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Effect of substrate constraint on the stability and evolution
of ferroelectric domain structures in thin films
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Abstract

The stability and evolution of ferroelectric domain structures in thin films are studied. Elastic solutions are derived
for both elastically anisotropic and isotropic thin films with arbitrary domain structures, subject to the mixed stress-
free and constraint boundary conditions. These solutions are employed in a three-dimensional phase-field model to
investigate simultaneously the effect of substrate constraint and temperature on the volume fractions of domain variants,
domain-wall orientations, surface topology, domain shapes, and their temporal evolution for a cubic-to-tetragonal ferroe-
lectric phase transition. A specific example of a [001] orientated film heteroepitaxially grown on a [001] cubic substrate
is considered. It is shown that the shapes ofa-domains with tetragonal axes parallel to the film surface are significantly
different from those ofc-domains with tetragonal axes perpendicular to the film surface. For the substrate constraints
and temperatures under which botha- andc-domains coexist, both types ofa-domains are present with their tetragonal
axes perpendicular to each other, and the domain wall orientations deviate from the 45 orientation generally assumed
in thermodynamic analyses. It is demonstrated that a substrate constraint results in sequential nucleation and growth
of different tetragonal domains during a ferroelectric phase transition. 2002 Acta Materialia Inc. Published by Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Ferroelectrics are a class of materials possessing
a spontaneous polarization that can be reoriented
between crystallographically defined states in a
single crystal by an electric field [1,2]. A common
feature for ferroelectric materials is the formation
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of domain structures when a paraelectric phase is
cooled through the ferroelectric transition tempera-
ture, also known as the Curie temperature. Each
individual domain is a microscopic region with
uniform electrical polarization. The crystallogra-
phy and thermodynamics of domain structures in
bulk systems have been extensively studied and
reasonably well understood [3]. For example, in a
cubic to tetragonal transformation, there are three
possible orientation variants with the tetragonal
axes along the [100], [010], and [001] directions
of the cubic paraelectric phase. In the absence of
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any external field or constraint, all of them have
the same probability to form in a parent phase
below the ferroelectric transition temperature. The
corresponding domain structure of the ferroelectric
phase will contain all possible orientations of
domains with statistically equal volume fractions,
separated by the so-called domain walls. In such a
system, there are two types of special domain
walls: the 180 walls separating domains with
opposite directions of polarization, and the 90
walls separating domains with perpendicular direc-
tions of polarization. The stability and orientations
of the domain walls are determined by minimizing
the sum of the electrostatic energy, the elastic
energy, and the wall energy of a domain structure.

The domain configurations in ferroelectrics
could be dramatically changed by external con-
straints. For ferroelectric thin films constrained by
a substrate, the existence of a free surface and sub-
strate constraint destroys the macroscopic sym-
metry of the system and can significantly affect
both the Curie temperature and the relative volume
fractions of domains with different orientations [4–
15]. Thanks to the recent advances in theories of
ferroelectric domains, it is now possible to con-
struct domain stability maps which show the vol-
ume fractions of domains as a function of lattice
mismatch with substrate and/or temperature [4,11–
15]. However, in order to determine the volume
fractions of domains that minimize the total free
energy at a given temperature and substrate con-
straint, a simple domain structure with a particular
domain wall orientation is usually assumed as a
priori. For example, essentially all existing thermo-
dynamic models of tetragonal ferroelectric domain
structures on a [001] cubic substrate considered
only two types of tetragonal domains, forming
essentially a two dimensional (2D) domain struc-
ture (Fig. 1). In a three-dimensional (3D) film,
depending on the degree of substrate constraint, all
three types of tetragonal domains may co-exist and
the domain structure can be much more compli-
cated.

To study the stability and evolution of 3D ferro-
electric domain structures in a thin film constrained
by a substrate, we adopted a phase-field approach.
The phase-field approach has previously been
applied to modeling microstructure evolution dur-

Fig. 1. Schematic illustrations on the 2D representation of 3D
thin film domain structures: (a) c/a/c/a domain structure; (b)
a1/a2/a1/a2 domain structure.

ing structural transformations in bulk systems (see
[16] for references), including domain structure
evolution during a ferroelectric phase transition in
bulk single crystals [17–19]. The presence of a
stress-free surface and substrate constraint for a
thin film requires a significantly different elastic
solution from bulk systems. In this work, we
derived elastic solutions for thin films containing
arbitrary distributions of domains for both the elas-
tically anisotropic and isotropic systems by com-
bining the Khachaturyan’ s mesoscopic elasticity
theory [20,21] and the Stroh formalism of aniso-
tropic elasticity [22,23]. The elastic solutions are
then incorporated in a phase-field model for pre-
dicting the domain structures in constrained 3D
ferroelectric thin films. Such an approach does not
make any a priori assumptions with regard to the
possible domain structures that might appear under
a given temperature and substrate constraint. It is
able to predict not only the effect of substrate con-
straint on phase transition temperatures and the
volume fractions of orientation domains, but also
the detailed domain structures and their temporal
evolution during a ferroelectric transition. It will
be shown that the domain shapes and domain wall
configurations in constrained film can be signifi-
cantly more complicated than those assumed in
prior thermodynamic analysis. We will show that
the substrate constraint not only affects ferroe-
lectric transition temperatures and domain volume
fractions, but also significantly alters the domain
evolution path during a ferroelectric phase tran-
sition. The results are compared with existing
experimental observations and prior thermodyn-
amic analyses. The validity of the assumption of
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isotropic elasticity and a 2D representation of 3D
domain structures are discussed.

