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Abstract
In an attempt to obtain reliable first-principles phonon dispersions of random alloys, we have
developed a method to calculate the dynamical matrix, with respect to the wavevector space of
the ideal lattice, by averaging over the force constants of a special quasi-random structure.
Without additional approximations beyond standard density functional theory, the present
scheme takes into account the local atomic position relaxations, the composition disorder, and
the force constant disorder in a random alloy. Numerical results are presented for disordered
Cu3Au, FePd, and NiPd and good agreement between the calculations and the inelastic
neutron scattering data is observed.

(Some figures may appear in colour only in the online journal)

1. Introduction

The phonon problem is well understood and has been
formulated in terms of force constants in real space, a
dynamical matrix in wavevector space, and derived phonon
frequency for more than half a century [1, 2]. More excitingly,
with the recent advances in computational methods and
software within the framework of density functional theory
(DFT) [3, 4], the phonon properties of many materials
can now be calculated without invoking any adjustable
parameters. Utilizing the repeated periodic structure of an
ordered system, obtaining phonon frequencies involves a
simple solution for the eigenvalues of a dynamical matrix with
a dimension of just three times the total number of atoms
in the primitive unit cell [1–4]. Indeed, excellent agreement
between predicted and experimental phonon data has been
obtained for many ordered systems [3–7].

The purpose of the present work is to extend the
application of the existing method [1, 2] to the case
of disordered systems. A disordered system possesses no
periodicity in its structures. The quest to solve the phonon
problem of a disordered system is thus to develop a method to
calculate the dynamical matrix that properly utilizes the force
constants corresponding to various pairs of chemical species

in the random chemical environment. Many theoretical
attempts have been made [8–13], the majority being based on
the coherent potential approximation (CPA) [8, 12, 13]. The
CPA [14, 15] is a single-site, mean-field theory capable of
dealing with composition disorder [16] and even anisotropic
lattice distortions [17]. However, the physical framework of
the CPA does not allow the atoms to deviate from their
ideal lattice positions so that the CPA is unable to consider
the effects of the local variations of bond lengths and force
constants [18]. For example, in the random alloys of FePd
and Cu3Au it appears that the force constants calculated by
the first-principles method were not appropriate for use as
the input to CPA-based approaches [8, 9, 19]. To obtain
good agreement with experimental data for these systems, the
previous CPA-based calculations [8, 9, 12, 19] had to use the
force constants obtained from the Born–von-Karman fitting of
the experimentally measured phonon frequencies.

In comparison, an emerging method for calculating
random alloys is the supercell approach, employing special
quasi-random structures (SQS) with which one can calculate
the effects of elastic relaxations on variations in both bond
length and force constants with chemical composition by
relaxing the positions of the atoms [18]. According to Zunger
et al [20], a given structure is always characterized by a
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set of correlation functions. An SQS is a supercell built
with a number (16 and 32 in the present work) of ideal
lattice sites among which the atomic distributions are set
to mimic the most relevant pair and multisite correlation
functions of a completely disordered phase [21]. Under the
framework of standard DFT, the SQS approach is nothing but
a general supercell approach. Therefore, it captures the key
physics of force constant disorder in a random environment
in a straightforward manner by calculating the variation in
bond lengths with chemical composition and interaction force
constants between the actual atoms in the SQS supercell.
The SQS approach has been shown to give an excellent
approximation of disordered structures [21–25].

A somewhat more theoretically demanding application of
the SQS approach is the calculation of the phonon dispersions
of a random alloy. The majority of experimental inelastic
neutron scattering data [26–28] for phonons are reported
in the form of phonon dispersions. However, there has
been no prior attempt to use the SQS approach to interpret
the phonon dispersions of a random alloy measured from
inelastic neutron scattering experiments [26–28]. Because the
existing publications treat the SQS supercell as a primitive
unit cell made of more atoms than the primitive unit
cell of the ideal lattice, the existing SQS approach results
in many more dispersion branches than inelastic neutron
scattering that uses the crystal symmetry of the ideal lattice.
This technicality makes comparison between the calculated
phonon dispersions and the experimental inelastic neutron
data extremely difficult. For example, the primitive unit cell
of the ideal face-centered cubic (fcc) systems considered in
the present work contains only one atom, p = 1, resulting in
three acoustical phonon branches [1, 2], while an SQS treated
as primitive cell results in many phonon branches. As an
example of a case with no proper averaging, the SQS adopted
in this work of p = 16 or more results in at least 48 branches.

