procedures described by Eqs. (1)–(7) give the pre-
cise solutions for the phonon frequencies at those exact q
points, i.e., all qS’s. However, a realistic calculation of the
thermodynamic properties of a material14,17 needs the accurate
phonon density of states constructed by sampling the phonon
frequencies at a very dense q grid. This task cannot be precisely
completed using just the exact q points, implying the necessity
of using a very large supercell S at prohibitively expensive
computational costs. The alternative practice3 is to generalize
the usage of Eqs. (4) and (5) to the case where q is away from

the qS for the already defined supercell S, such as

D
jk

αβ(q) =
N∑

P

eiq·RP
1√

μjμk

�
αβ
st (P,0) (8)

and

det
∣∣Djk

αβ(q) − ω2(q)
∣∣ = 0. (9)

The procedures described by Eqs. (8) and (9) are commonly
viewed as Fourier interpolation. For this method, the input data
are simply those calculated D

jk

αβ in a coarse grid or �
αβ
st in a

predefined supercell.
As a matter of fact, the Fourier interpolation3,16 with

Eq. (8) is the standard procedure for the two major first-
principles methods for phonons—the supercell method and
the linear-response method. For metals, it is indeed found6,18

that the Fourier interpolation by Eqs. (8) and (9) is a rather
good approximation, whereas for ionic crystals it is not
straightforward due to the additional contribution from the
vibration-induced dipole-dipole interactions.

III. VIBRATION-INDUCED DIPOLE-DIPOLE
INTERACTION

A. Assumptions

For an ionic crystal, when the periodic supercell approach
is employed, one has to distinguish two cases when calculating
phonon frequencies:

(i) at the nonzero qS, the lattice vibration does not result
in macroscopic electric fields; and

(ii) Away from the qS, the lattice vibration results in
macroscopic electric fields which could invalidate the accurate
application of the Fourier interpolation by Eqs. (8) and (9).

The effect of macroscopic electric fields on phonons is not
yet well accounted for in previous implementations of the
supercell method.16,19 This is due to the fact11 that within the
periodic supercell approach the first-principles calculation of
�

αβ
st (P,0) in Eq. (5) requires the macroscopic electric fields to

vanish. We describe a procedure below to handle the dipole-
dipole interactions among the supercell S’s.

Let us consider a supercell S built up with N primitive
unit cells and use M to represent the instant dipole moment
due to the lattice vibration. We know3,9 that, for a lattice
vibration, the direction of M is always parallel to q̂, so we
use the scalar quantity M · q̂ to represent the value of dipole
moment. Thus, the potential energy due to the dipole-dipole
interactions between the supercell S’s can be expressed as

E(DI ) = − 1
2 (M · q̂)(E · q̂), (10)

where E represents the effective macroscopic electric field,
which itself represents the averaged result from the dipole-
dipole interactions between the supercell S’s. Here we have
also utilized the fact3,9 that E is parallel to q̂.

B. SIFC—contribution to the IFC by the dipole-dipole
interaction among the supercells

As the electric polarization P is also parallel to q̂, it is
known1,3,9 that

E · q̂ = −4π (P · q̂) (11)
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and3

P · q̂ = M · q̂
�

+ (q̂ · χ · q̂)(E · q̂), (12)

where � = NV is the volume of the supercell S with V being
the volume of the primitive unit cell. χ in Eq. (12) is the
dielectric susceptibility. We then get

E · q̂ = −4π

�

(M · q̂)

1 + 4π (q̂ · χ · q̂)
= −4π

�

(M · q̂)

(q̂ · ε(∞) · q̂)
, (13)

where ε(∞) is the macroscopic dielectric constant which is
related to the dielectric susceptibility by

q̂ · ε(∞) · q̂ = 1 + 4π (q̂ · χ · q̂). (14)

Inserting Eq. (13) into Eq. (10), we obtain the contribution
to the potential energy due to the dipole-dipole interaction
between the repeated supercell S’s as

E(DI ) = 1

2

4π

�

(M · q̂)(M · q̂)