2. Phase field model of a ferroelectric film

We consider a cubic thin film grown heteroepit-
axially on a cubic substrate. The film undergoes
cubic→tetragonal ferroelectric phase transitions
when it is cooled below the Curie temperature. For
a proper ferroelectric phase transition, the polariz-
ation vector P=(P1, P2, P3) is the primary order
parameter, and its spatial distribution in the ferroe-
lectric state describes a domain structure.

The temporal evolution of the polarization field,
and thus the domain structure evolution, is
described by the Time Dependent Ginzburg–Lan-
dau (TDGL) equations,

∂Pi(x,t)
∂t

� �L
dF
dPi(x,t)

, (i � 1,2,3), (1)

where L is the kinetic coefficient, and F is the total
free energy of the system. dF/dPi(x,t) is the ther-
modynamic driving force for the spatial and tem-
poral evolution of Pi(x,t). The total free energy of
the system includes the bulk free energy, the
domain wall energy, the elastic energy, the surface
and interface contributions, and the depolarization
energy. In this work, we ignore any possible sur-
face and interface contributions to the free energy
as discussed in Refs. 24 and 25, and assume that
the film’s surface is compensated with free charge
carriers so the depolarization energy is neglected.

To solve Eq. (1), one has to formulate the total
free energy functional, F, in terms of the polariz-
ation field variables, P1, P2 and P3. We assume the
transition, in the absence of substrate constraint, is
first-order, and its bulk thermodynamics is charac-
terized by the following Landau free energy den-
sity expansion [26],
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2 � P4

3) � a12(P2
1P2

2 � P2
2P2

3 � P2
1P2

3)

� a111(P6
1 � P6

2 � P6
3)

� a112[P4
1(P2
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3) � P4
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2)] � a123(P2

1P2
2P2

3),

(2)

where a1, a11, a12, a111, a112, a123 are the expan-
sion coefficients. The values of these coefficients

determine the thermodynamic behavior of the bulk
paraelectric and ferroelectric phases as well as the
bulk ferroelectric properties, such as the ferroe-
lectric transition temperature, the stability and met-
astability of the parent paraelectric phase, the spon-
taneous polarization and the susceptibility as
functions of temperature, etc. For example,
a1 = 1/2e0c, where e0 is the vacuum permittivity,
and c is the susceptibility of the material. A nega-
tive value for a1 corresponds to an unstable parent
paraelectric phase with respect to its transition to
the ferroelectric state. A positive a1 value indicates
either a stable or metastable parent phase,
depending on the relations among a1, a11 and a111.
If a2

11�3a1a111, the parent phase is metastable,
otherwise it is stable.

The contribution of domain walls to the total
free energy, i.e. the domain wall energy, is intro-
duced through the gradients of the polarization
field. For a cubic system, the gradient energy den-
sity has the following expression:

fG(Pi,j) �
1
2
G11(P2

1,1 � P2
2,2 � P2

3,3) � G12(P1,1P2,2 � P2,2P3,3 � P1,1P3,3)

�
1
2
G44[(P1,2 � P2,1)2 � (P2,3 � P3,2)2 � (P1,3 � P3,1)2]

�
1
2
G�

44[(P1,2�P2,1)2 � (P2,3�P3,2)2 � (P1,3�P3,1)2],

(3)

where Gij are gradient energy coefficients. In this
paper, a comma in a subscript stands for spatial
differentiation, for example, Pi,j = ∂Pi/∂xj. In gen-
eral, the domain wall energy is anisotropic.

Since the proper ferroelectric phase transition
involves structural changes, strain appears as a sec-
ondary order parameter. The stress-free strain
caused by the polarization field is given by [26]

eo11 � Q11P2
1 � Q12(P2

2 � P2
3), (4)

eo22 � Q11P2
2 � Q12(P2

1 � P2
3),

eo33 � Q11P2
3 � Q12(P2

1 � P2
2),

eo23 � Q44P2P3,

eo13 � Q44P1P3,

eo12 � Q44P1P2,

where Qij are the electrostrictive coefficients. If we
assume that the interfaces developed during a fer-
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roelectric phase transition as well as the interface
between the film and the substrate are coherent,
elastic strains will be generated during the phase
transition in order to accommodate the structural
changes. They are given by

eij � eij�eoij, (5)

where eij are the total strains. The corresponding
elastic strain energy density can be expressed as

fE �
1
2

cijkleijekl �
1
2

cijkl(eij�eoij)(ekl�eokl) (6)

� fE(Pi,eij),

where cijkl is the elastic stiffness tensor. The sum-
mation convention for the repeated indices is
employed, and the Latin letters i, j, k, l take 1,2,3
in this paper. For a cubic material with its three
independent elastic constants C11, C12 and C44 in
the Voigt’ s notation, the elastic energy can be
rewritten as

fE �
1
2

C11(e2
11 � e2

22 � e2
33)

� C12(e11e22 � e22e33 � e11e33) (7)
� 2C44(e2

12 � e2
23 � e2

13),

which can be separated into three contributions,

fE � fE1 � fE2 � fE3 (8)

with

fE1 �
1
2
C11(e211 � e222 � e233)

� C12(e11e22 � e22e33 � e11e33) (9)
� 2C44(e212 � e223 � e213),

fE2 � b11(P4
1 � P4

2 � P4
3) � b12(P2

1P2
2 (10)

� P2
2P2

3 � P2
1P2

3),
fE3 � �(q11e11 � q12e22 � q12e33)P2

1�(q11e22 � q12e11 � q12e33)P2
2

�(q11e33 � q12e11 � q12e22)P2
3�2q44(e12P1P2 � e23P2P3 � e13P2P3),

(11)

where

b11 �
1
2
C11(Q2

11 � 2Q2
12) � C12Q12(2Q11

� Q12),

b12 � C11Q12(2Q11 � Q12) � C12(Q2
11

� 3Q2
12 � 2Q11Q12) � 2C44Q2

44,

q11 � C11Q11 � 2C12Q12,

q12 � C11Q12 � C12(Q11 � Q12),

q44 � 2C44Q44.

