

Available online at www.sciencedirect.com

Acta Materialia 55 (2007) 5934-5947

www.elsevier.com/locate/actamat

First-principles calculations of β'' -Mg₅Si₆/ α -Al interfaces

Y. Wang^{a,*}, Z.-K. Liu^a, L.-Q. Chen^a, C. Wolverton^{b,1}

^a Materials Science and Engineering, The Pennsylvania State University, State College, PA 16802-5006, USA ^b Ford Research and Advanced Engineering, MD3083/SRL, Dearborn, MI 48121-2053, USA

Received 26 January 2007; received in revised form 11 June 2007; accepted 29 June 2007 Available online 29 August 2007

Abstract

The metastable β'' -Mg₅Si₆ phase is often the most effective hardening precipitate in Al-rich Al–Mg–Si alloys. Two important factors that control the precipitate morphology are the strain energy and the interfacial energy between the precipitate and the matrix. By means of a first-principles supercell approach and density functional theory calculations, we have studied the interfacial properties between β'' -Mg₅Si₆ and α -Al. We carefully construct a large number of interfacial cells in order to elucidate preferred interfacial terminations and orientations, as well as atom alignment and intermixing across the interface. Each of the low-energy interfaces we found possesses two key attributes: a high number of Al–Si bonds across the interface, and a face-centered cubic topological alignment of atoms across those interfaces. Our first-principles results yield quantitative values for the interfacial energies, lattice mismatches and strain energies that can be used in future predictions of precipitate morphologies as a function of size. © 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: \u03b3"-Mg5Si6/\u03b3-Al interface; Interfacial energy; Lattice mismatch; First-principles

1. Introduction

Precipitation hardening is utilized to strengthen a wide variety of alloy systems. An example is the class of commercially important Al–Mg–Si based alloys which are strengthened by a number of metastable precipitate phases [1–12], where the needle-shaped β'' -Mg₅Si₆ precipitates are often the main contributor to hardening [11]. Beginning with the supersaturated solid solution (SSS), the generic precipitation sequence in Al–Mg–Si alloys is generally believed to be [12]:

 $SSS \rightarrow Mg/Si \ clusters \rightarrow Guinier-Preston \ zones \rightarrow \beta''$

$$\rightarrow \beta' \rightarrow \beta$$

In practice, the sequence can be even more complex [1,3,10-14], and a number of other metastable phases, such

as U2, U1 and B', may also form along with β' , depending on alloy composition and the heat treatment time and temperature.

One of the key factors that control the mechanical properties of precipitate-hardened alloys is the precipitate morphology, i.e. the size and shape of precipitates. In order to predict [15,16] the precipitate microstructural evolution and thus mechanical properties, it is critical that the thermodynamic driving forces and kinetic mechanisms that lead to various precipitate shapes be understood.

The morphology of a precipitate is primarily determined by two competing energetic contributions, i.e. the interfacial energy between the precipitate and the matrix and the coherency elastic strain energy generated due to the lattice mismatch between the precipitate and the matrix. Obtaining these quantities directly from experiments can be difficult due to the metastable nature of many precipitates. For example, in many cases, including β'' -Mg₅Si₆, only the constrained lattice parameters are available experimentally (e.g. from high-resolution transmission electron microscopy (TEM) or diffraction

^{*} Corresponding author. Tel.: +1 814 8650389; fax: +1 814 8652917. *E-mail address:* yuw3@psu.edu (Y. Wang).

¹ Present address: Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA.

^{1359-6454/\$30.00} © 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.actamat.2007.06.045

approaches [11,17]). But experimental data for stress-free lattice parameters (and hence the lattice mismatch), as well as elastic constants and interfacial energies, are not typically available. First-principles total energy and crystal structure calculations provide a computational tool capable of giving quantitative predictions for these hardto-measure quantities.

The main objective of this paper is to search for low energy interfaces between the β'' -Mg₅Si₆ precipitate and the α -Al matrix from a first-principles approach. Extensive calculations were performed to examine the effects of interfacial termination, atomic alignment and intermixing [11], and interfacial orientations [18,19]. Though interfacial energies have been previously calculated using first-principles calculations in other systems (see e.g. [20-23]), almost all of these previous calculations have been focused on systems where both phases are high-symmetry cubic phases, often with simple small-unit-cell crystal structures. In contrast, the precipitate/matrix interfaces studied in this work involve the relatively low-symmetry monoclinic β'' -Mg₅Si₆ precipitate with a complex stoichiometry and crystal structure, and a high symmetry cubic α -Al matrix. As a result of the complexity of this system, there are a large number of degrees of freedom to consider in constructing the interfaces, including where to "cut" the crystals of the matrix and precipitate and how to "join" them - interfacial orientation, interfacial termination, atom alignment and atomic arrangement near the interface. In the following sections, the crystal structure of β'' -Mg₅Si₆, its relationship with α -Al (facecentered cubic, fcc) and the supercell models for the β'' -Mg₅Si₆/ α -Al interface are described. We then give first-principles results for the interfacial energies and strain energies, as well as the stress-free mismatch in β'' -Mg₅Si₆/ α -Al. In addition, we investigate a recently proposed model for one of the β'' -Mg₅Si₆/ α -Al interfaces in which an intermixing tendency across this interface has been deduced from high-resolution electron microscopy (HREM) and electron diffraction (ED) measurements [11].

2. Crystal structures and interface models

2.1. Structural relationship between $\beta''-Mg_5Si_6$ and α -Al

Fig. 1 illustrates the structural similarity [11] between β'' -Mg₅Si₆ and fcc α -Al by showing a 22-atom supercell of the α -Al fcc lattice in the form of a conventional monoclinic unit cell (CMUC) of β'' -Mg₅Si₆. In this representation, the lattice vector $\mathbf{b}_{\beta''}$ ([010]) of the β'' -Mg₅Si₆ is parallel to the [001] axis of α -Al ($\mathbf{b}_{\beta''} = \mathbf{c}_{Al}$) and the other two lattice vectors of β'' -Mg₅Si₆ are defined by $\mathbf{a}_{\beta''} = 2\mathbf{a}_{Al} + 3\mathbf{b}_{Al}$ (i.e. the [230] direction in α -Al) and $\mathbf{c}_{\beta''} = -1.5\mathbf{a}_{Al} + 0.5\mathbf{b}_{Al}$ (i.e. the [$\overline{3}10$] direction of α -Al). As noted in Ref. [11], even a precise one-to-one atom mapping between β'' -Mg₅Si₆ and α -Al can be obtained if one shifts the corner Mg and $\mathbf{a}_{\beta''}/2$ Mg atoms by $\mathbf{b}_{\beta''}/2$.

Fig. 1. The crystal structure of β'' -Mg₅Si₆ (a) and its relation with α -Al (b). Mg: green (small balls); Si: orange (large balls); Al: gray. The solid balls show atoms at the paper surface and flat plates show atoms at $\mathbf{b}_{\beta''}/2$ (~0.2025 nm) into the paper surface. It can be seen that the one-to-one atom correspondence can be assigned between the two parallelograms, with only the Mg atom at the corner of the β'' -Mg₅Si₆ parallelogram being shifted $\mathbf{b}_{\beta''}/2$ if being compared the α -Al parallelogram. Note that the Mg atom located at the $[100]_{\beta''}$ side of the β'' -Mg₅Si₆ parallelogram is equivalent to corner Mg atom by translational symmetry. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2.2. Interfacial orientations

A reconstructed exit wave of a typical β'' -Mg₅Si₆ needle in α -Al by Andersen et al. [11] showed the existence of two types of interfaces parallel to the needle axis $\mathbf{b}_{\beta''}$ (needle-||), i.e. one parallel to the (100) crystal plane of β'' -Mg₅Si₆ and another parallel to the (001) crystal plane of β'' -Mg₅Si₆. Along with these two observed interfacial orientations, for completeness, we assume a third interface be the plane paralleling to the (010) crystal plane of β'' -Mg₅Si₆ (needle- \perp). The interfacial orientation relations for these three types of interfaces are summarized as follows:

- A: $(130)_{Al} || (100)_{\beta''} (needle-||)$
- B: $(001)_{Al} || (010)_{\beta''} (needle- \perp)$
- C: $(\bar{3}20)_{Al} || (001)_{\beta''} (needle-||)$

where the labels A, B and C are used simply to reflect, respectively, the interfacial orientation direction of β'' -Mg₅Si₆ for that interface.

3. Supercells

In our first-principles calculations, we adopt coherent models along all interfacial orientations considered. Table 1 summarizes the interfacial orientations, alignments, terminations and interfacial intermixing of all interfacial supercells considered in this paper.

The conventional monoclinic unit cell (CMUC) shown in Fig. 1 is used as the "building block": the interfacial supercells are built using multiple CMUC units, with the 22 atoms of each CMUC having stoichiometries Al_{22} or $Mg_{10}Si_{12}$ on either side of the interface. It should be noted that if one shifts the corner Mg atom of β'' - Mg_5Si_6 (equivalent to the $a_{\beta''}/2$ Mg atom) by $b_{\beta''}/2$, the

Table 1Description of interfacial cells constructed^a

Supercell	Orientation	Alignment	# Atoms	Shift interface	Equivalent interfaces	# Al-Mg bonds	# Al-Si bonds
X ₁	$(130)_{A1} (100)_{B''}$	β″	44	Ν	Ν	14	6
X_2	$(130)_{A1} (100)_{B''}$	β″	44	Y	Ν	16	20
X ₃	$(130)_{A1} (100)_{\beta''}$	β″	44	Y	Ν	12	13
X_4	$(130)_{A1} (100)_{\beta''}$	β″	44	Y	Ν	6	14
X5	$(130)_{A1} (100)_{B''}$	Pre-β"	44	Ν	Ν	11	9
X ₆	$(130)_{A1} (100)_{B''}$	Pre-β"	44	Y	Ν	23	22
X_7	$(130)_{A1} (100)_{B''}$	Pre-β"	44	Y	Ν	16	16
X_8	$(130)_{A1} (100)_{\beta''}$	Pre-β"	44	Y	Y	10	18
A ₁	$(130)_{A1} (100)_{B''}$	β″	88	Ν	Ν	16	6
A_2	$(130)_{A1} (100)_{\beta''}$	Pre-β"	88	Ν	Ν	12	9
A ₈	$(130)_{A1} \ [100]_{B''}$	Pre-β"	88	Y	Y	10	18
\mathbf{B}_1	$(001)_{A1} (010)_{B''}$	β″	88	Ν	Y	24	12
B ₂	$(001)_{A1} (010)_{B''}$	Pre-β"	88	Ν	Y	34	40
C_1	$(\bar{3}20)_{A1} (001)_{B''}$	β″	88	Ν	Ν	28	6
C_2	$(\bar{3}20)_{A1} (001)_{B''}$	Pre-β"	88	Ν	Ν	32	8
C ₃	$(\bar{3}20)_{A1} (001)_{\beta''}$	Pre-β"	88	Y	Ν	38	44
C ₄	$(\bar{3}20)_{\rm Al} \ (001)_{\beta''}$	Pre-β"	88	Y	Y	28	36

^a C₃ is the only case where atom intermixing across interface is considered.

resulting structure is the so-called pre- β'' phase [12,24]. If one does not distinguish Mg and Si, the pre- β'' structure is a distorted fcc structure. This type of topological structure is often called a "superstructure of fcc" [12,24]. However, the β'' -Mg₅Si₆ is not a superstructure of fcc, and therefore there is some ambiguity about how to align the fcc α -Al CMUC to that of β'' -Mg₅Si₆. In our calculations, two ways of aligning the atoms at the interface have been considered for each interfacial orientation. They are (i) the β'' alignment: the α -Al CMUC is positioned in a way that its corner Al atom exactly replaces the corner Mg of β'' -Mg₅Si₆; and (ii) the pre- β'' or "fcc" alignment: relative to (i), all of the α -Al CMUC atoms are shifted by $\mathbf{b}_{\beta''}/2$.