(q̂ · ε(∞) · q̂)
. (15)

As a result, we get SIFC—the contribution to the IFC by the
dipole-dipole interaction between the supercells—by finding
the second derivative of the above potential energy with respect
to the atomic displacement as

ϕ
jk

αβ(DI ) = ∂2E(DI )

∂u
j
α∂uk

β

= 4πe2

NV

(Zj · q̂)α(Zk · q̂)β
(q̂ · ε(∞) · q̂)

, (16)

where e is the charge of an electron and Z is Born effective
charge tensor of an atom defined as4

eZ
j

αβ = ∂Mβ

∂u
j
α

. (17)

Finally, to calculate the phonon frequencies of an ionic
crystal at an arbitrary q point in the Brillouin zone, we just
need to recast the accumulative IFC in Eq. (8) as

�
jk

αβ(P,0) = φ
jk

αβ(P,0) + ϕ
jk

αβ(DI ), (18)

where φ
jk

αβ(P,0) is the accumulative IFC calculated by the
first-principles supercell method.19

IV. DISCUSSION

Equation (16) plays a central role in the mixed-space
approach.14 It is interesting to note that the SIFC represents a
constant contribution to the IFC and its value is mathematically
of the order of ∼O(1/N ), which was observed in a previous
elongated supercell calculation.10 From a mathematical point
of view, SIFC can be understood as a contribution to the zeroth
order term in the Fourier transformation.

Combining Eqs. (8) and (18), we show in the next
subsection how the effect of SIFC on phonon frequency is
dictated by the types of q points. At the exact q points (except
at q → 0), vibration-induced dipoles for the supercell vanish,
such that the effect of SIFC on phonon frequency is zero.
Note that whether a q point is exact or not is decided by the
shape and size of the predefined supercell, as determined by
Eq. (2). At the nonexact q points, the effect of SIFC on phonon
frequency is nonzero as discussed below.

A. Analytic and nonanalytic terms

Analytic and nonanalytic terms are terminologies used to
distinguish the contributions to the dynamical matrix.1 We can
substitute Eq. (18) into Eq. (5) and see that

D
jk

αβ(q) = D
jk

αβ(q; an) + D
jk

αβ(q; na), (19)

where the analytic and nonanalytic contributions to the
dynamic matrix are as follows:

D
jk

αβ(q; an) = 1√
μjμk

N∑

P

φ
jk

αβ(P,0) exp{iq · [R(P ) − R(0)]},

(20)

D
jk

αβ(q; na) = 1√
μjμk

4πe2

V

(Zj · q̂)α(Zk · q̂)β
(q̂ · ε(∞) · q̂)

f (q), (21)

with

f (q) = 1

N

N∑

P

exp{iq · [R(P ) − R(0)]}. (22)

It can be seen that f (q) in Eq. (22) is an improvement
over the damping formulation with the adjustable parameter
developed by Parliński et al.20

B. The effect of SIFC on the Fourier interpolation

We would like to correct one important viewpoint rep-
resented in the literature,10 which states that the phonon
frequencies calculated by the supercell method are only
inaccurate at the vicinity of q → 0 if the nonanalytic term is not
considered. When q is not at the exact q point, we know that the
phonon frequency calculated by Eq. (9) is an interpolation.3,19

From a mathematical point of view, it is required that all values
of the IFCs at the known referencing data points be correct.
If one or more of the reference IFC values are incorrect,
the resulting errors will propagate into the interpolated point.
That is to say, for the Fourier interpolation to be sufficiently
accurate, we must consider the effect of the phonon-induced
dipole-dipole interaction on the potential energy in Eq. (1). In
this context, Eq. (21) is an accurate interpolation for an ionic
crystal.21

We now associate Eq. (22) with Eqs. (8) and (2). The
purpose of Eq. (8) is to interpolate the dynamical matrix for an
arbitrary q point, utilizing the IFCs from one single predefined
supercell calculation. The physical significance of the exact q
point defined in Eq. (2) is that at all qS’s the effect of SIFC on
the phonon frequency is zero (except at q = 0). However, for
an arbitrary nonexact q point, the effect of SIFC on the phonon
frequency is not zero anymore and has to be considered.
Specifically, f (q) in Eq. (22) has the following properties.