From the above, it can easily been seen that the
elastic energy contribution can alter the Landau’s
coefficients. In particular, with the elastic strain
energy contribution, the second-order coefficient,
a1, depends on eij. Therefore, the thermodynamic
stability of the paraelectric and ferroelectric phases
can be modified by a substrate constraint. In
addition, the introduction of elastic energy may
change the characteristics, or the order, of a phase
transformation by changing the sign of the fourth-
order coefficients in the Landau expression, i.e. a11

and a12.
The total free energy of a film is the sum of the

Landau free energy FL, the domain wall energy FG,
and the elastic energy FE:

F � FL(Pi) � FG(Pi,j) � FE(Pi,eij)

� ��
V

�[fL(Pi) � fG(Pi,j) (12)

� fE(Pi,eij)]d3x,

where V is the volume of the film. In this
expression, although the strain field eij appears as
an order parameter in addition to the polarization
field, one can assume that the system reaches its
mechanical equilibrium instantaneously for a given
polarization field distribution, because the mechan-
ical relaxation of an elastic deformation is much
faster than the relaxation of a polarization field.
This assumption enables us to eliminate the strain
field using the static condition of mechanical equi-
librium. Therefore, the elastic strain energy of the
film becomes a function of the polarization field.
The calculation of the equilibrium elastic strain for
a thin film with a stress-free surface and a substrate
constraint is described in the following section.

3. Elastic field in a constrained film

We consider a thin film with its top surface
stress-free and the bottom surface coherently con-
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strained by the substrate (Fig. 2(a)). Within the
film, there is an eigenstrain distribution, eoij(x),
describing the crystallographic relationship
between a parent phase and a product phase for a
structural phase transition. The rectangular coordi-
nates x=(x1, x2, x3) are originated at the interface,
and x1=[100], x2=[010], x3=[001]. In the linear
elasticity, the stress sij is related to the elastic
strain eij by the Hooke’ s law:

sij � cijklekl � cijkl(ekl�eokl), (13)

The mechanical equilibrium equations of the film
are expressed as

sij,j � 0. (14)

The stress-free boundary condition at the top sur-
face is given by

si3|x3 � hf
� 0, (15)

where hf is the film thickness (see Fig. 2(a)).
We separate the total strain of the film into a

sum of a homogeneous strain ēij and a hetero-
geneous strain hij(x), i.e.

eij(x) � ēij � hij(x). (16)

Consequently, the stress is rewritten as

sij(x) � s̄ij � sij(x) (17)

Fig. 2. Schematic illustrations of: (a) a thin film coherently
constrained by a substrate, and (b) cubic paraelectric phase and
the three ferroelectric tetragonal variants.

with

s̄ij(x) � cijklēkl, sij(x) � cijkl[hkl(x)�eokl(x)].

Let ēab (a,b = 1,2) represent the macroscopic
shape deformation of the film in the film plane, we
then have

��
V

�hab(x)d3x � 0. (18)

If the thin film is coherent with the substrate, the
macroscopic shape deformation of the film in the
film plane, ēab, is totally controlled by the suf-
ficiently thick substrate. For example, for a cubic
substrate of lattice parameter as, and a thin film
with a stress-free lattice parameter af, ēab is given
by ē11 = ē22 = (as�af)/as, ē12 = 0. The macroscopic
shape deformation of the film along x3 is determ-
ined by both the substrate constraint and the
domain structure in the film. Here, we choose the
quantity ēi3 of Eq. (16) in such a way that it makes
ci3klēkl = 0. It should be pointed out that ēi3 thus
obtained is only part of the total shape deformation
of the film.

In order to solve the heterogeneous strain, hij,
we introduce a set of displacements ui(x),

hij �
1
2
(ui,j � uj,i). (19)

The equations of equilibrium (14) are thus rewrit-
ten as

cijkluk,lj � cijkleoki,j, (20)

and the boundary condition (15) on the top surface
changes to

ci3kl(uk,l�eokl)|x3 � hf
� 0. (21)

Since the elastic perturbation resulted from the
heterogeneous strain hij disappears in the substrate
far from the film–substrate interface, one can use
the following condition

ui|x3 � �hs
� 0 (22)

to replace the constraint of the substrate. In Eq.
(22), hs is the distance from the film–substrate
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interface into the substrate, beyond which the elas-
tic deformation is ignored (see Fig. 2(a)).

For the sake of simplicity, the elastic properties
of the film and the substrate are assumed to be the
same although the elastic anisotropy can be arbi-
trary. We take two steps to solve Eqs. (20)–(22).
First, we use Khachaturyan’ s elasticity theory
[20,21] to solve Eq. (20) in a 3D space with eigen-
strain distribution eoij within 0�x3�hf. The corre-
sponding solution labelled by superscript A is
given by

uA
i (x) � � �

�

��

�ûA
i (z)eIx·zd3z, (23)

ûA
i � �Igijcjmklêoklzm,

where I = √�1,

êoij(z) �
1

(2p)3� �
�

��

�eoij(x)e�Ix·zd3x, (24)

g = (gij) is the inverse tensor to g�1 = (g�1
ij ),

g�1
ij = cikjlzkzl, z = (z1,z2,z3) is the coordinate in the

Fourier space, and d3z = dz1dz2dz3.
The next step is to find an elastic solution lab-

elled by superscript B, i.e. uB
i , in an infinite plate

of thickness hf + hs, satisfying the equation of equi-
librium without body-force, i.e.

cijkluB
k,lj � 0, (25)

with the following boundary conditions:

ci3kluB
k,l|x3 � hf

� �ci3kl(uA
k,l�eokl)|x3 � hf

, (26)
uB

i |x3 � �hs
� �uA

i |x3 � �hs
.