3.1. Interfacial termination/position

Once the orientations and atom alignment have been determined, it is still necessary to determine the interfacial position of both phases on each side of the interface. In other words, we must determine where to "cut" the CMUCs and how to connect them together to construct the supercell. Our studies on the effect of interfacial termination on the interfacial energies are focused on the interfacial orientations $(130)_{AI} || (100)_{\beta''}$ and $(\bar{3}20)_{AI} || (001)_{\beta''}$. The interfacial orientation $(001)_{AI} || (010)_{\beta''}$ corresponds to the small area interface at the top of the needle-shaped precipitate, which we suspect is incoherent or partially coherent, likely with a large interfacial energy; hence, we did not try to optimize the termination.

3.2. Supercells used in searching for the optimized interfacial termination for interfacial orientation $(130)_{AI} || (100)_{B''}$

For searching for the low energy terminations, we have tried eight different supercells, labeled X_1 – X_8 , as illustrated

in Fig. 2 (by shifting the interfacial positions via systematically replacing the atoms on the β'' -Mg₅Si₆ side with Al atoms and compensating the α -Al side with those replaced atoms from β'' -Mg₅Si₆,). To accelerate this search, we use relatively small supercells (44 atoms) and moderately converged ("PREC = Medium") VASP energetics for this purpose, but check the lowest energy terminations with larger supercells and more precise energetics, described below. The supercells X₁-X₄ take the β'' alignment and the supercells X₅-X₈ take the pre- β'' /fcc alignment.

3.3. Supercells used in searching for the optimized interfacial termination for interfacial orientation $(\bar{3}20)_{AI} || (001)_{B''}$

We have examined four terminations, labeled C_1 – C_4 , as illustrated in Fig. 3. C_1 takes the β'' alignment and all others take the pre- β'' /fcc alignment. We particularly note the C₃ interface, which is constructed via "intermixing" atoms across the interface. Based on experimental observations for the interfacial orientation $(320)_{A1} \parallel (001)_{B''}$, Andersen et al. [11] suggested a model where some of the Si atoms in β'' -Mg₅Si₆ may occupy positions in the α -Al matrix. Via a careful examination of this model, we found that it could equivalently be reproduced by replacing 4 Mg atoms and 2 Si atoms from the β'' -Mg₅Si₆ side with 6 Al atoms. To build supercell C₃, we swap 4 Mg atoms and 2 Si atoms from the β'' -Mg₅Si₆ side with 6 Al atoms from the α -Al side. We note that performing these atomic swaps only yields the atomic arrangements suggested by Andersen et al. [11] for one (i.e. IF2 shown in Fig. 3 for C_3) of the two interfaces in the supercell.

3.4. Supercells used in calculating the interfacial energies

To obtain higher quantitative accuracy for the interfacial energies, we use larger supercells (88 atoms), as shown

Fig. 2. Supercells used in searching for the low energy termination along orientation A $[(130)_{AI}||(100)_{\beta''}]$. Mg: green (small balls); Si: orange (large balls); Al: gray. X₁-X₄ take the β'' alignment and X₅-X₈ take the pre- β'' /fcc alignment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

in Figs. 3–5. We performed calculations on supercells for all three interfacial orientations described above: $(\bar{3}20)_{Al} || (001)_{\beta''}$ (needle-||, denoted by C₁, C₂, C₃, and C₄ in Fig. 3), $(130)_{Al} || (100)_{\beta''}$ (needle-||, denoted by A₁, A₂ and A₈ in Fig. 4) and $(001)_{Al} || (010)_{\beta''}$ (needle- \perp , denoted by B₁ and B₂ in Fig. 5). Considering various interfacial alignments, solute intermixing configurations, and terminations, we have constructed a total of nine interfacial supercells having 88 atoms, listed as A₁, A₂, A₈, B₁, B₂, C₁, C₂, C₃ and C₄. Among these supercells, A₁ is a cell-doubled version of supercell X₁ and A₈ is a cell-doubled version of supercell X₈.

3.5. Equivalency of the two interfaces in one supercell

Due to periodic boundary conditions, the constructed supercell always contains two interfaces. The two interfaces are either equivalent to one another or are not, depending on the symmetry dictated by the termination of the crystals. Fig. 6 is used to examine the local symmetry of β'' -Mg₅Si₆. We note two special planes: the first is marked with $(\bar{3}20)_{Al} || (001)_{\beta''}$ and the second is marked with $(130)_{Al} || (100)_{\beta''}$. If the β'' -Mg₅Si₆ CMUC is cut along one of these two planes, the two resulting surfaces are equivalent by symmetry (the intersection of these two planes yields an axis which contains an inversion center).

In our supercell models, X_8 , A_8 , B_1 , B_2 and C_4 contain two equivalent interfaces (marked as IF1 and IF2 in Figs. 3–5). For X_8 , A_8 and C_4 , the equivalence of the two interfaces is associated with the symmetry analysis of Fig. 6. For B_1 and B_2 , the equivalency can be observed by noting the fact that the 11-atom layer arrangements of the pure phases along the crystal orientation $[001]_{Al} || [010]_{\beta''}$ are a simple *ABAB* ($B = A + \mathbf{b}_{\beta''}/2$) type stacking of layers, and the interface $B_{Al}A_{\beta''}$ is equivalent to the interface $B_{\beta''}A_{Al}$.

For the rest of the supercells employed in this work, the two interfaces, IF1 and IF2, contained in one supercell are not equivalent. The calculated interfacial energies are therefore the averaged values between the two interfaces. The use of non-equivalent interfaces is to preserve the stoichiometry of β'' -Mg₅Si₆, and is simply due to the symmetry and crystal structure of the β'' -Mg₅Si₆ phase. For insulators, the use of non-equivalent interfaces can result in charge transfer around an interface [25] (e.g. from the matrix to the precipitate) or between the two interfaces, which can create an interface dipole. In surface calculations this situation is sometimes rectified by imposing an external dipole field [26]. However, we assume that in metallic systems the long-range dipole-dipole interaction will be screened out much more efficiently than in insulators. Other solutions to the problem of two non-equivalent interfaces dictated by stoichiometric concerns are possible, via the use of chemical potentials [27,28]. However, our calculated results (see below) show that the supercells containing two equivalent interfaces give quite low interfacial energies. In comparison, the calculated interfacial energies using supercells containing two non-equivalent interfaces are quite high. Hence, we take the supercells with equivalent interfaces as a good description of the preferred interfaces in this system, and do not try to rectify the problem of inequivalent interfaces in our high-energy supercells.

Fig. 3. Supercells used in calculating the interfacial energies along orientation C $[(\bar{3}20)_{Al}||(001)_{\beta''}]$. Mg: green (small balls); Si: orange (large balls); Al: gray. C₁: β'' alignment; the corner atom from matrix α -Al replaces exactly the corner Mg atom position of β'' -Mg₅Si₆. C₂: pre- β'' /fcc alignment; relative to supercell C₁, the matrix Al atoms have been shifted $b_{\beta''}/2$, which means the corner Al atom from matrix α -Al takes back the corresponding fcc position in β'' -Mg₅Si₆. C₃: pre- β'' /fcc alignment; in addition to C₂, 4 Mg atoms and 2 Si atoms in the β'' -Mg₅Si₆ side have swapped positions with the corresponding Al atoms in the α -Al side. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4. First-principles methodology

For our first-principles density functional theory calculations, we employ the Vienna ab initio simulation package (VASP) [29–31] with Vanderbilt ultrasoft pseudopotentials [32] and the generalized gradient approximation (GGA) [33]. In order to obtain highly accurate and reliable energetics, the energy cutoff is fixed to 188.3 eV, i.e. the highest energy cutoff among Al, Mg and Si suggested by VASP (using the input flag, "PREC = High"). For the pseudopotentials used, only the 3s3p orbitals are treated as valence. Unless otherwise specified, all calculations are performed including complete atomic relaxation of cell volume, cell vectors, and cell-internal atomic positions.

In the stress-free calculations for pure phases, we use a $24 \times 24 \times 24$ Monkhorst–Pack **k**-point grid for α -Al and an $8 \times 24 \times 16$ grid for β'' -Mg₅Si₆. For the supercells with 88 atoms used in calculating the interfacial properties, two sets of **k**-points have been used, which we generically label "coarse" and "fine". The "coarse" **k**-point meshes are $2 \times 14 \times 7$, $5 \times 4 \times 11$ and $5 \times 17 \times 3$ Monkhost–Pack

k-points for the interfacial orientation $(130)_{Al} || (100)_{\beta''}$, $(001)_{Al} || (010)_{\beta''}$ and $(\bar{3}20)_{Al} || (001)_{\beta''}$, respectively. The "fine" **k**-point meshes are $2 \times 24 \times 16$, $8 \times 6 \times 16$ and $8 \times 24 \times 4$ gamma-centered **k**-points for interfacial orientations $(130)_{Al} || (100)_{\beta''}$, $(001)_{Al} || (010)_{\beta''}$ and $(\bar{3}20)_{Al} || (001)_{\beta''}$, respectively. The "fine" **k**-point is more "shape-matched" for the various supercell shapes, i.e. closer to $a*k_a \cong b*k_b \cong c*k_c$ (k_a , k_b and k_c represent the number of **k**-points, respectively, along the three directions of lattice vectors, $\mathbf{a}_{\beta''}$, $\mathbf{b}_{\beta''}$ and $\mathbf{c}_{\beta''}$). We have used the "fine" **k**-point to refine atomically relaxed structures from the "coarse" sets, as well as to check the convergence of the "coarse" set. For the supercells with 44 atoms used to search for low-energy terminations for the interfacial orientation $(130)_{Al} || (100)_{\beta}$, we used a $3 \times 17 \times 11$ Monkhost–Pack **k**-point mesh.