(i) f (0) = 1. This implies that in the long wave limit of
q → 0, we get the result of Cochran and Cowley.9

(ii) f (q) = 0 if q is a nonzero exact q point. This implies
that the nonanalytic contribution to the phonon frequency
is zero at all the nonzero exact q points. We reiterate here
that the definition of the exact q point is dependent on the
supercell shape and size defined by Eq. (2). Physically, this
can be understood by the fact that at a nonzero exact q
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FIG. 1. (Color online) Phonon dispersions of MgO calculated
with the supercell method and with linear response (Courtesy of
Comput. Phys. Commun. and Alfè19). Pink dotted and green dashed
lines correspond to calculations with a 4 × 4 × 4 supercell (128
atoms) and a 4 × 4 × 4 equispaced grid of q points (linear response).
Blue dashed and red solid lines correspond to calculations with an
8 × 8 × 8 supercell (1024 atoms) and an 8 × 8 × 8 grid of q points
with the two methods, respectively. Experimental data are displayed
with blue stars. For interpretation of the references and other legends
in the figure, the reader is referred to Fig. 3 in the paper by Alfè.19

point, the vibration-induced dipole moment for the supercell
vanishes.

(iii) f (q) �= 0 if q is not the exact q point. When q is
not the exact q point, Eq. (18) is a rather accurate input for
interpolating the phonon frequency through Eq. (9) together
with Eq. (8).

C. Understanding the published results for MgO

Figure 1 shows the previously calculated phonon disper-
sions of MgO by Alfè19 using the supercell method (without
considering the effect of SIFC) and the linear-response method
(including the vibration-induced dipole-dipole interaction),
which we take as an independent support of our point
of view on the role of the vibration-induced dipole-dipole
interaction on phonon frequency. For the supercell method,
Alfè19 reported two supercell calculations, one using the 4 ×
4 × 4 128-atom supercell and another using the 8 × 8 ×
8 1024-atom supercell, and the results were compared with
the linear-response calculations using the 4 × 4 × 4 q grid
and the 8 × 8 × 8 q grid, respectively. It can be seen that
the crossing points between the calculated results with the
supercell method and the linear-response method are located
at the exact q points. Being away from the exact q points, it
is clearly seen that the errors of the calculated results by the
supercell method are not limited to the vicinity of q → 0, as
shown by the oscillating-like line pattern for the high frequency
longitudinal optical branch.

V. COMPUTATIONAL DETAILS, RESULTS,
AND DISCUSSION

We have chosen MgO as the prototype in the present work.
The computational procedure is as follows.
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FIG. 2. (Color online) Phonon dispersions of MgO calculated
with a 16-atom 2 × 2 × 2 supercell of the primitive unit cell. The
solid (dashed) lines represent the present calculation with (without)
considering the term represented by Eq. (16), which is the contribution
to the IFC by the dipole-dipole interaction between the supercells.
The open circles (red) are inelastic neutron scattering data from
Sangster et al.28

(i) Calculate the Hessian matrix1,15 based on the su-
percell method using the projector-augmented wave (PAW)
method22,23 implemented in the Vienna ab initio simulation
package (VASP, Version 5.2). The exchange-correlation func-
tional according to Ceperley and Alder as parametrized by
Perdew and Zunger24 was employed.

(ii) Calculate the Born effective charge tensor and the high
frequency static dielectric tensor based on the primitive unit
cell employing the linear-response theory implemented in VASP

5.2 by Gajdos et al.25

(iii) Modify the Hessian matrix outputted from VASP 5.2 by
adding the term defined in Eq. (16) in order to account for the
effect of SIFC.

(iv) Construct the dynamical matrix using Eq. (8) based on
the modified Hessian matrix.

(v) Solve Eq. (9) for the phonon frequency for any chosen
q point in the Brillouin zone.