To solve Eq. (25) with the boundary conditions
(26), we make use of 2D Fourier transforms,

ûB
i (z1,z2,x3) �

1
(2p)2 �

�

��

�
�

��

(27)

uB
i (x1,x2,x3)e�I(z1x1 � z2x2)dx1 dx2.

Eq. (25) in Fourier space is given by Ref. 27

ciakb(Iza)(Izb)ûB
k � (ciak3 (28)

� ci3ka)(Iza)ûB
k,3 � ci3k3ûB

k,33 � 0,

where the summations over repeated a and b are

from 1 to 2. If we let z = √z2
1 + z2

2, then a general
solution to Eq. (28) is

ûB(z1,z2,x3) � aeIpzx3, (29)

where ûB = (ûB
1,ûB

2,ûB
3)T, p and a = (a1,a2,a3)T

satisfy the eigenrelation [23]

{W � p(R � RT) � p2U}a � 0, (30)

with Wik = cijklnjnl, Rik = cijklnjml, Uik = cijklmjml,
m = (0,0,1)T, n = (n1,n2,0)T, n1 = z1/z, n2 = z2/z.
The superscript T stands for the transpose of matr-
ices or vectors. The matrices W and U are sym-
metric and positive definite. Eq. (30) can be rewrit-
ten in a standard eigenrelation [23]

Nx � px, N � �N1 N2

N3 NT
1
�, x � �a

b
�, (31)

with N1 = �U�1RT, N2 = U�1, N3 = RU�1RT�W,
b = (RT + pU)a = �(W + pR)a/p. U�1 is the
inverse matrix of U. It can be easily shown that
the heterogeneous stress ŝB = (ŝB

13,ŝB
23,ŝB

33)T, is
related to the vector b through ŝB = IzbeIPzx3.

The eigenvalue p and the associated eigenvector
x from Eq. (31) are complex, and each appears as
three complex conjugate pairs. We use pt and xt

(t=1,2,%,6) to represent the six eigenvalues and
eigenvectors which are arranged such that the
imaginary part of pt is greater than zero for t=1,2,3,
and pt + 3 = p̄t, xt + 3 = x̄t, where the overbar denotes
the complex conjugate.

If matrix N is simple or semisimple, i.e. Eq. (31)
possesses six independent eigenvectors, the general
solution for ûB can be obtained by superposing the
six independent solution of Eq. (29):

ûB(z1,z2,x3) � �6

t � 1

qtateIptzx3, (32)

where qt (t=1,2,%,6) are unknown constants. They
can be determined from boundary conditions (26)
in their 2D Fourier transforms.

If N is a non-semisimple matrix, i.e. there are
less than six independent eigenvectors, the solution
in Eq. (32) needs to be modified. Anisotropic elas-
tic materials for which N is non-semisimple are
called degenerate materials. Isotropic materials are
a special group of degenerate materials for which
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p = I is an eigenvalue of multiplicity three but
there are only two independent eigenvectors for x.
Here we present a solution to the degenerate case
that p3 = p2 and x3=x2 (thus, p6 = p̄3 = p̄2 = p5,
x6 = x̄3 = x̄2 = x5:

ûB � �
t � 1,2,4,5

qtateIptzx3

� q�
3[a�

3eIp3zx3 � Izx3a2eIp3zx3] (33)
� q�

6[a�
6eIp6zx3 � Izx3a5eIp6zx3],

where x�
3 = (a�

3,b�
3)T is determined by

Nx�
3 � p2x

�
3 � x2. (34)

If we use m and n to represent the shear modulus
and Poisson’ s ratio for an elastically isotropic
material, the corresponding eigenvalues and eigen-
vectors in Eq. (33) are given by

p1 � p2 � p3 � I, p4 � p5 � p6 � (35)
�I,

x1 � ��
In2

mn1
,
I
m

,0,�
n2

n1
,1,0�T

, x4 � x̄1,

x2 � ��
In1

4mn
,�

In2

4mn
,�

1
4mn

,�
n1

2n
,�

n2

2n
,

I
2n�T

, x5 � x̄2,

x�
3 � �1�2n

2mnn1

,0,
I

4mn
,�

I(1�2n)
2nn1

,0,1�T

, x�
6 � x̄�

3.

(36)

Substituting Eqs. (35) and (36) into Eq. (33), we
obtain the solution for the elasticially isotropic
materials. It is exactly the same as that directly
obtained for isotropic materials [28] and was
employed in our earlier work on ferroelectric
domains in thin films [29].

The displacement field uB
i in the real space

x = (x1,x2,x3) can be obtained from Eq. (32) or Eq.
(33) through an inverse Fourier transform,

uB
i (x1,x2,x3) � �

�

��

�
�

��

(37)

ûB
i (z1,z2,x3)eI(z1x1 � z2x2)dz1 dz2.

The sum of solutions A and B, i.e.

ui(x) � uA
i (x) � uB

i (x) (38)

yields the solution for the boundary value problem
of Eqs. (20)–(22). The total strain and stress can
be calculated by Eqs. (16), (17) and (19). Conse-
quently, the elastic energy can be obtained for a
thin film with an arbitrary eigenstrain distribution.