5. Separation of interfacial and strain energies from first-principles supercell results

The formation energy of our supercells is defined as the energy difference between that of the supercell (containing

Fig. 4. Supercells used in calculating the interfacial energies along orientation A $[(130)_{AI}||(100)_{\beta''}]$. Mg: green (small balls); Si: orange (large balls); Al: gray. A₁: β'' alignment; the corner Mg atom of β'' -Mg₅Si₆ is replaced by Al. A₂: pre- β'' /fcc alignment; relative to supercell A₁, the matrix Al atoms have been shifted $b_{\beta''}/2$, which means the corner Al atom from matrix α -Al takes back the correspondent fcc position in β'' -Mg₅Si₆. A₈: pre- β'' /fcc alignment; relative to supercell A₂, the interfacial position has been moved so that the bonds at the interfaces are formed by Al–Si. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Supercells used in calculating the interfacial energies along orientation B ((010) crystal plane of β'' , (001)_{Al}||(010)_{β''}). Mg: green (small balls); Si: orange (large balls); Al: gray. B₁: β'' alignment; the corner atom from matrix α -Al replaces exactly the corner Mg atom position of β'' -Mg₅Si₆. B₂: pre- β'' /fcc alignment; relative to supercell B₁, the matrix Al atoms at 0 and 1/2 in the $b_{\beta''}$ direction have switched their positions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Crystal structure of β'' -Mg₅Si₆, showing the axis containing the inversion center, and the two planes where the crystal can be cut to obtain two equivalent interfaces in the supercells.

the interface) and the energy of the pure "constituents", α -Al or β'' -Mg₅Si₆. However, this energy difference contains not only the interfacial energy, but also the coherency strain energy required to deform the constituents from their stress-free states. To reliably extract the interfacial energy, one must separate the contribution of coherency strain. The separation procedure is described below.

5.1. Energies of formation

We begin with the formula for the energy of formation of an interfacial supercell. Using A and B to represent α -Al and β'' -Mg₅Si₆, respectively, the energy of formation, $E_{\rm f}$, for an interfacial supercell with N atoms is given by

$$E_{\rm f} = E_{\rm AB} - xNE_{\rm A} - (1-x)NE_{\rm B},\tag{1}$$

where E_{AB} represents the total energy of the supercell. x in Eq. (1) represents the phase fraction of A (x = 1 - x = 0.5 in this work since all our supercells contain equal fractions of A and B). E_A and E_B in Eq. (1) represent the energy per atom of the fully relaxed A and B structures (stress-free), i.e. the energy is minimized with respect to volume, internal atomic positions, and cell shape or bond angles. The formation energy as defined in Eq. (1) thus contains both contributions from the interfacial energy, as well as the elastic strain energy from the lattice mismatch between A and B. Specifically, the energy of formation of Eq. (1) can be expressed as [34,35]:

$$\frac{E_{\rm f}}{N} = \frac{2S\sigma}{N} + \zeta \tag{2}$$

where S represents the area of the interface, σ is the interfacial energy per unit area and ζ is the strain energy per atom. (The factor of two is due to the fact that there are two interfaces per supercell.)

5.2. Separation of interfacial energy from strain energy

For a completely coherent interface, the strain energy plays a crucial role since it is proportional to the total volume, whereas the interfacial energy is only proportional to the cross-sectional area of the supercell. There are two approaches to separate these two contributions, linear fitting and direct calculations.

Linear fitting: One way to extract the interfacial/strain energy from the supercell formation energy of Eq. (1) is to calculate energetics for a series of supercells with increasing size N, then fit these energetics to the expression of Eq. (2), which is linear in 1/N [34,35]. In Eq. (2), it is assumed that the elastic deformations of A and B in the supercells are constant as the size of the supercells increases. Therefore, by fitting a series of calculated values of $E_{\rm f}$ verses the inverse of the supercell size, 1/N, one can extract the interfacial energy from the slope of the fitted line, and the *y*-intercept gives the strain energy [35].

Though this method is quite straightforward in principle, it can be computationally demanding in practice as it requires a series of increasingly larger supercell calculations. For the interfacial system between β'' -Mg₅Si₆ and α -Al in the present work, the smallest supercell consists of 44 atoms. Due to the complexity of the system, we found this linear fitting method to be computationally prohibitive.

Direct calculation: We can illustrate an alternative, direct method of separating strain and interfacial energies via the following imaginary two-step process: first, both the bulk crystal structures of the precipitate and the matrix are individually deformed (but not brought together) from their stress-free states to their stressed states in the interfacial geometry. That is, the two lattice vectors along the interfacial plane are strained to match one another while the supercells are allowed to relax along the direction of the third lattice vector. The energy difference between this deformed state and the stress-free state gives the strain energy upon forming a coherent interface. Second, the two perfect crystals are then broken along the interfacial orientation plane and joined together to form an interface. The energy associated with this second process corresponds to the interfacial energy. Specifically, in this work, we carried out the separation of interfacial energy and elastic strain energy using the following process:

(1) Assuming the interface is along the plane containing both lattice vector **b** and lattice vector **c**, we first calculate the total energy of the interface supercell with full atomic and cell-vector relaxations. The obtained total energy is denoted as $E_{Al/\beta''}$ (**a**, **b**, **c**) with **a**, **b** and **c** representing the relaxed lattice vectors.

(2) We then adopt a supercell with the same shape and number of atoms as step 1, but consisting of either pure α -Al or pure β'' -Mg₅Si₆, but not both. (We also use the same **k**-point and energy cutoff as in step 1.) We then fix the two lattice vectors, **b** and **c**, which lie in the interfacial plane of step 1, as well as the monoclinic angle, while relax-

ing the cell only along the direction of lattice vector **a**. For the β'' -Mg₅Si₆ phase, we also relax all cell-internal atomic positions (for α -Al, there are no cell-internal degrees of freedom by symmetry). The total energies obtained for the constrained α -Al and β'' -Mg₅Si₆ are labeled $E_{Al}(\mathbf{a})$ and $E_{\beta''}(\mathbf{a})$. The interfacial energy is then calculated as

$$\sigma = \left\{ E_{\mathrm{Al}/\beta''}(\mathbf{a}, \mathbf{b}, \mathbf{c}) - \frac{1}{2} [E_{\mathrm{Al}}(\mathbf{a}) + E_{\beta''}(\mathbf{a})] \right\} / 2S$$
(3)

where again, the factor 2 in the denominator arises from the fact that the use of periodic boundary conditions results in two interfaces in the supercell. Once the interfacial energy, σ , is obtained using Eq. (3), the strain energy can be obtained through Eq. (2) using $E_{\rm f}$ calculated by means of Eq. (1).

6. Results and discussion

6.1. Convergence with respect to k-points

We begin the discussion of our results with an analysis of the convergence of the calculations with respect to the **k**-points. For four selected supercells, i.e. A₁, B₁, B₂ and C₃, we have studied the effect of the **k**-point mesh on energetic and structural properties. Table 2 gives the effects of **k**-point mesh on the calculated energies of formation, strain energies and interfacial energies. Table 3 contains the **k**-point convergence tests for the calculated lattice parameters, including the bond angle β between lattice vector **a**_{β''} and **c**_{β''}. It is found that the differences between the "coarse" and "fine" sets of **k**-points are less than 2% for interfacial energies and less than 0.1% for the lattice parameters. Therefore, we conclude that the calculations are converged using either set of **k**-points.

6.2. Lattice mismatch

The term "lattice mismatch" refers to the stress-free lattice parameter difference between the precipitate and the matrix. Because β'' -Mg₅Si₆ is a metastable phase (which even has a positive formation energy [24] within GGA), it

 Table 2

 Calculated energetics for different k-point meshes

Supercell	k -point mesh	Energy of formation (kJ mol at ⁻¹)	Strain energy (kJ mol at ⁻¹)	Interfacial energy (mJ m ⁻²)
A ₁	$2 \times 7 \times 14$	1.98	0.82	316
A_1^a	$2 \times 16 \times 24$	2.05	0.90	313
B_1	$5 \times 11 \times 4$	4.95	1.20	286
B_1^{a}	$8 \times 16 \times 6$	4.94	1.18	287
B_2	$5 \times 11 \times 4$	4.92	0.76	321
B_2^{a}	$8 \times 16 \times 6$	4.97	0.74	327
C ₃	$5 \times 3 \times 17$	2.67	0.39	276
C_3^{a}	$8 \times 4 \times 24$	2.70	0.42	276

^a Refined calculations using denser **k**-point meshes.

Table 3 Calculated lattice parameters for different k-point meshes

Supercell	<i>a</i> (nm)	<i>b</i> (nm)	<i>c</i> (nm)	β (°) ^a
Al ^b	1.459	0.4047	0.6398	105.3
Expt. ^c	1.460	0.4050	0.6403	105.3
β″	1.512	0.4084	0.6928	110.5
Expt. ^d	1.516	0.405	0.674	105.3
A ₁	1.487×4	0.4061	0.6624	104.8
A ₁ ^e	1.485×4	0.4070	0.6615	104.8
B ₁	1.506	0.4208×4	0.6813	110.9
B ₁ ^e	1.505	0.4210×4	0.6809	110.8
B ₂	1.495	0.4101×4	0.6667	108.2
B_2^{e}	1.490	0.4116×4	0.6647	107.7
C ₃	1.497	0.4024	0.6703×4	107.5
C_3^e	1.497	0.4022	0.6703×4	107.5

^a Angle between the lattice vectors $\mathbf{a}_{\beta''}$ and $\mathbf{c}_{\beta''}$.

^b Lattice parameters of α -Al when the 22-atom monoclinic β'' -Mg₅Si₆ supercell is adopted (see text).

^c These numbers are deduced based on the experimental values for pure α -Al [36].

 d The experimental values for constrained $\beta''\text{-}Mg_5Si_6$ precipitate [12] in an $\alpha\text{-}Al$ matrix.

^e Refined calculations using denser **k**-point mesh.

is virtually impossible to experimentally obtain a bulk crystal of β'' -Mg₅Si₆, and thereby to observe the stress-free lattice parameters of β'' -Mg₅Si₆. But, from our first-principles calculations, we can compute quantitative values of the lattice mismatch.

For pure α -Al, our calculated fcc lattice constant is 0.4047 nm, which is almost identical to the measured room temperature value of 0.405 nm [36]. For β'' -Mg₅Si₆, our stress-free calculated lattice constants are $a_{\beta''} = 1.5118$ nm, $b_{\beta''} = 0.4084$ nm and $c_{\beta''} = 0.6928$ nm. From these data, the deduced theoretical lattice mismatches between α -Al and β'' -Mg₅Si₆ are +3.6%, +0.9% and +8.3%, respectively, along the three lattice directions $\mathbf{a}_{\beta''}$, $\mathbf{b}_{\beta''}$ and $\mathbf{c}_{\beta''}$. It is interesting to note that the direction in which the β'' -Mg₅Si₆ precipitates are observed to be fully coherent (along the $\mathbf{b}_{\beta''}$ axis) is the lattice constant predicted by first-principles to have the lowest lattice mismatch.

6.3. Effects of supercell size

For supercells with periodic boundary conditions, the interaction between the periodic images of the supercell could affect both the interfacial energy and strain energy, as well as the structural properties. As an example, we discuss the effect of supercell size on the interfacial energies for the orientation $(130)_{AI} || (100)_{\beta''}$. We compare a 44-atom supercell X₁ with a 88-atom supercell A₁ and a 44-atom supercell X₈ with a 88-atom supercell A₈.