2. Model and simulation methods

The main objective of this work is to propose a scheme
to calculate the phonon frequencies of a random alloy
within the SQS approach and to make the calculated
dispersions comparable to inelastic neutron scattering data.
One consideration that must be taken into account is that
the phonon dispersions [26–28] measured from the inelastic
neutron scattering experiments only represent the averaged
vibrations of the ideal lattice. For the present work, an
averaging method is provided to reduce the dimensions of the
SQS supercell dynamical matrix to match the primitive unit
cell of its corresponding ideal lattice for the calculation of the
phonon frequencies, i.e. ‘unfolding the Brillouin zone’.

In the present work, the following procedure is proposed.

(i) Make an SQS supercell based on the primitive unit cell
of ideal lattice (fcc in the present work) to mimic the
correlation functions of the random structure.

(ii) Relax the SQS supercell with respect to the internal
atomic positions while keeping the cell shape and volume
fixed.

(iii) Make the phonon supercell by further enlarging the SQS
supercell and calculate the force constants.

(iv) Calculate the dynamical matrix Djk
αβ(q), with the

wavevector, q, being defined from the primitive unit
cell of the ideal lattice, through the following Fourier
transformation [2]:

Djk
αβq =

1
µ

1
N

∑
M,P

φ
jk
αβ(M,P)

× exp{iq · [R(M, j)− R(P, k)]} (1)

where φjk
αβ is the cumulative force constant [29] between

the atom positioned at R(M, j) and the atom positioned
at R(P, k), the indices j and k label the atoms in the
primitive unit cell of the ideal lattice, and the indices M
and P label the primitive unit cells of the ideal lattice in
the phonon supercell. N is the supercell size in terms of
the number of primitive unit cells of the ideal lattice.

We note here that in the above statement the concept of
‘the primitive unit cell of the ideal lattice’ may represent
the distorted primitive unit cell of the ideal lattice after the
atomic positions are relaxed. µ in equation (1) is the averaged
atomic mass, which is calculated as the arithmetic average
in the present work. It is noted that using the geometric
average (not considered in the present work) to calculate
µ is also acceptable, and it will result in slightly hardened
phonon frequencies when compared to those calculated by the
arithmetic average. The alternative method is to remove the
prefactor 1/µ and instead using the true atomic mass weight
of 1/
√

m(M, j)m(P, k) inside the summation of equation (1).
However, we find that if we do this while the calculated
phonon dispersions are generally well away from the gamma
point, in the vicinity of the gamma point the calculated phonon
frequency does not go to zero, perhaps because the use of
1/
√

m(M, j)m(P, k) breaks the local symmetry or due to the
finite size effect of the SQS supercell.

Equation (1) was originally derived to consider surface
effects [2]. Otherwise, for an ordered phonon supercell, the
summation over M can only result in a prefactor N since the
translational invariance makes φjk

αβ depend on M and P only
through the difference R = R(P, k) − R(M, j) [3]. For the
present purpose, the summation over M serves as an average
in the wavevector space over both the composition disorder
and the force constant disorder.

It should be emphasized here that in calculating Djk
αβ

in equation (1) we make use of all of the interaction
force constants between the atoms within the supercell,
as demonstrated by Parliński et al [29]. This implies that
no intra-atomic interactions have been neglected except for
those resulting from the phonon supercell size. The present
approach is different from the approach in the alloy theoretic
automated toolkit (ATAT) package [30] that we employed
previously [21]. When using ATAT for the supercells in
this work, a longer cutoff distance (beyond which the force
constants are treated as zero) between the atoms must be
defined to accurately fit the force constants.
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Figure 1. Phonon dispersions for random Cu3Au. The solid (black)
lines represent the present calculation and the open circles represent
the inelastic neutron scattering data of Katano et al [27]. The dashed
(blue) lines represent the calculated results using the ab initio
transferable force constant model by Dutta et al [19].

3. Computational details

This work chooses the random fcc alloys Cu3Au, FePd,
and NiPd as prototypes. The SQS supercells are built using
the improved version [21, 31] of the ATAT package [30].
The generated SQS supercell sizes are 32, 16, and 16,
for Cu3Au, FePd, and NiPd, respectively. In the phonon
calculations, we have chosen to use the fcc lattice constants
of 3.750, 3.831, and 3.740 Å for Cu3Au, FePd, and NiPd
at 0 K, respectively. These values are within 1% of the
measured lattice constants of random Cu3Au (3.753 Å
at 296 K [32]), FePd (3.831 Å at 1020 K [28]), and
NiPd (3.720 Å [26] and ∼3.750 Å [33]), respectively.
The projector-augmented wave (PAW) method [34, 35]
within the generalized gradient approximation (GGA) of
Perdew–Burke–Ernzerhof (PBE) [36] implemented in the
VASP (version 5.2) package [34, 35] is employed. We use the
linear-response approach together with the 128-atom phonon
supercells and a 0-centered 3 × 3 × 3 k-mesh to calculate
the real space force constants. The energy cutoffs for the
phonon calculations are automatically determined by the
setting of ‘PREC=A’ in VASP which gives 272.2, 267.9, and
269.5 eV for Cu3Au, FePd, and NiPd, respectively. For the
relaxations of the atomic positions of the SQS before the
phonon calculations, the k-mesh is 0-centered 7 × 7 × 7 and
the energy cutoffs are 1.25 times of those used in the phonon
calculations. FePd and NiPd are treated with a ferromagnetic
spin in all of the calculations.