4. Numerical simulations

The temporal evolution of the polarization vec-
tor fields, and thus the domain structures, are
obtained by numerically solving the TDGL Eq. (1).
In this work, we used the semi-implicit Fourier-
spectral method [30] for the time-stepping and spa-
tial discretization.

We use lead titanate (PbTiO3) thin film as an
example for the numerical simulation. The corre-
sponding material constants for the Landau free
energy, the electrostrictive coefficients and elastic
properties are from the literature [31,32]:
a1=3.8(T�479)×105 C�2 m2 N, a11=�7.3×107 C�4

m6 N, a12=7.5×108 C�4 m6 N, a111=2.6×108 C�6

m10 N, a112=6.1×108 C�6 m10 N, a123=�3.7×109

C�6 m10 N, Q11=0.089 C�2 m4, Q12=�0.026 C�2

m4, Q44=0.03375 C�2 m4, C11=1.746×1011 N m�2,
C12=7.937×1010 N m�2, C44=1.111×1011 N m�2,
where T is temperature in °C.

In the computer simulations, we employed
128×128×36 discrete grid points, and periodic
boundary conditions are applied along the x1 and
x2 axes. The grid spacing in real space is chosen
to be �x1/l0=�x2/l0=1.0 and �x3/l0=0.5, where
l0 = √G110/a0 and a0 = |a1|T = 25°C. We choose the
gradient energy coefficients as G11/G110=0.6,
G12/G110=0.0, G44/G110 = G�

44/G110 = 0.3. The cor-
responding width of domain wall is about 1.5�x1,
and the domain wall energy densities at T=25°C
are evaluated to be about 0.60a0l0P2

0 for 90°
domain walls and 1.26a0l0P2

0 for 180° domain
walls. P0 = |P|T = 25°C = 0.757 C m�2 is the spon-
taneous polarization. If l0=1.0 nm,
G110=1.73×10�10 C�2 m4 N, and the domain wall
energy density is about 0.06 N m�1 for 90° domain
wall, and the width of domain walls is around 1.5
nm, which is consistent with existing experimental
measurements [8]. The time step for integration is
�t/t0=0.06, where t0=1/(a0L).

The degree of substrate constraint is measured
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by the average strain ēab (a/b=1,2), i.e. the mis-
match strain between the film and the substrate,
and the substrate thickness hs beyond which the
deformation in the substrate is ignored. For sim-
plicity, we considered the case of ē11 = ē22 = ē and
ē12 = 0. Under such a constraint, there are three
tetragonal variants with their tetragonal axes paral-
lel to x1[100], x2[010] and x3[001]. They are lab-
elled a1, a2 and c by the conventional notation, i.e.
the tetragonal axis of a1-variant is parallel to [100],
a2 to [010], c to [001] (see Fig. 2(b)).

4.1. Effect of substrate deformation

We first studied the effect of hs, on the volume
fractions of the three different orientation domains
and the domain morphology. The value of hs rep-
resents the region of the substrate that is allowed
to deform, and thus to a certain degree, it rep-
resents the rigidity of the substrate. For example,
hs=0 represents a complete rigid substrate. The
deformation of the substrate results from the het-
erogeneous deformation within the thin film, thus
the displacements in the substrate should be zero at
a distance sufficiently far away from the interface.
Therefore, as hs increases, the results on the equi-
librium domain structures, including the domain
volume fractions, should converge. We considered
a particular case of ē = �0.002, a compressive
mismatch, at T=25°C and hf=20�x3. The formation
of ferroelectric domains in the film is simulated for
hs=0.2�x3, 4�x3,%,12�x3. In each case, we started
with a high-temperature paraelectric state and
quenched it to 25°C. Ferroelectric domains
nucleate, grow, and coarsen during annealing. In
this section, we are focused on the effect of sub-
strate constraint on the domain volume fractions
and domain shapes. We calculated the volume
fractions of a1-, a2-, and c-domains, Va1, Va2, and
Vc, from the simulated domain structures at late
stages of the evolution process, during which the
domain volume fractions are close to the equilib-
rium values. Table 1 shows the domain volume
fractions as functions of hs. The remainder,
1�Vc�Va1�Va2, is considered as the volume frac-
tion of domain walls. It can be seen from Table
1 that c-domains dominate under the compressive

mismatch. As expected, Vc varies with hs and
approaches a constant value as hs becomes larger.

We also examined the effect of hs on the domain
wall orientations and the domain shapes. Shown
in Fig. 3 are the 2D sections of domain structures
consisting of only c- and a2-domains cut at the
same position for different values of hs (the white
strips are a2-domains, the gray regions alternating
with the a2-domains are c-domains, and the black
bottom is the substrate). It is shown that for hs=0.0,
the width of a2-domains becomes significantly
smaller close to the film–substrate interface. Even
with a relatively large value of hs, the width of
a2-domains is slightly smaller at the film–substrate
interface than that close to the surface. Therefore,
the domain-wall orientation between a2-domain
and c-domain is not exactly 45° from the film–sub-
strate interface. The domain shapes practically do
not change when hs exceeds about half of the
film thickness.