Supercells X_1 and A_1 have the β'' alignment. If a supercell is sufficiently large, the calculated interfacial energy should not be dependent on the supercell size. However, a comparison between X_1 and A_1 demonstrates significant differences in the calculated interfacial energy and strain

energy. As the supercell is doubled, the strain energy per mol atom is decreased while the interfacial energy is increased (see Table 4). The decrease in the strain energy per mol atom can be understood by the change of bond angle β listed in Table 5 from supercells X₁ (102.3°) to A₁ (104.8°). The bond angle $\beta = 102.3°$ for supercell X₁ is quite small compared with the pure phases (110.5° for β'' -Mg₅Si₆ and 105.3° for α -Al).

On the other hand, supercells X_8 and A_8 have the pre- β'' /fcc alignment. In contrast to the comparison between X_1 and A_1 , comparison between X_8 and A_8 shows very little size effect, as can be seen in Tables 4 and 5. The interfacial energy, strain energy, bond angle β and in-plane lattice parameters (see Table 5) are roughly unchanged as the supercell is doubled from X_8 to A_8 .

6.4. Interfacial energies

The calculated energies of formation, strain (elastic) energies and interfacial energies are summarized for all supercells in Table 4. There is quite a strong variation in interfacial energies for the supercells considered, with the

Table 4

First-principles calculated energetics for the different β'' -Mg₅Si₆/ α -Al interfacial supercells

Supercell	Energy of formation $(kJ mol at^{-1})$	Strain energy (kJ mol at ⁻¹)	Interfacial energy (mJ m ⁻²)
X ₁	3.45	1.61	251
X ₈	1.54	0.65	123
A_1	1.98	0.82	316
A_2	2.19	0.55	449
A ₈	1.06	0.61	124
\mathbf{B}_1	4.95	1.20	286
B_2	4.92	0.76	321
C ₁	3.64	0.70	361
C_2	3.78	0.62	392
C ₃	2.67	0.39	276
C ₄	1.27	0.45	100

Table 5	
---------	--

First-principles calculated lattice parameters for the different β'' -Mg ₅ Si ₆ /	α-Al
interfacial supercells ^a	

Supercell	<i>a</i> (nm)	<i>b</i> (nm)	<i>c</i> (nm)	β (°)
X1	1.4950×2	0.4068	0.6588	102.3
X ₈	1.498×2	0.4040	0.6568	106.2
A_1	1.487×4	0.4061	0.6624	104.8
A_2	1.514×4	0.4035	0.6603	107.1
A_8	1.494×4	0.4046	0.6591	106.5
B_1	1.506	0.4208×4	0.6813	110.9
B_2	1.495	0.4101×4	0.6667	108.2
C1	1.477	0.4029	0.6958×4	105.3
C ₂	1.481	0.3977	0.7038×4	108.0
C ₃	1.497	0.4024	0.6703×4	107.5
C ₄	1.483	0.4052	0.6651×4	106.8

^a See Table 2 for an explanation of the various lattice parameters.

difference between the highest and lowest interfacial energies of about a factor of \sim 3. In general, the supercells containing two equivalent interfaces are lower in energy. For experimentally observed interfaces (needle-||), the $(\bar{3}20)_{A1} || (001)_{\beta''}$ and $(130)A1 || (100)_{\beta''}$, the lowest calculated interfacial energies are 100 and 124 mJ m⁻² from cells C4 and A8, respectively. In contrast, the calculated interfacial energies at the needle top, $(001)_{A1} || (010)_{B''}$ (needle- \perp), are much larger, on the order of ~300 mJ m⁻². The calculated strain energy for the two needle-|| interfaces is 0.61 kJ mol at⁻¹ for A_8 and 0.45 kJ mol at⁻¹ for C_4 , which are also lower than those for the needle-⊥ interface calculated through B_1 and B_2 .

Two of the important factors that determine the interfacial energy of an interface are the interfacial alignment and interfacial termination. Our results indicate that the pre- β'' /fcc alignment as well as maximizing the difference between the number of Al-Si bonds and the number of Al-Mg bonds both lead to both low interfacial energies and low strain energies. From Tables 1 and 4 one can find that all of the low strain energy supercells, i.e. X_8 , A_2 , A_8 , B₂, C₂, C₃ and C₄, have the pre- β'' /fcc alignment. For all the $(130)_{Al} || (100)_{\beta''}$ interfaces considered, the lowest energy supercell A8 contains the highest difference between the number of Al-Si bonds and the number of Al–Mg bonds. Similarly, for all the $(\bar{3}20)_{A1} \parallel (001)_{R''}$ interfaces, the one (C_4) with the largest difference between the number of Al-Si bonds and the number of Al-Mg bonds results in the lowest interfacial energy. To make these arguments more quantitative, we also list the number of Al-Mg and Al-Si bonds across the interface for each of the supercell considered in Table 1. Recent first-principles calculations of Mg, Si and other impurities in α -Al by Wolverton and Ozolins [37] also showed a similar ordering tendency of Al-Si bonds relative to Al-Mg bonds in the fcc geometry. With respect to the fcc lattice, they found that Si impurities in Al have negative formation energies while Mg impurities have positive formation energies. These ordering tendencies from bulk impurities are consistent with the interfacial ordering tendencies deduce in the present work.

Next, we discuss the results in more detail below for each of the three specific interfacial orientations.

Interfacial orientation $(130)_{Al} || (100)_{\beta'}$: for this interfacial orientation, we have considered eight supercells with 44 atoms, labeled X_1 – X_8 , and three supercells having 88 atoms, labeled A_1 , A_2 and A_8 . The small supercells X_1 – X_8 are adopted for the purpose of searching for the low energy interfacial termination/position. Note that the only difference between A_2 and A_8 is the interfacial position, where the A_8 supercell contains an enhanced number of Al–Si bonds across the interface. Of all these terminations, we find that supercells X_8 and A_8 give the lowest interfacial energy, of ~124 mJ m⁻². Supercell A_2 leads to the highest interfacial energy, of ~449 mJ m⁻².

Even though interface A_8 is energetically preferred, it is still interesting to compare the energies for cells A_2 and A_1 ,

since the difference between these cells lies solely in the interfacial alignment. The division of formation energy into strain and interfacial contributions is quite different in the two cases: the supercell A_1 has lower interfacial energy while the supercell A_2 has lower strain energy (see Table 4). The difference in strain energy between supercell A_1 and supercell A_2 can be understood by the supercell shape changes; for example, the bond angle β is found to be changed from 104.8° to 107.1° between supercell A_1 and supercell A_2 (see Table 5). The supercell shape changes from A_1 to A_2 demonstrate the effects of interfacial alignment.

Interfacial orientation $(001)_{Al} || (01, 0)_{B''}$: this interfacial orientation corresponds to the observed interface for the small area between the needle top of β'' -Mg₅Si₆ precipitate and α -Al. Thus, from the observed needle-shaped morphologies of β'' precipitates, one might expect that this interfacial orientation should have a substantially larger interfacial or strain energy (or both) than the other two. Indeed, this interfacial orientation gives (Table 4) formation energies that are quite high compared with the formation energy from interfacial orientation $(\bar{3}20)_{A1} || (001)_{B''}$ or $(130)_{A1} || (100)_{\beta''}$. The pre- β'' /fcc alignment seems to offer some lowering of the strain energy relative to the β'' alignment, but at the expense of a higher interfacial energy. We also note that the observed precipitate lattice parameters indicate that this interface is not coherent, whereas our calculations correspond to a coherent interface. Breaking coherency with the lattice for this interface would likely reduce the strain energy, at the expense of an increase in the interfacial energies. Thus, we suggest that our calculated energies for coherent $(001)_{A1} || (010)_{B''}$ interface represent an upper bound to the true strain energy and a lower bound to the true interfacial energy.

Interfacial orientation $(320)_{Al} || (001)_{\beta''}$: we have four supercells for this interfacial orientation, C₁, C₂, C₃ and C₄, as listed in Table 4. As mentioned above, the C₂ is different from C₁ only in the interfacial alignment, while in C₃, we have swapped the positions of six pairs of atoms relative to C₂. We note that C₄ contains the largest difference between Al–Si and Al–Mg bonds and also contains two equivalent interfaces.

Just as found for the other two interfacial orientations, in going from β'' to pre- β'' /fcc alignment (C₁ to C₂), the strain energy is decreased slightly while the interfacial energy is increased slightly. However, these effects compensate one another to a great extent, giving similar formation energies. On the other hand, supercell C₃ with solute intermixing across the interface results in relatively lower interfacial energy and significantly lower strain energy when compared with C₁ or C₂. To a certain extent, our results for C₃ support the experimental results of Andersen et al. [11], that the atomic position intermixing near the interface plays a role in the energetically preferred interfacial geometry. However, we reiterate that only one of the two interfaces (IF2) in supercell C₃ is equal to the model proposed by Andersen et al. [11], and thus the calculated interfacial energy in Table 4 represents the average of the interfacial energies of IF1 and IF2.

The most meaningful results are from C₄. C₄ produces a surprisingly low interfacial energy of 100 mJ m⁻², while its strain energy is also lower than that of the energetically preferred A₈ for the interfacial orientation $(130)_{Al} || (100)_{\beta''}$. The value of 100 mJ m⁻² for C₄ and the value of 124 mJ m⁻² for A₈ are even lower than the calculated interfacial energy of 170 mJ m⁻² for the coherent interface of θ' -Al₂Cu precipitates in α -Al[21,35]. We note that the energetically preferred terminations C₄ and A₈ both have the fcc topological alignment of atoms across the interfaces and have a large number of Al–Si bonds. We suspect that if one could intermix the atoms at interface IF1 in C₃ to also yield a larger number of Al–Si bonds, we might reduce the calculated interfacial energy for C₃ even further, perhaps even down to the value similar to those of C₄ and A₈.

6.5. Relaxed atomic coordinates

To help interested readers in reconstructing our interfacial supercells, we give in Tables A1–A5 of the Appendix the relaxed atomic coordinates, nearest neighboring atom coordination and bond distances for the low-energy supercells A_8 , C_4 and C_3 , as well as B_1 and B_2 .

7. Summary

We have calculated interfacial energies, strain energies and lattice mismatches for the interfacial system β'' -Mg₅Si₆/ α -Al. Our study involved three types of interfacial orientations between β'' -Mg₅Si₆ and α -Al, namely, $(130)_{Al} || (100)_{\beta''}$, $(001)_{Al} || (010)_{\beta''}$ and $(\bar{3}20)_{Al} || (001)_{\beta''}$. In each case, we find that the low-energy interfaces possess two key attributes in common: a large number of Al–Si bonds and an alignment across the interface with a pre- β'' /fcc topology.

The calculated interfacial energies for these three interfacial orientations are in the range 100–449 mJ m⁻², with low energies occurring for two interfacial orientations, $(\bar{3}20)_{Al} || (001)_{\beta''}$ and $(130)_{Al} || (100)_{\beta''}$, and a relatively high energy for interfacial orientation $(001)_{Al} || (010)_{\beta''}$. For interfaces with interfacial orientations $(320)_{Al} || (001)_{\beta''}$ and $(130)_{Al} || (100)_{\beta''}$, the lowest energies are found for the terminations chosen so as to maximize the difference between the number of Al–Si bonds and the number of Al–Mg bonds across the interfaces. We believe that the formation of more Al–Si bonds is the main reason for the energy lowering.