4. Results and discussion

The calculated phonon dispersions, along the directions
(0 0 ξ ), (0 ξ ξ ), and (ξ ξ ξ ), are compared with the inelastic
neutron scattering data [26–28] in figures 1–3 for Cu3Au,
FePd, and NiPd, respectively. In the three cases presented, the
transverse mode splits slightly for the dispersions of (0 0 ξ)
and (ξ ξ ξ ). This is understandable since the dynamical
matrix calculated using equation (1) does not completely

Figure 2. Phonon dispersions for random FePd. The solid (black)
lines represent the present calculation and the open circles represent
the inelastic neutron scattering data measured at 1020 K by
Mehaddene et al [28]. The dashed (blue) lines represent the
calculated results using DPFT within the ICPA [12] by Alam et al
[8].

Figure 3. Phonon dispersions for random NiPd. The solid lines
represent the present calculation and the open circles represent the
inelastic neutron scattering data for Ni55Pd45 by Kamitakahara and
Brockhouse [26].

satisfy the fcc symmetry that was broken within the SQS
supercell to meet the correlation function requirements. For
comparison with the previous CPA calculations, in particular
for FePd, Alam et al [8] pointed out that the first-principles
force constants used in the CPA calculations failed to
capture the complexities of the force constant disorder in a
random environment. In terms of agreeing with experiments,
substantial improvements are seen in figure 2 of the present
results over the previously calculated phonon dispersions
using density functional perturbation theory (DPFT) within
the itinerant coherent potential approximation (ICPA [12]) by
Alam et al [8]. In fact, a combination of the transferable force
constant model based on first-principles calculations in the
ICPA also fails to reproduce the inelastic neutron scattering
data for FePd [9] and Cu3Au [19].

For the purpose of showing the force constant disorder
and atomic position distortion obtained from the SQS
approach, figure 4 shows the spring model [18, 24] of the
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Figure 4. Variations in bond lengths and force constants versus
atom pair type.

stretching and bending force constants as a function of the
bond length between atoms up to third nearest neighbors
in the measured ideal lattice. In this model, the ‘stretching
force constant’ is derived by projecting a force constant tensor
into the direction joining the two atoms in question. The
‘bending force constant’ is derived by an average over the two
projected force constants whose directions are perpendicular
to the stretching direction. For Cu3Au and NiPd, it is clearly
seen that the bond lengths are partitioned into three groups
corresponding to the first, second, and third nearest neighbors
within the confines of the ideal lattice. For FePd, in contrast,
the partition is not clearly seen, implying that the variations
of bond lengths are rather large for FePd. It is observed
that the first nearest neighbor stretching force constants are
strongly dependent on the atom pair types as observed in
the previous work [18], showing the success of considering
the force constant disorder with the SQS approach. For the
first nearest neighbor interaction in NiPd and Cu3Au, it is
observed that the Pd–Pd and Au–Au stretching force constants
are several times larger than the Ni–Ni and Cu–Cu stretching
force constants, implying that the Pd–Pd and Au–Au pairs
prefer longer bond lengths than the Ni–Ni and Cu–Cu pairs.
For NiPd and Cu3Au, the values of the first nearest neighbor

stretching force constants correlate reasonably well to both
the bond length and atom pair type. This, in turn, means that
for a given atom pair type in NiPd and Cu3Au, the first nearest
neighbor stretching force constants are found to lie on a single
curve [18, 24]. However, in contrast to NiPd and Cu3Au, the
values of the first nearest neighbor stretching force constants
in FdPd cannot reasonably be sorted by the types of atom pair.

5. Conclusion

In summary, we have presented a scheme which makes
it possible to calculate the phonon dispersions of random
alloys using the SQS approach within standard DFT, while
considering the disorder in composition, bond length, and the
force constant. As examples, phonon dispersions of random
Cu3Au, FePd, and NiPd fcc SQS are calculated, and good
agreements with experiments are obtained. In particular,
within the framework of using first-principles force constants
as an input, substantial improvements over the previous
CPA-based approach are seen for FePd and Cu3Au.
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