4.2. Effect of substrate constraint on domain
volume fractions and domain morphology

We studied the effect of the mismatch strain 5
on the volume fractions of domains and domain
morphology at T=25°C. Elastic deformation in the
substrate is allowed by choosing a value of
hs=12�x3=0.6hf. The volume fractions of the three
tetragonal variants, as functions of the mismatch
strain ē are given in Table 2. It is shown that the
mismatch strain can dramatically alter the volume
fractions of different orientation domains. Under a
large compressive constraint, only c-domains exist.
A typical domain structure with only c-domains is
shown in Fig. 4(a). As the magnitude of ē increases
(i.e. the magnitude of compressive strain
decreases), the a1- and a2-domains start to appear,
and the volume fraction of c-domains decreases,
and thus the equilibrium domain structures consist
of all three types of domains. A representative
domain structure with small volume fractions of
a1- and a2-domains is shown in Fig. 4(b). The a1-
and a2-domains alternately insert into c-domains in
platelet shapes, and align along [100] or [010]
directions. The orientations of the domain walls
between a1- and c-domains or between a2- and c-
domains deviate slightly from the 45° directions
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Table 1
Volume fractions Va1, Va2 and Vc as functions of hs

hs 0�x3 2�x3 4�x3 6�x3 8�x3 10�x3 12�x3

Va1 0.073 0.083 0.088 0.100 0.104 0.106 0.110
Va2 0.060 0.065 0.071 0.077 0.080 0.085 0.088
Vc 0.826 0.816 0.805 0.785 0.778 0.770 0.763

Fig. 3. Cross-section domain structures showing the depen-
dence of the a2-domain shapes on hs.

from the film–substrate interface. The volume frac-
tions of a1- and a2-domains have approximately the
same value for a particular ē and increase with ē.
For comparison, a domain structure with a large
volume fraction of a-domains (a1+a2) is presented
in Fig. 4(c). There are no c-domains when
ē�0.010 or larger and only a1- and a2-domains
exist (Fig. 4(d)). All the domain walls between a1-
and a2-domains are perpendicular to the film sur-
face and along the [110] or [11̄0] directions.

The pictures of domain shapes presented in Figs.
3 and 4 do not take into account the local displace-
ments. As a result of domain formation, an initially
atomically flat surface is expected to become
rough. The surface topology change due to the
domain formation can be automatically determined

Table 2
Volume fractions Va1, Va2 and Vc as functions of ē

ē �0.010 �0.008 �0.006 �0.004 �0.002 0.000 0.002 0.004 0.006 0.008 0.010

Va1 0.000 0.002 0.024 0.066 0.110 0.143 0.201 0.263 0.354 0.452 0.468
Va2 0.000 0.004 0.027 0.055 0.088 0.139 0.188 0.256 0.344 0.452 0.468
Vc 0.991 0.980 0.928 0.853 0.763 0.667 0.544 0.403 0.204 0.007 0.000

from the elastic solutions for a given domain struc-
ture. Fig. 5 shows an example of the displacements
along the x3 direction on the surface for the domain
structure shown in Fig. 4(b). As expected, the dis-
placements within the c-domains along the x3

direction are significantly larger than those for the
a-domains. Shown in Fig. 6 is a local cross-section
for revealing the topology changes at the surface
simply due to the displacements (see Fig. 3 at
hs=0.6hf for the corresponding domain structure).
Particularly, it is shown that the surface of the a-
domain has a slope about 3.7° from the horizontal
direction, which agrees remarkably well with the
experimental observation [33]. The direction of the
tilt for the surface of an a-domain depends on the
domain-wall orientation (see Fig. 6 for the differ-
ence in surface slopes between the two a-domains).

4.3. The domain stability map

We constructed a domain stability map by mod-
elling the domain formation as a function of both
substrate constraint and temperature. The results
were summarized in Fig. 7. All the data points
shown in Fig. 7 were obtained by starting from an
initial paraelectric state with small random pertur-
bations. The data points simply represent the type
of domain structures that existed at the end of a
simulation. Because of the numerical nature of the
calculations, the lines which separate the stability
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Fig. 4. Domain structures at 25°C: (a) c-domains (ē = �0.012); (b) c/a1/a2 domain structure with 76% of c-domains (ē = �0.002);
(c) c/a1/a2 domain structure with 33% of c-domains (ē = 0.005); (d) a1/a2 domain structure (ē = 0.012).

of different types of domain structures cannot be
determined exactly, i.e. they can only be determ-
ined approximately. For a given temperature, the
equilibrium domain structures are a single c-
domain state, a c/a1/a2 three-domain state, and
a1/a2 two-domain state, as the substrate constraint
changes from compressive to tensile.

The two lines in Fig. 7 represent the transition
temperature of a paraelectric phase into a single c-
domain or a single a-domain determined by
assuming a bulk single crystal under an external
constraint equal to the film–substrate lattice mis-
match. The equations for the two lines are
described by

a0

T�479
454

���2q11

C12

C11
� 2q12�ē � 0 (39)

for the single c-domain state, and

a0

T�479
454

��q11 � q12�1�2
C12

C11
��ē (40)

� 0

for a single a1- or a2-domain state. Our computer
simulations showed that the two lines are actually
very good approximations of the paraelectric→fer-
roelectric transition temperatures in the thin films.
As has been shown before [4,11–15], the substrate
constraint can substantially increase the ferroe-
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Fig. 5. Displacement pattern of the x3 component on the sur-
face.

Fig. 6. A local cross-section showing the surface topology due
to the domain formation. The surface of the a-domain has a
slope about 3.7° from the horizontal direction. The solid circles
represent the regular grid points. The grid points with both the
plus sign and the solid circles are occupied by the a2-domains.
The open circles represent the deformed grid points, and hence
the distances from the solid circles to the corresponding open
circles are the magnitude of local displacements.

lectric transition temperature regardless of whether
the constraint is compressive or tensile.