The generic finding of two low-energy orientations and a third higher-energy orientation is consistent with the observed needle-shaped morphology of β'' -Mg₅Si₆ precipitates. However, we note that the interfacial anisotropy alone cannot explain the observed large aspect ratios of the observed needle-shaped precipitates in this system. Hence, strain and other anisotropies must be adequately accounted for in a quantitative prediction of β'' -Mg₅Si₆

precipitate shapes. Such a quantitative study using firstprinciples energetics is forthcoming.

Acknowledgements

This work is funded by the National Science Foundation (NSF) through Grant DMR-0205232. First-principles calculations were carried out on the LION clusters at the Pennsylvania State University, supported in part by the NSF Grants (DMR-9983532, DMR-0122638, and DMR-0205232) and in part by the Materials Simulation Center and the Graduate Education and Research Services at the Pennsylvania State University. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We would also like to thank Dr. Shunli Shang in our Phases Research Lab for stimulating discussions.

Appendix

See Tables A1-A5.

Table A1

Atomic positions for interfacial supercell A_8 (see Table 5 for the calculated lattice parameters)

Index ^a	Symbol	Interna	l position	ı	Nearest neighboring ato			Nearest neighboring atom		
		x	у	Z	Index	Bond	Distance			
						type	(nm)			
2	Mg	0.2518	0.9970	0.0000	22	Mg–Si	0.259			
3	Mg	0.1232	0.0030	0.5000	26	Mg–Si	0.259			
1	Mg	0.9956	0.0218	0.0000	21	Mg–Si	0.262			
4	Mg	0.3794	0.9782	0.5000	27	Mg–Si	0.262			
9	Mg	0.4216	0.9045	0.0000	24	Mg–Si	0.277			
19	Mg	0.9534	0.0955	0.5000	43	Mg–Si	0.277			
7	Mg	0.2121	0.0681	0.5000	25	Mg–Si	0.280			
8	Mg	0.1629	0.9319	0.0000	23	Mg–Si	0.280			
16	Mg	0.4007	0.3605	0.0000	31	Mg–Si	0.280			
20	Mg	0.9743	0.6395	0.5000	42	Mg–Si	0.280			
5	Mg	0.0835	0.0746	0.0000	26	Mg–Si	0.281			
6	Mg	0.3409	0.0604	0.0000	27	Mg–Si	0.281			
10	Mg	0.0341	0.9396	0.5000	21	Mg–Si	0.281			
11	Mg	0.2915	0.9254	0.5000	22	Mg–Si	0.281			
14	Mg	0.2317	0.6286	0.5000	22	Mg–Si	0.286			
15	Mg	0.1433	0.3714	0.0000	26	Mg–Si	0.286			
12	Mg	0.1029	0.6344	0.0000	23	Mg–Si	0.287			
13	Mg	0.3609	0.6168	0.0000	27	Mg–Si	0.287			
17	Mg	0.0141	0.3832	0.5000	21	Mg–Si	0.287			
18	Mg	0.2721	0.3656	0.5000	25	Mg–Si	0.287			
22	Si	0.2664	0.6625	0.0000	25	Si-Si	0.238			
23	Si	0.1379	0.6691	0.5000	26	Si-Si	0.238			
25	Si	0.2371	0.3309	0.0000	22	Si-Si	0.238			
26	Si	0.1086	0.3375	0.5000	23	Si-Si	0.238			
21	Si	0.0090	0.6760	0.0000	35	Si-Si	0.239			
27	Si	0.3660	0.3240	0.5000	41	Si-Si	0.239			
35	Si	0.0479	0.6447	0.0000	21	Si-Si	0.239			
36	Si	0.3052	0.6294	0.0000	22	Si-Si	0.239			
37	Si	0.1767	0.6365	0.5000	23	Si-Si	0.239			
39	Si	0.1983	0.3635	0.0000	25	Si-Si	0.239			
40	Si	0.0698	0.3706	0.5000	26	Si-Si	0.239			
					(con	ntinued on	next page)			

Table A1 (continued)

Index ^a	Symbol	Interna	l position	l	Neares	t neighbo	oring atom	Atomi	e positions	s for ii
		r		7	Index	Bond	Distance	Index	Symbol	Inter
		л	y	2	mucx	type	(nm)			x
41	с.	0.2271	0.2552	0.5000	27	c; c;	(1111)			
41	51 Si	0.32/1	0.3553	0.5000	27	51–51 S; S;	0.239	2	Ma	0.009
24 13	Si Si	0.3909	0.0301	0.0000	21	Si-Si	0.240	4	Ma	0.000
	Si	0.9781	0.3499	0.0000	35	Si_Si	0.240		Ma	0.014
34	Si	0.3303	0.2049	0.0000	35 41	Si_Si	0.245	3	Mg	0.01
29	Si	0.3015	0.7460	0.0000	36	Si_Si	0.247	11	Mo	0.43
30	Si	0.1729	0.2541	0.5000	37	Si-Si	0.247	12	Mg	0.93
32	Si	0.2021	0.7459	0.0000	39	Si-Si	0.247	13	Mg	0.588
33	Si	0.0735	0.7540	0.5000	40	Si–Si	0.247	15	Mg	0.088
38	Si	0.4396	0.6373	0.5000	24	Si-Si	0.258	5	Mg	0.355
44	Si	0.9354	0.3627	0.0000	43	Si-Si	0.258	7	Mg	0.85
60	Al	0.8804	0.7212	0.5000	63	Al-Al	0.278	9	Mg	0.664
86	Al	0.4946	0.2788	0.0000	88	Al–Al	0.278	10	Mg	0.164
54	Al	0.8580	0.2642	0.5000	78	Al-Al	0.279	14	Mg	0.590
67	Al	0.5170	0.7358	0.0000	85	Al-Al	0.279	16	Mg	0.090
78	Al	0.8898	0.4402	0.0000	54	Al-Al	0.279	19	Mg	0.170
85	Al	0.4852	0.5598	0.5000	67	Al-Al	0.279	20	Mg	0.670
45	Al	0.5054	0.0027	0.5000	85	Al–Al	0.282	6	Mg	0.349
74	Al	0.8696	0.9973	0.0000	78	Al-Al	0.282	8	Mg	0.849
47	Al	0.5281	0.4592	0.5000	85	Al–Al	0.283	21	Si	0.063
50	Al	0.8143	0.3588	0.5000	76	Al–Al	0.283	23	Si	0.563
71	Al	0.5607	0.6412	0.0000	47	Al–Al	0.283	35	Si	0.210
76	Al	0.8469	0.5408	0.0000	78	Al–Al	0.283	37	Si	0.710
46	Al	0.7482	0.9972	0.5000	66	Al–Al	0.284	25	Si	0.95
48	Al	0.7702	0.4509	0.5000	72	Al-Al	0.284	27	Si	0.455
49	Al	0.5718	0.3683	0.5000	47	Al-Al	0.284	39	Si	0.802
51	Al	0.5500	0.9154	0.5000	69	Al-Al	0.284	41	Si	0.302
52	Al	0.7921	0.9042	0.5000	70	Al-Al	0.284	26	Si	0.952
53	Al	0.6159	0.2764	0.5000	77	Al-Al	0.284	28	Si	0.452
55	Al	0.5939	0.8227	0.5000	73	Al-Al	0.284	40	Si	0.795
57	Al	0.6600	0.1824	0.5000	79	Al–Al	0.284	42	Si	0.295
59	Al	0.6379	0.7296	0.5000	81	Al–Al	0.284	29	Si	0.205
61	Al	0.7040	0.0905	0.5000	82	Al–Al	0.284	30	Si	0.198
62	Al	0.6820	0.6364	0.5000	83	Al–Al	0.284	31	Si	0.705
64	Al	0.7261	0.5440	0.5000	68	Al–Al	0.284	32	Si	0.698
66	Al	0.7811	0.1773	0.0000	46	Al–Al	0.284	33	Si	0.81
68	Al	0.7591	0.7236	0.0000	64	Al–Al	0.284	34	Si	0.315
69	Al	0.5829	0.0958	0.0000	51	Al–Al	0.284	22	Si	0.043
70	Al	0.8250	0.0846	0.0000	52	Al–Al	0.284	24	Si	0.543
72	Al	0.8032	0.6317	0.0000	76	Al–Al	0.284	36	Si	0.203
73	Al	0.6268	0.0028	0.0000	55	Al–Al	0.284	38	Si	0.703
75	Al	0.6048	0.5491	0.0000	49	Al–Al	0.284	63	Al	0.560
77	Al	0.6489	0.4560	0.0000	53	Al–Al	0.284	72	Al	0.060
79	Al	0.6930	0.3636	0.0000	57	Al–Al	0.284	45	Al	0.41
81	Al	0.6710	0.9095	0.0000	59	Al–Al	0.284	46	Al	0.91
82	Al	0.7371	0.2704	0.0000	61	Al–Al	0.284	51	Al	0.983
83	Al	0.7150	0.8176	0.0000	62	Al–Al	0.284	77	Al	0.483
56	Al	0.8365	0.8152	0.5000	74	Al–Al	0.285	87	Al	0.940
65	Al	0.5385	0.1848	0.0000	45	Al-Al	0.285	88	Al	0.440
31	Si	0.4255	0.2243	0.5000	84	Si-Al	0.256	54	Al	0.088
42	Si	0.9495	0.7757	0.0000	80	Si-Al	0.256	81	Al	0.588
80	Al	0.9129	0.9053	0.0000	42	Al-Si	0.256	52	Al	0.993
84	Al	0.4621	0.0947	0.5000	31	Al-Si	0.256	78	Al	0.493
63	Al	0.9223	0.6158	0.5000	42	Al-Si	0.262	53	Al	0.079
88	Al	0.4527	0.3842	0.0000	31	Al-Si	0.262	57	Al	0.170
58	Al	0.9052	0.1801	0.5000	44	Al–Si	0.275	65	Al	0.81
87	Al	0.4698	0.8199	0.0000	38	Al–Si	0.275	66	Al	0.718
^a The	label "Inc	lev" is us	red to lab	el the at	om nosi	tion		68	Al	0.899

The label "Index" is used to label the atom position.

