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Abstract
We propose a mixed-space approach using the accurate force constants calculated by the direct
approach in real space and the dipole–dipole interactions calculated by linear response theory in
reciprocal space, making the accurate prediction of phonon frequencies for polar materials
possible using the direct approach as well as linear response theory. As examples, by using the
present approach, we predict the first-principles phonon properties of the polar materials
α-Al2O3, MgO, c-SiC, and h-BN, which are in excellent agreement with available experimental
data.

(Some figures in this article are in colour only in the electronic version)

Currently there are basically two methods in use for the first-
principles calculations of phonon frequencies [1–4]: (i) the
linear response theory and (ii) the direct approach. Utilizing
the approach that the ground-state electron charge density
linearly responds to a distortion of the nuclear geometry,
the linear response theory directly evaluates the dynamical
matrix through the density functional perturbation theory
(DFPT) [1, 5] without the approximation of the cutoff in
neighboring interactions. Compared with the linear response
method, the direct approach is conceptually simple. It
adopts the frozen phonon approximation [2, 4] through which
the changes in total energy or forces are calculated in
real space by displacing the atoms from their equilibrium
positions. The advantage of the direct approach is that
the phonon frequencies at the exact wavevectors, which are
commensurable with the supercell, are calculated exactly with
no further approximation [6]. However, all of the current
implementations of the direct approach are unable to accurately
handle the long range dipole–dipole interactions [7] which
result in the well-known LO–TO splitting (splitting between
longitudinal and transverse optical phonon frequencies) [1],
for the general purpose of calculating phonon density-of-states
(PDOS). The dearth of LO–TO splitting in the direct approach

motivates the present work to develop an accurate scheme to
incorporate the effects of long range dipole–dipole interactions
into the dynamical matrix calculated by the direct approach.

The basic theoretical quantity in lattice dynamics or
phonon theory is the reciprocal space dynamical matrix D̃ jk

αβ(q)

that is related to the real space force constant �
jk
αβ(0, P) by the

following Fourier transformation [3]:

D̃ jk
αβ(q) = 1√

μ jμk

∑

P

�
jk
αβ(0, P) exp{iq · [R(P) − R(0)]}

(1)
where q represents the wavevector, α and β the Cartesian axes
of either x , y, or z, j and k the indexes of atoms in the primitive
unit cell, μ j the atomic mass of the j th atom in the primitive
unit cell, P the index of the primitive unit cell in the supercell,
and R(P) the position of the Pth primitive unit cell in the
supercell.

In general, we can separate the contributions to �
jk
αβ in

equation (1) into the sum of the short range interactions and
the long range interactions as follows:

�
jk
αβ(0, P) = φ

jk
αβ(0, P) + ϕ

jk
αβ (2)
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Figure 1. Phonon dispersions of α-Al2O3, MgO, c-SiC, and h-BN. The solid lines represent the present calculations, the open circles (red) are
the inelastic neutron scattering or inelastic x-ray scattering data [36–39], and the solid diamonds (blue) are Raman or infrared
data [33–35, 48].

where φ
jk
αβ is the contribution from short range interactions,

and ϕ
jk
αβ the contribution from long range interactions typically

due to the dipole–dipole effects. In the linear response
theory [1], ϕ

jk
αβ is determined by making the inverse Fourier

transformation into real space from the calculated dynamical
matrix in the limit of zero wavevector. In contrast, as
constrained by the periodic condition, the evaluation of
ϕ

jk
αβ within the direct approach requires the Berry phase

approach [6] using special supercells. To calculate the phonon
frequencies in the whole Brillouin zone, e.g. aimed at obtaining
the accurate PDOS, large numbers of special supercells
are needed in the Berry phase approach. Alternatively,
Parliński [8] proposed a semi-empirical extrapolation to
circumvent this problem, arising in lots of applications (see
e.g. [9–25]). Unfortunately, even with the adjustable fitting
parameters, Parliński’s approach still results in incorrect knots
in the phonon dispersion curves (see e.g. [9–25]) in comparison
with experiments.