4.4. Temporal domain evolution

One of the advantages of the phase-field
approach is that it allows one to follow the tem-
poral evolution of ferroelectric domains during

Fig. 7. The domain stability map of a film. The equilibrium
phases or domain structures as a function of temperature and
substrate constraint, obtained from phase-field simulations
assuming coherent interface between the film and the substrate.

annealing of a quenched paraelectric phase below
the ferroelectric transition temperature. Figs. 8–10
show three examples for the temporal evolution of
the domain structures at three different substrate
constraints, ē = �0.002, 0.005 and 0.012, respect-
ively, at T=25°. The domain structures are rep-
resented by the iso-surface with P∗

i = |Pi|/P0 = 0.6.
The evolutions of a- and c-domains are presented
in separate pictures. However, the a1-domains and
a2-domains are not distinguished in the pictures
showing the evolution of a-domains, so plots of
iso-surface only reveal the domain walls. In each
case, the initial condition is a homogeneous parae-
lectric phase, created by assigning a zero value at
each lattice site for each component of the polariz-
ation field plus a small random noise.

Fig. 8 shows the temporal evolution of domains
under a compressive strain, �0.002. The initial
paraelectric phase is unstable with respect to the
formation of ferroelectric domains and hence
homogeneous nucleation takes place. It is shown
that the c-domains appear before the a-domains
during the evolution process. The shape of a-
domains is plate-like with the domain walls aligned
about 45° from the substrate. Thermodynamically,
it is rather easy to understand the sequential
appearance of c- and a-domains since the substrate
constraint favors the formation of c-domains over
a-domains.
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Fig. 8. Temporal evolution of ferroelectric domain morphologies at ē = �0.002, t=N�t.

In contrast to the compressive constraint, a ten-
sile substrate constraint completely changes the
sequence of appearance of c- and a-domains during
the ferroelectric phase transition (Figs. 9 and 10),
i.e. a tensile constraint increases the thermodyn-
amic driving force for the formation of a-domains
and decreases that for c-domains. In addition, there
is clear evidence that the c-domains prefer
nucleation near the surface. When ē = 0.012, no c-
domain exists. All the domain walls between a1

and a2 domains are perpendicular to the film sur-
face and along the [110] or [11̄0] directions.

To verify the sequential nucleation and growth
of different domains, the volume fractions versus
time steps are plotted in Fig. 11 for the two cases,
ē = �0.002, 0.005. For the case of ē = �0.002, the
a-domain starts to appear after the volume fraction
of c-domains almost reaches its equilibrium value,
whereas for the case of ē = 0.005, the c-domains
nucleate after the formation of a-domains.

4.5. Discussion

We showed above that a substrate constraint
may drastically affect not only the volume frac-
tions, but also the sequence of the nucleation and
growth of different domains at a given tempera-
ture. The results obtained in this work on the
dependence of domain volume fractions on the
degree of substrate constraint qualitatively con-
firmed prior thermodynamic analyses, i.e. a com-
pressive substrate constraint favors the formation
of c-domains while a tensile substrate constraint
makes the a1- and a2-domains more stable than the
c-domains. Moreover, similar to the prior thermo-
dynamic analyses, our results show that the ferroe-
lectric transition temperature depends strongly on
the substrate constraint. The domain morphologies
obtained from our simulation for small volume
fractions of a1- and a2-domains also agree very
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Fig. 9. Temporal evolution of ferroelectric domain morphologies at ē = �0.005, t=N�t.

well with existing experimental observations
[5,7,33,34].

It should be emphasized that the phase-field
approach presented here is 3D and does not make
any a priori assumption on the possible domain
wall orientations for predicting the domain struc-
tures. On the other hand, essentially all prior ther-
modynamic analyses consider only 2D domain
structures (Fig. 1) and almost invariably assumed
that the shapes of both the a- and c-domains are
plates oriented 45° from the film–substrate inter-
face. Therefore, there are a number of significant
differences between prior thermodynamic predic-
tions and the present phase-field simulations. First

of all, the a1/a2 domain configurations under a
large tensile mismatch (Figs. 4(d) and 8) were
automatically predicted starting from an initial
paraelectric state, whereas in the thermodynamic
analysis, a domain configuration consisting of dis-
torted orthorhombic phases was obtained under a
similar tensile mismatch with the assumption of
domain wall 45 inclined to the film–substrate inter-
face [13]. In a more recent work [14,15], by
assuming that the domain walls between a1- and
a2-domains are perpendicular to the film–substrate
interface, the same a1/a2 domain configuration was
predicted as in our phase-field simulation. Second,
our results show that a1- and a2-domains always
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Fig. 10. Temporal evolution of ferroelectric domain morpho-
logies at ē = 0.012, t=N�t.

Fig. 11. Domain volume fractions Vc, Va1 and Va2 versus
t=N�t at ē = �0.002 and ē = 0.005.

coexist, even when the volume fraction of Vc, is
relative large, whereas in prior thermodynamic
analyses, simplified domain structures, either
c/a1/c/a1 or c/a2/c/a2, were assumed, which could
not completely accommodate the biaxial constraint
along the x1 and x2 axes [35]. Third, we show that
the morphologies of c-domains are very different
from those of a-domains (Figs. 4(b) and (c)). The
difference in shapes between a- and c-domains
arises from the fact that there are two types of a-
domains with their tetragonal axes perpendicular to
each other. Fourth, when the volume fraction of c-
domains is small, there are significant number of
domains walls between a1- and a2-domains which
are perpendicular to the film–substrate interface.
Therefore, it is inaccurate to assume that all the
domain walls within c/a/c/a domain structures are
45° from the film–substrate interface. Finally, our
computer simulations show that the domain wall
orientations of c- and a-domains are not exactly
along the directions 45° from the film–substrate
interface.