Table A	2				
Atomic	positions	for	interfacial	supercell C	3

Index	Symbol	Internal	position		Neares	t neighboi	ing atom
		x	У	Ζ	Index	Bond type	Distance (nm)
2	Mg	0.0080	0.2579	0.0000	26	Mg–Si	0.270
4	Mg	0.5080	0.2579	0.5000	28	Mg–Si	0.270
1	Mg	0.0153	0.9983	0.0000	25	Mg–Si	0.271
3	Mg	0.5153	0.9983	0.5000	27	Mg–Si	0.271
11	Mg	0.4319	0.1619	0.0000	23	Mg–Si	0.278
12	Mg	0.9319	0.1619	0.5000	21	Mg–Si	0.278
13	Mg	0.5883	0.0941	0.0000	27	Mg–Si	0.279
15	Mg	0.0883	0.0941	0.5000	25	Mg–Si	0.279
5	Mg	0.3556	0.0165	0.0000	27	Mg–Si	0.282
7	Mg	0.8556	0.0165	0.5000	25	Mg–Si	0.282
9	Mg	0.6643	0.2387	0.0000	23	Mg–Si	0.283
10	Mg	0.1643	0.2387	0.5000	21	Mg–Si	0.283
14	Mg	0.5905	0.3555	0.0000	28	Mg–Si	0.284
16	Mg	0.0905	0.3555	0.5000	26	Mg–Si	0.284
19	Mg	0.1704	0.9779	0.5000	43	Mg–Si	0.286
20	Mg	0.6704	0.9779	0.0000	44	Mg–Si	0.286
6	Mg	0.3498	0.2728	0.0000	28	Mg–Si	0.289
8	Mg	0.8498	0.2728	0.5000	26	Mg–Si	0.289
21	S1	0.0639	0.1706	0.0000	35	S1-S1	0.238
23	S1	0.5639	0.1706	0.5000	37	S1-S1	0.238
35	S1	0.2167	0.1605	0.0000	21	S1-S1	0.238
57	S1	0.7167	0.1605	0.5000	23	S1-S1	0.238
25	Si C	0.9554	0.0841	0.0000	39	S1-S1	0.239
27	Si C:	0.4554	0.0841	0.5000	41	S1-S1	0.239
59 41	51	0.8028	0.0949	0.0000	25	51-51 5: 5:	0.239
+1	51	0.5028	0.0949	0.3000	27 40	SI-SI	0.239
20	Si Si	0.9520	0.3449	0.0000	40	SI-SI Si Si	0.241
20 10	Si	0.4520	0.3449	0.0000	42 26	Si_Si	0.241
40 42	Si	0.7953	0.3508	0.5000	20	Si-Si	0.241
79	Si	0.2053	0.0649	0.0000	41	Si_Si	0.247
30	Si	0.1988	0.3196	0.0000	42	Si-Si	0.247
31	Si	0.7053	0.0649	0.5000	39	Si–Si	0.247
32	Si	0.6988	0.3196	0.5000	40	Si–Si	0.247
33	Si	0.8155	0.1899	0.0000	37	Si–Si	0.248
34	Si	0.3155	0.1899	0.5000	35	Si–Si	0.248
22	Si	0.0434	0.4422	0.0000	26	Si–Si	0.256
24	Si	0.5434	0.4422	0.5000	28	Si–Si	0.256
36	Si	0.2030	0.4249	0.0000	22	Si–Si	0.257
38	Si	0.7030	0.4249	0.5000	24	Si–Si	0.257
53	Al	0.5600	0.9060	0.5000	67	Al-Al	0.258
72	Al	0.0600	0.9060	0.0000	76	Al–Al	0.258
45	Al	0.4118	0.3996	0.0000	77	Al-Al	0.266
46	Al	0.9118	0.3996	0.5000	51	Al–Al	0.266
51	Al	0.9833	0.5032	0.5000	46	Al–Al	0.266
77	Al	0.4833	0.5032	0.0000	45	Al–Al	0.266
87	Al	0.9465	0.8079	0.0000	72	Al–Al	0.267
38	Al	0.4465	0.8079	0.5000	63	Al–Al	0.267
54	Al	0.0889	0.8459	0.5000	72	Al-Al	0.269
51	Al	0.5889	0.8459	0.0000	63	Al-Al	0.269
52 70	Al	0.9939	0.7419	0.5000	54	AI–AI	0.272
/8	Al	0.4939	0./419	0.0000	81 57	AI-AI	0.272
55 57		0.0792	0.0120	0.5000	57	AI-AI	0.280
57 55	Δ1	0.1/02	0.7198	0.5000	55 87	$\Delta 1 \Delta 1$	0.280
55	Δ1	0.0150	0.7005	0.5000	60	$\Delta 1 \Delta 1$	0.200
58	Al	0.8993	0.6333	0.5000	64	A1_A1	0.280
74	Al	0.3150	0.7663	0.0000	88	Al_Al	0.280
75	Al	0.2186	0.6556	0.0000	69	Al-Al	0.280
. <i>9</i> 79	Al	0.3993	0.6333	0.0000	73	Al-Al	0.280
80	Al	0.5792	0.6126	0.0000	84	Al-Al	0.280
84	Al	0.6762	0.7198	0.0000	80	Al–Al	0.280

Table A3 (continued)

Table A2 (continued)

Index	Symbol	Interna	nternal position Nearest neighbo			ring atom	
		x	y	Z	Index	Bond	Distance
						type	(nm)
59	Al	0.3569	0.6990	0.5000	88	Al–Al	0.282
61	Al	0.6369	0.7849	0.5000	81	Al-Al	0.282
70	Al	0.1369	0.7849	0.0000	54	Al-Al	0.282
86	Al	0.8569	0.6990	0.0000	87	Al-Al	0.282
55	Al	0.2604	0.5898	0.5000	73	Al–Al	0.283
58	Al	0.4390	0.5662	0.5000	73	Al–Al	0.283
62	Al	0.5368	0.6770	0.5000	61	Al–Al	0.283
71	Al	0.0368	0.6770	0.0000	70	Al–Al	0.283
82	Al	0.7604	0.5898	0.0000	64	Al-Al	0.283
85	Al	0.9390	0.5662	0.0000	64	Al–Al	0.283
43	Si	0.3286	0.9388	0.5000	76	Si-Al	0.258
44	Si	0.8286	0.9388	0.0000	67	Si-Al	0.258
67	Al	0.7262	0.8962	0.5000	44	Al–Si	0.258
76	Al	0.2262	0.8962	0.0000	43	Al–Si	0.258
49	Al	0.8368	0.4545	0.0000	40	Al–Si	0.266
50	Al	0.3368	0.4545	0.5000	42	Al–Si	0.266
47	Al	0.6626	0.4814	0.0000	24	Al–Si	0.268
48	Al	0.1626	0.4814	0.5000	22	Al–Si	0.268
64	Al	0.8034	0.5261	0.5000	38	Al–Si	0.268
73	Al	0.3034	0.5261	0.0000	36	Al–Si	0.268
60	Al	0.6208	0.5487	0.5000	24	Al–Si	0.274
69	Al	0.1208	0.5487	0.0000	22	Al–Si	0.274
56	Al	0.2718	0.8308	0.5000	43	Al–Si	0.276
83	Al	0.7718	0.8308	0.0000	44	Al–Si	0.276
17	Mg	0.4204	0.8935	0.0000	63	Mg-Al	0.285
18	Mg	0.9204	0.8935	0.5000	72	Mg–Al	0.285

Table A3 Atomic positions for interfacial supercell C₄

Index	Symbol	Internal position			Nearest neighboring atom			
		x	у	Ζ	Index	Bond type	Distance (nm)	
1	Mg	0.0107	0.9948	0.0000	22	Mg–Si	0.271	
2	Mg	0.9893	0.2552	0.0000	26	Mg-Si	0.271	
3	Mg	0.5107	0.9948	0.5000	24	Mg-Si	0.271	
4	Mg	0.4893	0.2552	0.5000	28	Mg-Si	0.271	
13	Mg	0.4198	0.1589	0.0000	23	Mg-Si	0.278	
15	Mg	0.9198	0.1589	0.5000	21	Mg–Si	0.278	
17	Mg	0.5802	0.0911	0.0000	27	Mg-Si	0.278	
19	Mg	0.0802	0.0911	0.5000	25	Mg–Si	0.278	
5	Mg	0.3521	0.0137	0.0000	27	Mg-Si	0.281	
7	Mg	0.8521	0.0137	0.5000	25	Mg–Si	0.281	
9	Mg	0.6479	0.2363	0.0000	23	Mg-Si	0.281	
11	Mg	0.1479	0.2363	0.5000	21	Mg-Si	0.281	
6	Mg	0.3337	0.2720	0.0000	30	Mg–Si	0.284	
8	Mg	0.8337	0.2720	0.5000	32	Mg-Si	0.284	
10	Mg	0.6663	0.9780	0.0000	34	Mg-Si	0.284	
12	Mg	0.1663	0.9780	0.5000	36	Mg-Si	0.284	
14	Mg	0.4279	0.8962	0.0000	24	Mg-Si	0.286	
16	Mg	0.9279	0.8962	0.5000	22	Mg-Si	0.286	
18	Mg	0.5721	0.3538	0.0000	28	Mg-Si	0.286	
20	Mg	0.0721	0.3538	0.5000	26	Mg-Si	0.286	
21	Si	0.0524	0.1688	0.0000	37	Si-Si	0.237	
23	Si	0.5524	0.1688	0.5000	39	Si-Si	0.237	
25	Si	0.9476	0.0812	0.0000	41	Si-Si	0.237	
27	Si	0.4476	0.0812	0.5000	43	Si-Si	0.237	
37	Si	0.2053	0.1581	0.0000	21	Si-Si	0.237	

