
Available online at www.sciencedirect.com
Scripta Materialia 62 (2010) 646–649

www.elsevier.com/locate/scriptamat
First-principles calculations of twin-boundary and stacking-fault
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The interfacial energies of twin boundaries and stacking faults in metal magnesium have been calculated using first-principles
supercell approach. Four types of twin boundaries and two types of stacking faults are investigated, namely, those due to the
(10�11) mirror reflection, the (10�11) mirror glide, the (10�12) mirror reflection, the (10�12) mirror glide, the I1 stacking fault
and the I2 stacking fault. The effects of supercell size on the calculated interfacial energies are examined.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Magnesium alloys are increasingly being used in
a wide range of applications due to their light weight
and high strength. One of the current research frontiers
on Mg alloys is to understand, estimate and improve
their low plastic formability to operate under increas-
ingly demanding conditions. At the atomic scale, the
plastic formability is closely related to the ease of the
formation of planar defects along the close-packed
planes, namely, twin and stacking faults [1–5]. Experi-
mentally, direct measurements of interfacial energies re-
quire very delicate techniques and the results often show
large uncertainties. For instance, the measured stacking-
fault energies [6–8] (and references therein) for magne-
sium are scattered in the range of 50–280 mJ m�2.
Alternatively, the steady improvement in both computer
power and the efficiency of computational methods in
the past few years has enabled the calculation of defect
energetics at reasonable computational cost [9]. For
the case of metal magnesium, existing first-principles
results are scattered among specific types of twin bound-
aries, stacking faults, approximations to exchange–
correlation energy and supercell size [10–14]. The main
purpose of this paper is to report the calculation of
interfacial energies of twinning and stacking faults in
magnesium from a unified theoretical framework. In
particular, we report our calculated results for the
(10�11) mirror reflection, the (10�11) mirror glide, the
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(10�1 2) mirror reflection and the (10�12) mirror glide
twin boundaries, together with the I1 and I2 stacking
faults. The effect of supercell size on the calculated inter-
facial energies will be discussed.

Since we employ a first-principles approach with peri-
odic boundary conditions, the interfaces due to twinning
and stacking faults are modeled using a supercell. In
fact, the crystallographic theory of twinning [2] is rather
complicated for a hexagonal close-packed (hcp) metal.
For the special cases of (10�11) and (10�12) twins, fol-
lowing Morris et al. [11], the supercells are built by first
transforming the hcp structure into the orthogonal
structure (see Fig. 1) by which both the (10�11) and
(10�1 2) planes can be seen more clearly. Secondly, the
a lattice vector of the supercell is taken as that parallel
to paper surface and within the (10�11) or (10�12) plane,
and the b lattice vector of the supercell is taken as that
vertical to paper surface and within the (10�11) or
(10�1 2) plane. Furthermore, the c lattice vector of the
supercell is derived in the direction perpendicular to
both a and b. The atoms that above the interfacial plane
that pass through a and b are then cut away, and a mir-
ror reflection with respect to the interfacial plane that
passes through a and b is made. The last step is to shift
the atoms that are nearest to the interfacial plane to the
interfacial plane for the mirror reflection twin or to shift
the reflected atoms by b/2 for the mirror glide twin.
Examples of the built supercells for the (10�11) and
(10�1 2) twins are illustrated in Figures 2 and 3,
respectively. The supercells for the I1 and I2 stacking
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Figure 1. The (10�11) and (10�12) planes in hcp metals. The heavy
(blue) and light (yellow) balls are used to represent the A and B atomic
layers in the c direction conventionally used for the hcp structure. The
gray box shows the orthogonal cell mapped from the hcp cell. (For
interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Figure 2. Structures of the (10�12) mirror reflection twin boundary
(left panel) and the (10�12) mirror glide twin boundary (right panel).
For the meanings of the balls, see Figure 1.

Figure 3. Structures of the (10�11) mirror reflection twin boundary
(left panel) and the (10�11) mirror glide twin boundary (right panel).
See also Figure 1 for meanings of the balls.
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faults are relatively easier to build. Taking the case of
32-atom supercell (16-layer) as an example, they are just
the ABABABABCBCBCBCB and ABABABABCACA
CACB arrangements, respectively, for the I1 and I2
stacking faults [12]. Note that in the supercell approach
each supercell contains two interfaces. The effect of the
supercell sizes on the calculated interfacial energies
was studied. The built supercells with different sizes
are listed in Table 1.

To calculate the 0 K energies, we employed the Van-
derbilt ultrasoft pseudopotential [15] within the general-
ized gradient approximation (GGA) [16] to the
exchange–correlation energy as implemented in the
Vienna ab initio Simulation Package (VASP) package
[17,18]. The plane wave energy cutoff was 132.7 eV,
which is an automatic value when setting the key
“Prec = High” in VASP. The calculation of interfacial
energy involves finding the difference between two total
energies. We therefore adopted very dense k points (see
Table 1), and the gamma-centered scheme was used. We
extracted the interfacial energy, f, by
f ¼ ðESupercell � EhcpÞ=2A;

noting that ESupercell is the total energy of the supercell,
Ehcp is the total energy of hcp Mg scaled to the supercell
size, and A is interfacial area which is scalar value of the
cross product of lattice vectors a and b. We note that, in
the above procedure of extracting the interfacial energy,
the elastic energy resulting from the formation of an
interface has not been considered separately. This is a
reasonable approximation for the twin boundary in
hcp Mg, as it will be seen that the calculated interfacial
energies are just weakly dependent on the supercell size
(see Table 1).