In order to examine the consequences of a 2D
approximation of a 3D domain structure as used
in thermodynamic analyses, we also performed a
number of simulations of 2D domain structures. In
particular, we chose a system with 128×2×36 grids
with periodic boundary conditions along x1 and x2.
As a result, the domain structures are two-dimen-
sional along the x1x3 plane and are uniform along
the x2 direction. The results are presented in Table
3 and Fig. 12. In Fig. 12, the black regions rep-
resent the a1-domains, the white regions the a2-
domains, the gray regions the c-domains. The bot-
tom parts in each picture are the substrates. There
are two striking differences between our results
and those obtained previously using thermodyn-
amic analyses. First, as substrate constraint
becomes increasingly tensile, there exist domain
structures with all three types of domains, i.e.
a1/a2/c domain configurations even with a 2D
approximation, which is different from Refs. 13–
15. Second, the domain walls in a a1/a2/c domain
morphology are not straight and they deviate sig-
nificantly from the directions assumed in prior
thermodynamic analyses. Therefore, the c/a/c/a
domain structures with 45° domain walls assumed
in prior thermodynamic analyses may not necessar-
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Table 3
Volume fractions Va1, Va2 and Vc versus ē for a 2D approximation

ē �0.002 0.000 0.005 0.006 0.007 0.008 0.010 0.012 0.020

Va1 0.168 0.234 0.381 0.416 0.445 0.418 0.399 0.410 0.435
Va2 0.000 0.000 0.000 0.003 0.044 0.261 0.499 0.517 0.561
Vc 0.789 0.712 0.516 0.460 0.350 0.132 0.000 0.000 0.000

Fig. 12. 2D domain structures for different ē.

ily possess the lowest free energy under a given
temperature and substrate constraint. Furthermore,
with a 2D approximation, even in the case of
domain structures containing only a1- and a2-vari-
ants, the domain walls between a1- and a2-domains
are not exactly perpendicular to the film/substrate
interface (Fig. 12).

In our previous work [29], we assumed that the
elastic modulus is isotropic, i.e. C11=1.746×1011 N
m�2, C12=7.937×1010 N m�2, C44=4.762×1010 N
m�2. Table 4 shows the difference in the corre-
sponding volume fractions due to two different C44

Table 4
Volume fractions Va1, Va2 and Vc versus ē for cubic and isotropic elasticity

ē �0.006 �0.003 0.000 0.003 0.006

Cubic Iso Cubic Iso Cubic Iso Cubic Iso Cubic Iso

Va1 0.024 0.051 0.081 0.102 0.143 0.167 0.223 0.243 0.354 0.344
Va2 0.027 0.042 0.074 0.091 0.139 0.160 0.219 0.240 0.344 0.342
Vc 0.928 0.887 0.815 0.777 0.667 0.626 0.487 0.460 0.204 0.252

with one corresponding to an isotropic case and
the other cubically anisotropic moduli employed in
this work. By comparing the volume fractions in
the two cases, it is found that the elastic anisotropy
can have an effect on the volume fractions of dif-
ferent domain structures for the same temperature
and substrate constraint. Under a compressive or
small tensile substrate constraint, the isotropic
modulus approximation underestimates the volume
fraction of the c-domains, whereas under a large
tensile constraint, it overestimates the c-domain
volume fraction.

The present work assumed full coherency
between the film and the substrate. Misfit dislo-
cations may be generated to accommodate part of
the lattice mismatch between the film and sub-
strate. In principle, the effect of misfit dislocations
on the domain volume fractions can be predicted
by using an effective substrate lattice parameter
taking into account the density of misfit dislo-
cations. However, misfit dislocations are expected
to affect also the domain nucleation during a ferro-
electric transition and the local domain shapes.
Based on the recent advances in developing phase-
field models integrating phase and dislocation
microstructures [36–38], work is underway to
incorporate the misfit dislocations into the phase-
field model of domain evolution in ferroelectric
thin films.
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Finally, it should be pointed out that the pro-
posed model can be directly applied to ferroelastic
phase transformations in thin films as the effect of
electric depolarization is ignored in the present for-
mulation. A phase-field model which simul-
taneously solves the electrostatic and elastic equa-
tions is being developed [39]. Our preliminary
simulations incorporating the depolarization field
show that its effect on the domain structure can
be quite significant. The model and results which
include the depolarization effect will be reported
in a future publication. Therefore, the model and
the results presented in this work are applicable to
ferroelectric transformations in which the electro-
static energy is considerably less than the typical
strain energy. In fact, many experiments showed
that the depolarization effects may be insignificant
due to the charge compensation by point defects
in the ferroelectric films, and the domain formation
is controlled by ferroelastic effects and the sub-
strate constraint [34,40].

5. Conclusions

A three-dimensional phase-field model was
employed to study the ferroelectric domain evol-
ution in elastically anisotropic thin films. An effec-
tive method for calculating the elastic strain energy
in a constrained anisotropic film was developed.
The phase-field model is able to predict not only
the volume fractions of domain variants at a given
temperature and substrate constraint, but also the
detailed domain-wall orientations, surface top-
ology as a result of domain formation, domain
shapes and their temporal evolution. It is shown
that the domain-wall orientations between a- and
c-domains deviate from the 45 direction from the
film–substrate interface as a result of substrate con-
straint. It is demonstrated that mismatch strain
between the film and the substrate can significantly
alter the sequence of nucleation and growth, the
volume fractions of the three different tetragonal
domains. Depending on the mismatch strain and
temperature, the domain structures range from a
single c-domain, to three coexisting variants,
c/a1/c/a2 or c/a1/a2, to twin domain structures
a1/a2/a1/a2. The proposed phase-field model is also

applicable to other types of structural phase trans-
formations in thin films.
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