Index	Symbol	Internal position			Nearest neighboring atom			
		x	У	Z	Index	Bond	Distance	
						type	(nm)	
39	Si	0.7053	0.1581	0.5000	23	Si-Si	0.237	
41	Si	0.7947	0.0919	0.0000	25	Si–Si	0.237	
43	Si	0.2947	0.0919	0.5000	27	Si–Si	0.237	
22	Si Si	0.0683	0.9070	0.0000	38	S1-S1	0.244	
24 26	51 Si	0.0003	0.9070	0.5000	40	51–51 S; S;	0.244	
20	Si	0.9317	0.3430	0.0000	42 44	Si-Si Si-Si	0.244	
38	Si	0.2255	0.8950	0.0000	22	Si–Si	0.244	
40	Si	0.7255	0.8950	0.5000	24	Si–Si	0.244	
42	Si	0.7745	0.3550	0.0000	26	Si-Si	0.244	
44	Si	0.2745	0.3550	0.5000	28	Si–Si	0.244	
29	Si	0.1983	0.0624	0.0000	43	Si–Si	0.247	
31	Si	0.6983	0.0624	0.5000	41	Si–Si	0.247	
33	Si Si	0.8017	0.1876	0.0000	39	S1-S1	0.247	
33 20	51	0.3017	0.18/0	0.3000	5/ 11	51-51 S; S;	0.247	
32	Si	0.1787	0.3147	0.0000	44	Si-Si Si-Si	0.253	
34	Si	0.8213	0.9353	0.0000	40	Si–Si	0.253	
36	Si	0.3213	0.9353	0.5000	38	Si–Si	0.253	
45	Al	0.9972	0.5053	0.5000	66	Al-Al	0.274	
46	Al	0.0028	0.7447	0.5000	48	Al-Al	0.274	
75	Al	0.4972	0.5053	0.0000	78	Al-Al	0.274	
76	Al	0.5028	0.7447	0.0000	80	Al–Al	0.274	
47	Al	0.0908	0.6144	0.5000	51	Al-Al	0.281	
51 52	AI A1	0.1855	0.7225	0.5000	47 70	AI–AI A1 A1	0.281	
52 61	Al	0.1758	0.4798	0.5000	65	AI - AI	0.281	
62	Al	0.8262	0.7702	0.5000	86	Al–Al	0.281	
65	Al	0.9092	0.6356	0.5000	61	Al-Al	0.281	
71	Al	0.3145	0.5275	0.0000	77	Al-Al	0.281	
72	Al	0.3262	0.7702	0.0000	54	Al-Al	0.281	
77	Al	0.4092	0.6356	0.0000	71	Al-Al	0.281	
79	Al	0.5908	0.6144	0.0000	83	Al-Al	0.281	
83	Al	0.6855	0.7225	0.0000	/9	AI–AI	0.281	
04 53		0.0758	0.4798	0.0000	50 59	AI - AI $\Delta 1 - \Delta 1$	0.281	
55	Al	0.4520	0.5708	0.5000	54	Al-Al	0.282	
57	Al	0.6339	0.5484	0.5000	60	Al–Al	0.282	
59	Al	0.5474	0.6792	0.5000	53	Al-Al	0.282	
67	Al	0.1339	0.5484	0.0000	70	Al-Al	0.282	
69	Al	0.0474	0.6792	0.0000	85	Al-Al	0.282	
85	Al	0.9526	0.5708	0.0000	69	Al–Al	0.282	
87	Al	0.8661	0.7016	0.0000	86	Al-Al	0.282	
49 63	Al Al	0.2/12	0.5923	0.5000	55 57	AI–AI	0.284	
03 73		0.7288	0.6577	0.3000	57 67	AI - AI $\Delta 1 - \Delta 1$	0.284	
81	Al	0.2200	0.5923	0.0000	87	Al-Al	0.284	
54	Al	0.4585	0.8102	0.5000	24	Al–Si	0.262	
60	Al	0.5415	0.4398	0.5000	28	Al-Si	0.262	
70	Al	0.0415	0.4398	0.0000	26	Al-Si	0.262	
86	Al	0.9585	0.8102	0.0000	22	Al–Si	0.262	
50	Al	0.2799	0.8323	0.5000	36	Al–Si	0.263	
64 74	Al	0.7201	0.4177	0.5000	32	Al-Si	0.263	
/4 82	AI A1	0.2201	0.41//	0.0000	3U 3A	AI-SI	0.263	
o∠ 48	Al	0.7799	0.0525	0.0000	34 22	Al-Si	0.205	
66	Al	0.9019	0.4006	0.5000	26	Al-Si	0.265	
78	Al	0.4019	0.4006	0.0000	28	Al–Si	0.265	
80	Al	0.5981	0.8494	0.0000	24	Al-Si	0.265	
56	Al	0.3545	0.4624	0.5000	44	Al–Si	0.276	
58	Al	0.6455	0.7876	0.5000	40	Al-Si	0.276	
68	Al	0.1455	0.7876	0.0000	38	Al-Si	0.276	
88	Al	0.8545	0.4624	0.0000	42	Al–Si	0.276	

Table A4 Atomic positions for interfacial supercell B_1

Index	Symbol	Internal position			Nearest neighboring atom			
		X	У	Ζ	Index	Bond type	Distance (nm)	
2	Mg	0.0000	0.0000	0.2779	22	Mg–Si	0.266	
3	Mg	0.5000	0.0000	0.0971	23	Mg–Si	0.266	
1	Mg	0.0000	0.0000	0.9818	21	Mg–Si	0.274	
4	Mg	0.5000	0.0000	0.3932	24	Mg–Si	0.274	
6	Mg	0.3494	0.0682	0.2402	28	Mg–Si	0.275	
10	Mg	0.8494	0.0682	0.1348	25	Mg–Si	0.275	
10	Mg Ma	0.6506	0.9318	0.2402	24	Mg-Si Ma Si	0.275	
11	Ma	0.1300	0.9518	0.1346	21	Mg-Si Mg Si	0.275	
14	Mg	0.4295	0.6526	0.1313	24	Mg_Si	0.277	
18	Mg	0.5705	0.3474	0.2437	28	Mg_Si	0.277	
19	Mg	0.0705	0.3474	0.1313	25	Mg-Si	0.277	
5	Mg	0.3288	0.0593	0.0025	27	Mg–Si	0.279	
8	Mg	0.8288	0.0593	0.3725	26	Mg–Si	0.279	
9	Mg	0.6712	0.9407	0.0025	23	Mg–Si	0.279	
12	Mg	0.1712	0.9407	0.3725	22	Mg–Si	0.279	
22	Si	0.0553	0.6736	0.2586	26	Si–Si	0.236	
23	Si	0.5553	0.6736	0.1164	27	Si–Si	0.236	
26	Si Si	0.9447	0.3264	0.2586	22	S1-S1 c: c:	0.236	
27	51 S:	0.4447	0.3264	0.1104	23	51–51 c: c:	0.236	
21	SI Si	0.0392	0.6704	0.0125	23	SI-SI	0.237	
24	Si	0.3392	0.3296	0.0125	20	Si_Si	0.237	
28	Si	0.4408	0.3296	0.3625	24	Si-Si	0.237	
37	Si	0.2076	0.6221	0.0071	21	Si–Si	0.237	
40	Si	0.7076	0.6221	0.3679	24	Si-Si	0.237	
41	Si	0.7924	0.3779	0.0071	25	Si-Si	0.237	
44	Si	0.2924	0.3779	0.3679	28	Si–Si	0.237	
38	Si	0.2051	0.6347	0.2405	22	Si-Si	0.238	
39	Si	0.7051	0.6347	0.1345	23	Si–Si	0.238	
42	S1	0.7949	0.3653	0.2405	26	S1-S1	0.238	
43	51 S:	0.2949	0.3653	0.1345	27	51–51 c: c:	0.238	
30	Si	0.1000	0.2357	0.0202	57 44	Si_Si	0.245	
31	Si	0.6917	0.2562	0.1234	41	Si_Si	0.243	
32	Si	0.6886	0.2537	0.3548	40	Si-Si	0.243	
33	Si	0.8114	0.7463	0.0202	41	Si-Si	0.243	
34	Si	0.8083	0.7438	0.2516	40	Si-Si	0.243	
35	Si	0.3083	0.7438	0.1234	37	Si–Si	0.243	
36	Si	0.3114	0.7463	0.3548	44	Si–Si	0.243	
52	Al	0.2091	0.9098	0.7586	69	Al–Al	0.270	
54	Al	0.4580	0.2878	0.6905	71	Al–Al	0.270	
60	Al	0.5420	0.7122	0.6905	83	Al-Al	0.270	
62 69		0.7909	0.0902	0.7380	83 52	AI - AI	0.270	
71	Al	0.0420	0.0902	0.6164	52 54	Al-Al	0.270	
83	Al	0.7091	0.9098	0.6164	60	Al-Al	0.270	
85	Al	0.9580	0.2878	0.6845	62	Al–Al	0.270	
46	Al	0.0000	0.0000	0.7917	70	Al–Al	0.271	
48	Al	0.1198	0.4364	0.7858	70	Al-Al	0.271	
66	Al	0.8802	0.5636	0.7858	86	Al-Al	0.271	
75	Al	0.5000	0.0000	0.5833	59	Al–Al	0.271	
77	Al	0.3802	0.5636	0.5892	53	Al-Al	0.271	
/9 /7	AI A1	0.0198	0.4364	0.5892	59 40	AI–AI A1 A1	0.271	
+/ 65	A1	0.005/	0.5950	0.5458	47 63	$A_{1-A_{1}}$	0.273	
78	Al	0.4363	0.6070	0.8292	74	Al-Al	0.273	
80	Al	0.5637	0.3930	0.8292	82	Al-Al	0.273	
50	Al	0.2851	0.3779	0.7372	78	Al–Al	0.274	
64	Al	0.7149	0.6221	0.7372	80	Al–Al	0.274	
73	Al	0.2149	0.6221	0.6378	47	Al–Al	0.274	
81	Al	0.7851	0.3779	0.6378	65	Al–Al	0.274	

Table A4 (continued)									
Index	Symbol	Interna	l position	1	Nearest neighboring atom				
_		x	у	Ζ	Index	Bond type	Distance (nm)		
51	Al	0.1271	0.8372	0.5356	65	Al-Al	0.275		
61	Al	0.8729	0.1628	0.5356	47	Al-Al	0.275		
72	Al	0.3729	0.1628	0.8394	80	Al-Al	0.275		
84	Al	0.6271	0.8372	0.8394	78	Al–Al	0.275		
45	Al	0.0000	0.0000	0.4643	61	Al–Al	0.280		
56	Al	0.3826	0.8551	0.7207	78	Al-Al	0.280		
58	Al	0.6174	0.1449	0.7207	80	Al-Al	0.280		
67	Al	0.1174	0.1449	0.6543	47	Al–Al	0.280		
76	Al	0.5000	0.0000	0.9107	72	Al-Al	0.280		
87	Al	0.8826	0.8551	0.6543	65	Al–Al	0.280		
53	Al	0.4362	0.2798	0.5107	28	Al–Si	0.252		
59	Al	0.5638	0.7202	0.5107	24	Al–Si	0.252		
70	Al	0.0638	0.7202	0.8643	21	Al–Si	0.252		
86	Al	0.9362	0.2798	0.8643	25	Al–Si	0.252		
55	Al	0.3145	0.8341	0.5011	36	Al–Si	0.253		
57	Al	0.6855	0.1659	0.5011	32	Al–Si	0.253		
68	Al	0.1855	0.1659	0.8739	29	Al–Si	0.253		
88	Al	0.8145	0.8341	0.8739	33	Al–Si	0.253		
49	Al	0.2162	0.2849	0.5063	44	Al–Si	0.257		
63	Al	0.7838	0.7151	0.5063	40	Al–Si	0.257		
74	Al	0.2838	0.7151	0.8687	37	Al–Si	0.257		
82	Al	0.7162	0.2849	0.8687	41	Al–Si	0.257		
13	Mg	0.4022	0.5782	0.9950	78	Mg–Al	0.283		
16	Mg	0.9022	0.5782	0.3800	65	Mg–Al	0.283		
17	Mg	0.5978	0.4218	0.9950	80	Mg-Al	0.283		
20	Mg	0.0978	0.4218	0.3800	47	Mg–Al	0.283		