Two supercell calculations were performed in the present
work. The first is with a predefined 16-atom 2 × 2 × 2
supercell of the primitive unit cell. Figure 2 shows that once
the effect of SIFC on phonons is properly considered using
Eq. (16), the 16-atom supercell is enough for predicting the
phonon dispersions of MgO. The minor differences between
the phonon dispersions calculated with and without SIFC
effects for the longitudinal acoustic phonons are caused by
the small supercell size. Such differences are barely visible
for the previously published calculation14 using the 4 ×
4 × 4 supercell of the primitive unit cell and the one using
the 128-atom supercell shown below.

The second calculation uses a 128-atom 1 × 1 × 16
elongated supercell of the cubic unit cell. With this supercell,
one can get 16 nonzero q points along the (0,0,q) direction.
In the past, elongated supercells10,26,27 were alternative ways
to calculate the phonon dispersions for ionic crystals if one
only needed accurate predictions for phonon frequencies at
a few specific q points. As shown in Fig. 3, if the effect of
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FIG. 3. (Color online) (0,0,q) Phonon dispersions of MgO cal-
culated with a 128-atom 1 × 1 × 16 elongated supercell of
the 8-atom cubic unit cell. The solid (dashed) lines represent the
present calculation with (without) considering the term represented
by Eq. (16), which is the contribution to the IFC of the dipole-dipole
interaction between the supercells. The open circles (red) are inelastic
neutron scattering data from Sangster et al.28

SIFC on phonons is not properly considered, the supercell
method can only predict the corrected phonon frequencies for
the longitudinal optical phonons at the nonzero exact q points.
Away from exact q points, the longitudinal optical phonon
dispersions with and without the effect of SIFC considered are
different from each other.

Figures 2 and 3 also show the (0,0,q) phonon dispersions
for the case without SIFC (the dashed line) for the longitudinal
optical phonon dispersion. The comparison between the results
derived from the 1 × 1 × 16 elongated supercell and the 2 ×

2 × 2 supercell demonstrates that our mixed-space approach
properly takes into account the dipole-dipole interactions
between the supercells.

VI. CONCLUSION

In summary, our previously proposed mixed-space ap-
proach accounting for the effect of the vibration-induced
dipole-dipole interaction on phonon frequencies is derived
from the fundamental concept of electric dipole-dipole in-
teractions among the supercells. We demonstrate that the
contribution of the dipole-dipole interactions between the
supercells to the interatomic force constant can be accounted
for by adding a constant term into the real-space force constant.
We use MgO as an example to compare the calculated phonon
frequencies with and without the contribution, with the former
showing excellent agreement with experimental data.
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would like to thank D. Alfè for sending us his original
electronic figure for MgO and Benjamin Winchesterfor his
critical reading of the manuscript.

1M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon, Oxford, 1954).

2R. Mittal, S. L. Chaplot, and N. Choudhury, Prog. Mater. Sci. 51,
211 (2006).

3S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev.
Mod. Phys. 73, 515 (2001).

4X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).
5A. van de Walle and G. Ceder, Rev. Mod. Phys. 74, 11 (2002).
6A. van de Walle, M. Asta, and G. Ceder, CALPHAD 26, 539 (2002).
7N. D. M. Hine, M. Robinson, P. D. Haynes, C. K. Skylaris, M. C.
Payne, and A. A. Mostofi, Phys. Rev. B 83, 195102 (2011).

8R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59, 673
(1941).

9W. Cochran and R. A. Cowley, J. Phys. Chem. Solids 23, 447
(1962).

10G. Kern, G. Kresse, and J. Hafner, Phys. Rev. B 59, 8551 (1999).
11K. Kunc and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982).
12G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995).
13R. Resta and K. Kunc, Phys. Rev. B 34, 7146 (1986).
14Y. Wang, J. J. Wang, W. Y. Wang, Z. G. Mei, S. L. Shang, L. Q.

Chen, and Z. K. Liu, J. Phys. Condens. Matter 11, 202201 (2010).

15D. C. Wallace, Thermodynamics of Crystals (Wiley & Sons,
New York, 1972).
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