Herein, we find that the long range dipole–dipole
interactions, i.e. the contribution of the nonanalytical part to the
dynamical matrix, can be accurately incorporated together with
the direct approach. According to Cochran and Cowley [26],
the nonanalytical part of the dynamical matrix in the limit of
zero wavevector is given by

D̃ jk
αβ(na) = 4πe2

V

[q · Z∗( j)]α[q · Z∗(k)]β
q · ε∞ · q

, (3)

where Z∗( j) represents the Born effective charge tensor of the
j th atom in the primitive unit cell and ε∞ the high frequency
static dielectric tensor, i.e. the contribution to the dielectric
permittivity tensor from the electronic polarization [1].

Since equation (3) is the Fourier transformation of a
function in the limit of zero wavevector, we can transform
equation (3) back into the zero-order term (in other words, the
constant term) of that function. In the case where the function
is the force constant in real space, this back transformation
gives the zero-order term as

ϕ
jk
αβ = D̃ jk

αβ(na)

N
, (4)

where N is the number of primitive cells in the supercell.
Note that for the exact wavevectors q, q · Ll = 2πnl with
Ll (l = 1, 2, and 3) being the lattice vectors of the supercell
and nl an integer [1, 6]. Important properties associated with
equation (4) can be derived using the following equation for
the exact wavevectors:

1

N

∑

P

exp{iq · [R(P) − R(0)]} = δ(q), (5)

where δ(q) is zero if q �= 0 and δ(0) = 1. We observe the
following:

(i) at q → 0, the nonanalytical part of the dynamical matrix in
equation (3) is naturally recovered through the summation
in equation (1);
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Figure 2. Phonon dispersions of α-Al2O3, MgO, c-SiC, and h-BN. The solid lines represent the present calculations, for α-Al2O3 the open
circles (red) connected by the dotted line are the neutron scattering data by Loong [44], for MgO the open circles (red) connected by the
dotted line are the inelastic x-ray scattering data by Bosak and Krisch [43], and the solid diamonds (blue) connected by the dotted lines are
from the model fitting to their inelastic neutron scattering phonon dispersions for MgO obtained by Sangster et al [36].

(ii) at other exact q wavevectors, the contribution of the
nonanalytical part to the dynamical matrix vanishes
through the summation in equation (1); and

(iii) at all other non-exact wavevectors, equation (4) represents
an interpolation, being analogous to the linear response
theory [1].

We reiterate that the physics of equation (4) lies in the
fact that equation (4) is a Fourier transformation back into
real space from reciprocal space, since equation (3) is a
Fourier transformation of force constants in the limit of zero
wavevector. Therefore, as long as the nonanalytical part of the
dynamical matrix in equation (3) is calculated using the density
functional perturbation theory or the Berry phase approach,
one can incorporate the long range dipole–dipole interaction
into the direct approach through equation (4) by means of
equation (2). This implies that the present approach can make
full use of the accuracies of the force constants calculated
in real space and the dipole–dipole interactions calculated in
reciprocal space.

Accordingly, we avoid the semi-empirical procedure [8, 9,
17] for extrapolating the LO phonon frequencies for a general q
point between the Brillouin zone center and the zone boundary
for polar materials as developed by Parliński [8] for the direct
approach. It is worth mentioning that the nonanalytical part of
the dynamical matrix is not yet implemented in most phonon

codes, such as the PHON code by Alfe [27] and the ATAT
package by van de Walle et al [28].

To demonstrate the present approach, we choose the
systems possessing rhombohedral, rocksalt, zincblende, and
hexagonal symmetries, i.e. α-Al2O3, MgO, c-SiC, and h-BN,
respectively, to calculate their phonon dispersions and the
PDOSs.