Table A5	
Atomic positions for interfacial supercell B ₂	

Index	Symbol	Internal position			Nearest neighboring atom			
_		x	у	Ζ	Index	Bond type	Distance (nm)	
2	Mg	0.0000	0.0000	0.2362	26	Mg–Si	0.260	
3	Mg	0.5000	0.0000	0.1389	27	Mg–Si	0.260	
1	Mg	0.0000	0.0000	0.0123	21	Mg–Si	0.269	
4	Mg	0.5000	0.0000	0.3627	28	Mg–Si	0.269	
5	Mg	0.3460	0.0799	0.0047	27	Mg–Si	0.275	
8	Mg	0.8460	0.0798	0.3703	26	Mg–Si	0.275	
9	Mg	0.6540	0.9201	0.0047	23	Mg–Si	0.275	
12	Mg	0.1540	0.9202	0.3703	22	Mg–Si	0.275	
6	Mg	0.3426	0.0801	0.2539	27	Mg–Si	0.277	
7	Mg	0.8426	0.0800	0.1210	26	Mg–Si	0.277	
10	Mg	0.6574	0.9199	0.2539	23	Mg–Si	0.277	
11	Mg	0.1574	0.9200	0.1210	22	Mg–Si	0.277	
14	Mg	0.4137	0.6074	0.2582	36	Mg–Si	0.285	
15	Mg	0.9137	0.6074	0.1169	33	Mg–Si	0.285	
16	Mg	0.9216	0.6159	0.3735	22	Mg–Si	0.285	
18	Mg	0.5863	0.3926	0.2582	32	Mg–Si	0.285	
19	Mg	0.0863	0.3926	0.1169	29	Mg–Si	0.285	
20	Mg	0.0784	0.3841	0.3735	26	Mg–Si	0.285	
13	Mg	0.4217	0.6160	0.0014	23	Mg–Si	0.286	
17	Mg	0.5783	0.3840	0.0014	27	Mg–Si	0.286	
22	Si	0.0568	0.6693	0.2458	26	Si-Si	0.236	
23	Si	0.5568	0.6693	0.1292	27	Si-Si	0.236	
26	Si	0.9432	0.3307	0.2458	22	Si-Si	0.236	
27	Si	0.4432	0.3307	0.1292	23	Si-Si	0.236	
38	Si	0.2122	0.6378	0.2508	22	Si-Si	0.240	
39	Si	0.7122	0.6378	0.1241	23	Si-Si	0.240	
42	Si	0.7878	0.3622	0.2508	26	Si-Si	0.240	
43	Si	0.2878	0.3622	0.1241	27	Si-Si	0.240	

Table A5 (continued)

Index	Symbol	Internal	position		Neares	Nearest neighboring atom		
		x	у	Ζ	Index	Bond type	Distance (nm)	
21	Si	0.0623	0.6675	0.9896	25	Si–Si	0.242	
24	Si	0.5623	0.6675	0.3854	28	Si-Si	0.242	
25	Si	0.9377	0.3325	0.9896	21	Si–Si	0.242	
28	Si	0.4377	0.3325	0.3854	24	Si-Si	0.242	
30	Si	0.1915	0.2549	0.2501	38	Si–Si	0.247	
31	Si	0.6915	0.2549	0.1249	39	Si–Si	0.247	
34	S1	0.8085	0.7451	0.2501	42	S1-S1	0.247	
33 37	51 Si	0.3085	0.7451	0.1249	45 21	51-51 Si Si	0.247	
37 40	Si	0.2238	0.6385	0.3901	21	Si_Si	0.248	
41	Si	0.7250	0.3613	0.9951	25	Si-Si	0.248	
44	Si	0.2762	0.3615	0.3901	28	Si–Si	0.248	
29	Si	0.1910	0.2442	0.9993	43	Si-Si	0.249	
32	Si	0.6910	0.2441	0.3757	42	Si-Si	0.249	
33	Si	0.8090	0.7558	0.9993	39	Si-Si	0.249	
36	Si	0.3090	0.7559	0.3757	38	Si-Si	0.249	
46	Al	0.0000	0.0000	0.8435	88	Al–Al	0.270	
55	Al	0.3515	0.8158	0.6291	75	Al–Al	0.270	
57	Al	0.6485	0.1842	0.6291	75	Al–Al	0.270	
68 75	Al	0.1485	0.1842	0.7459	46 57	Al-Al	0.270	
/3		0.5000	0.0000	0.5515	57 46	AI-AI	0.270	
00 53		0.8515	0.8138	0.7439	40 75	AI - AI $\Delta 1 - \Delta 1$	0.270	
55 59	Al	0.5538	0.2858	0.6235	75	Al-Al	0.273	
70	Al	0.0538	0.7162	0.7515	46	Al-Al	0.273	
86	Al	0.9462	0.2838	0.7515	46	Al–Al	0.273	
49	Al	0.2734	0.3664	0.6211	67	Al-Al	0.277	
54	Al	0.4556	0.2762	0.8618	72	Al-Al	0.277	
56	Al	0.3655	0.8257	0.8664	74	Al-Al	0.277	
58	Al	0.6345	0.1743	0.8664	82	Al-Al	0.277	
60	Al	0.5444	0.7238	0.8618	84	Al–Al	0.277	
63	Al	0.7266	0.6336	0.6211	87	Al–Al	0.277	
67	Al	0.1345	0.1743	0.5086	49	Al-Al	0.277	
74	AI A1	0.31/2	0.08/6	0.7484	54 56	AI-AI	0.277	
74 82		0.2200	0.0550	0.7539	58	$\Delta 1 \Delta 1$	0.277	
84	Al	0.6828	0.9124	0.7555	60	Al_Al	0.277	
87	Al	0.8655	0.8257	0.5086	63	Al-Al	0.277	
51	Al	0.1827	0.9123	0.6266	69	Al-Al	0.278	
61	Al	0.8173	0.0877	0.6266	85	Al-Al	0.278	
69	Al	0.0444	0.7238	0.5131	51	Al-Al	0.278	
85	Al	0.9556	0.2762	0.5131	61	Al-Al	0.278	
47	Al	0.0901	0.4476	0.6329	85	Al-Al	0.279	
65	Al	0.9099	0.5524	0.6329	69	Al–Al	0.279	
78	Al	0.4099	0.5524	0.7421	60	Al–Al	0.279	
80	Al	0.5901	0.4476	0.7421	54	Al-Al	0.279	
45 76		0.0000	0.0000	0.0352	88 57	AI-AI	0.283	
70 50		0.3000	0.0000	0.7598	29	AI-AI A1-Si	0.285	
50 64	Al	0.2030	0.6781	0.8667	33	Al-Si	0.257	
73	Al	0.2170	0.6282	0.5083	36	Al-Si	0.257	
81	Al	0.7830	0.3718	0.5083	32	Al–Si	0.257	
48	Al	0.0897	0.4228	0.8691	21	Al–Si	0.267	
66	Al	0.9103	0.5772	0.8691	25	Al–Si	0.267	
77	Al	0.4103	0.5772	0.5059	28	Al-Si	0.267	
79	Al	0.5897	0.4228	0.5059	24	Al–Si	0.267	
52	Al	0.1803	0.9156	0.8781	21	Al–Si	0.272	
62	Al	0.8197	0.0844	0.8781	25	Al–Si	0.272	
71	Al	0.3197	0.0843	0.4970	28	Al–Si	0.272	
83	Al	0.6803	0.9157	0.4970	24	Al-S1	0.272	

References

- Andersen SJ, Marioara CD, Froseth A, Vissers R, Zandbergen HW. Mater Sci Eng A-Struct Mater Prop Microstruct Process 2005;390:127.
- [2] Marioara CD, Andersen SJ, Zandbergen HW, Holmestad R. Metall Mater Trans A-Phys Metall Mater Sci 2005;36A:691.
- [3] Matsuda K, Ikeno S, In: Pricm 5: The fifth pacific rim international conference on advanced materials and processing, Pts 1-5 Zurich-Uetikon, Trans Tech Publications Ltd, 2005, p. 361.
- [4] Tsao CS, Jeng US, Chen CY, Kuo TY. Scr Mater 2005;53: 1241.
- [5] Chen JH, Costan E, van Huis MA, Xu Q, Zandbergen HW. Science 2006;312:416.
- [6] Marioara CD, Nordmark H, Andersen SJ, Holmestad R. J Mater Sci 2006;41:471.
- [7] Matsuda K, Ishida Y, Mullerova I, Frank L, Ikeno S. J Mater Sci 2006;41:2605.
- [8] Tsao CS, Chen CY, Jeng US, Kuo TY. Acta Mater 2006;54: 4621.
- [9] van Huis MA, Chen JH, Zandbergen HW, Sluiter MHF. Acta Mater 2006;54:2945.
- [10] Edwards GA, Stiller K, Dunlop GL, Couper MJ. Acta Mater 1998;46:3893.
- [11] Andersen SJ, Zandbergen HW, Jansen J, Traeholt C, Tundal U, Reiso O. Acta Mater 1998;46:3283.
- [12] Marioara CD, Andersen SJ, Jansen J, Zandbergen HW. Acta Mater 2001;49:321.
- [13] Andersen SJ, Marioara CD, Froseth A, Vissers R, Zandbergen HW. Electron microscopy and analysis 2003. Bristol: IOP Publishing Ltd.; 2004. p. 225.
- [14] Matsuda K, Kawabata T, Uetani Y, Sato T, Ikeno S. J Mater Sci 2002;37:3369.
- [15] Chen LQ, Shen J. Comput Phys Commun 1998;108:147.
- [16] Chen LQ. Ann Rev Mater Res 2002;32:113.
- [17] Zandbergen HW, Andersen SJ, Jansen J. Science 1997;277:1221.
- [18] Amini M, Laird BB. Phys Rev Lett 2006;97:216102.
- [19] Ouyang G, Liang LH, Wang CX, Yang GW. Appl Phys Lett 2006;88:091914.
- [20] Marquis EA, Seidman DN, Asta M, Woodward C, Ozolins V. Phys Rev Lett 2003;91:036101.
- [21] Vaithyanathan V, Wolverton C, Chen LQ. Phys Rev Lett 2002;88:125503.
- [22] Sluiter M, Kawazoe Y. Phys Rev B 1996;54:10381.
- [23] Sluiter M, Asta M, Kawazoe Y. Sci Rep Res Inst Tohoku Univ Ser A-Phys Chem Metall 1996;41:97.
- [24] Ravi C, Wolverton C. Acta Mater 2004;52:4213.
- [25] Vanderbilt D, Kingsmith RD. Phys Rev B 1993;48:4442.
- [26] Meyer B, Vanderbilt D. Phys Rev B 2001;63:205426.
- [27] Finnis MW. Phys Status Solidi A-Appl Res 1998;166:397.
- [28] Finnis MW, Lozovoi AY, Alavi A. Ann Rev Mater Res 2005;35: 167.
- [29] Kresse G, Demuth T, Mittendorfer F. VAMP/VASP, http://cms.mpi.univie.ac.at/vasp/, 2003.
- [30] Kresse G, Furthmuller J. Comput Mater Sci 1996;6:15.
- [31] Kresse G, Furthmuller J. Phys Rev B 1996;54:11169.
- [32] Vanderbilt D. Phys Rev B 1990;41:7892.
- [33] Perdew JP, Wang Y. Phys Rev B 1992;45:13244.
- [34] Ozolins V, Wolverton C, Zunger A. Phys Rev B 1998;57:4816.
- [35] Vaithyanathan V, Wolverton C, Chen LQ. Acta Mater 2004;52: 2973.
- [36] Winter MJ. WebElements Periodic table (professional edition), http:// www.webelements.com/.
- [37] Wolverton C, Ozolins V. Phys Rev B 2006;73:064101.