The calculated interfacial energies are summarized in
Table 1, together with the measured stacking-fault ener-
gies [6–8] and those previously calculated following dif-
ferent approaches [4,10–14]. For the twin boundaries, it
is observed from our calculations that the effects of the
gliding of the interfacial crystal planes on the interfacial
energy are minor, and the interfacial energies of the twin
boundary are one magnitude larger than those of stack-
ing faults. Effects of the supercell size on the calculated
interfacial energies are also seen. For the twin boundary,
increasing the supercell size by up to 80 atoms can only
decrease the interfacial energy by less than 5%. How-
ever, the calculated interfacial energies for stacking
faults show strong dependence on the adopted supercell
size, as it is seen from Table 1 (I1 and I2) that the calcu-
lated interfacial energies are reduced by 50% when the
supercell size is increased from 8 to 32. This is because
the interfacial energies for the I1 and I2 stacking faults
are so small in number that their calculations have
reached the accuracy limit of the current first-principles
method.

We assume that the larger the supercell sizes are, the
more accurate the calculated interfacial energies. For the
six largest supercells of the six types of defects, our cal-
culated interfacial energies are 85.5, 81.0, 118.1, 120.0,
8.1 and 21.8 mJ m�2, respectively, for the (10�11) mirror
reflection, the (10�11 mirror glide, the (10�12 mirror
reflection, the (10�12) mirror glide, the I1 stacking fault
and the I2 stacking fault. Overall, these numbers are in
good agreement with the reported results from the pre-
vious publications. Yoo et al. [14] calculated the
(10�11) and (10�12) mirror reflection twins employing
the ab initio method (no information was given on the
employed potential and the approximation to the



Table 1. Computational settings and interfacial energies.

k-mesh Supercell size Interfacial energy (mJ m�2)

This work Previous calculation Measurements

hcp Mg 25 � 25 � 15 2 0

(10�11) 7 � 25 � 4 40 84.2 70a

9 � 31 � 3 80 85.5

(10�11)g 7 � 25 � 4 40 84.2
9 � 31 � 3 80 81.0

(10�12) 17 � 39 � 7 20 122.3
11 � 25 � 3 40 118.8 114b;114a

13 � 31 � 2 80 118.1

(10�12)g 17 � 39 � 7 20 125.3
11 � 25 � 3 40 120.8 114b

13 � 31 � 2 80 120.0

I1 25 � 25 � 12 8 17.8 9c; 10d; 4f <25g; 39h; >45i; 51–140j

25 � 25 � 9 16 13.1
25 � 25 � 6 32 8.1

I2 25 � 25 � 12 8 38.3 18c; 22d; 16e; 8f

25 � 25 � 9 16 27.7
25 � 25 � 6 32 21.8

For the I1 and I2 stacking faults, the reported stacking-fault energies in the literature [6–8,10,12,13] were divided by a factor of two since I1 and I2
contain two interfaces [12].
a Yoo et al. [14], ab initio calculation (see the text).
b Morris et al. [11], ab initio calculation (see the text).
c Smith [12], ABINIT 24-atom supercell within the GGA.
d Chetty and Weinert [10], LDA.
e Uesugi et al. [13], GGA.
f Hu et al. [4], EAM.
g Court and Caillard [7].
h Sastry et al. [6].
i Fleischer [8].
j Quoted by Fleischer [8] (and see references therein).
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exchange–correlation energy by Yoo et al.), and re-
ported the calculated interfacial energy values of 70
and 114 mJ m�2, respectively; Morris et al. employed
the same ab initio method to calculate the (10�12) mirror
reflection and the (10�12) mirror glide twins using 20-
atom supercells and reported the same interfacial energy
of 114 mJ m�2 for both the (10�12) mirror reflection and
the (10�12) mirror glide twins. The interfacial energies of
the I1 and I2 stacking faults calculated by Smith [12]
were, respectively, 9 and 18 mJ m�2 using the 24-atom
supercells (12 layers of Mg) and the ABINIT package
[19] within the GGA. The calculated interfacial energies
of the I1 and I2 stacking faults by Chetty and Weinert
[10] were, respectively, 10 and 22 mJ m�2 using the
24-atom supercells (12 layers of Mg) within the local
density approximation (LDA) [20]. The calculated inter-
facial energies of I2 stacking fault by Uesugi et al. [13]
was 16 mJ m�2 using the CASTEP package [21] within
the GGA. Other results for stacking-fault energies are
from the embedded atom method (EAM) by Hu et al.
[4], who reported that the interfacial energies for
the I1 and I2 stacking faults are 4 and 8 mJ m�2,
respectively.

In summary, the interfacial energies for four types of
twin boundaries and two types of stacking faults ob-
served in metal magnesium have been obtained through
first-principles calculations. It therefore offers a unified
picture of the interfacial energies for these lattice mis-
matches within the same theoretical framework. The cal-
culated values can also serve as the input for the future
simulation of the growth process of these planar defects
or the estimation of the effects of these lattice mis-
matches on the mechanical properties of magnesium
alloys.
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