For first-principles static calculations at 0 K, we employed
the projector-augmented wave (PAW) method [29, 30]
implemented in the Vienna ab initio simulation package
(VASP, version 5.2). The exchange–correlation functional
according to Ceperley and Alder as parameterized by Perdew
and Zunger [31] was employed in all calculations. For
calculating the static energy, we used the 	-centered k mesh
determined by using over 8000 k points per atom and an
energy cutoff of 520 eV. For calculating the Born effective
charge tensor and the high frequency static dielectric tensor,
we employed the linear response theory implemented in VASP
5.2 by Gajdos et al [32] and the same parameter settings as
the static calculations. For calculating the force constants in
real space, we used the energy cutoff of 400 eV, together with
2×2×2 supercells (of the primitive cell) and 5×5×5 k-mesh
for α-Al2O3, and 4 × 4 × 4 supercells and 3 × 3 × 3 k-mesh
for MgO, c-SiC, and h-BN.

Figure 1 illustrates the calculated phonon dispersions
at the theoretical static equilibrium volumes at 0 K by
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Figure 3. Direction-dependent linear thermal expansion coefficients
of α-Al2O3. The solid (black) and dot–dashed (red) lines represent,
respectively, the calculated in-plane (αv, vertical to the rhombohedral
axis) and out-of-plane (αp, parallel to the rhombohedral axis) values.
The open and solid triangles (blue) represent, respectively, the
in-plane and out-of-plane values critically evaluated by White and
Minges [47].

the present approach together with measurements [33–39].
It demonstrates that the present approach has the same
accuracies as the linear response theory in predicting the
phonon frequencies for α-Al2O3 [40], MgO [41], and c-
SiC [42], and the Berry phase approach in calculating the
phonon frequencies for h-BN [6]. We can see substantial
improvements in the phonon dispersion curves calculated by
the present approach over those calculated for α-Al2O3 by
Lodziana and Parliński [9].

Figure 2 compares the calculated PDOS obtained by
the present approach at the theoretical static equilibrium
volumes at 0 K with available measurements [43, 44] or
model fitting [36]. The experimental peak positions are
overall reproduced. For α-Al2O3 at the low frequency region
(<5 THz) we believe the calculation is more reliable. At the
high frequency region (>25 THz) for α-Al2O3, the present
approach demonstrates the same tendency as that calculated by
Heid et al [40] using the linear response theory.

As a further application, we predict the thermal
expansions, heat capacities, and entropy as a function of
temperature up to 2000 K for α-Al2O3 based on the
quasiharmonic approach [45], and plot them in figures 3–
5, respectively, together with the critically evaluated values
according to experiments [46, 47]. It is amazing to note that
the present mixed-space approach reproduces excellently the
anisotropy of thermal expansion coefficients.

In summary, to calculate the phonon frequencies for
polar materials, we propose a parameter-free mixed-space
approach which can make full use of the accuracy of the
force constants calculated in real space and the dipole–dipole
interactions in reciprocal space. The accuracy of the present
approach is confirmed by calculating the phonon frequencies
of several representative examples: rhombohedral Al2O3,
rocksalt MgO, zincblende SiC, and hexagonal BN. We also
predicted the thermal properties of α-Al2O3, including the

Figure 4. Heat capacities of α-Al2O3. The solid (black) and
dot–dashed (red) lines represent, respectively, the calculated isobaric
(CP ) and isochoric (CV ) values. The open and solid triangles
represent, respectively, the isobaric and isochoric values critically
evaluated by White and Minges [47]. The open circles represent the
critically evaluated CP found by Archer [46].

Figure 5. Entropies of α-Al2O3. The solid line represents the present
calculation and the open circles represent the critically evaluated
values obtained by Archer [46].

direction-dependent thermal expansions, heat capacity, and
entropy, as a function of temperature up to 2000 K. We note
that our approach does not rely upon existing experimental
data or other approximations outside density functional theory
(DFT), making the direct approach suitable for accurate
predictions of phonon frequencies and related properties of
polar materials.
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