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Abstract—We investigate the influence of an applied homogeneous strain on the coherentα2 (DO19) to O-
phase transformation in Ti–Al–Nb alloys using a phase-field approach. The emphasis is on the effect of the
applied strain on the two-phase morphology, as well as the equilibrium volume fractions of different orien-
tation domains of theO-phase. It is found that the applied homogeneous strain field does not change the
essential features of the morphological patterns, but does alter the relative amount of each orientation domain
and the equilibrium volume fraction of theO-phase. When the applied strain is of the same order of magnitude
as the stress-free transformation strain, the initial two-phase mixture becomes unstable and transforms into
a singleO-phase. 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

A hexagonal to orthorhombic transformation is
accompanied by a crystal lattice symmetry change
which produces three types of orientation variants of
the orthorhombic phase (O-phase) if the orientation
relationships between the two phases are:
(001)o//(0001)h; [100]o//[21̄1̄0]h. If the transformation
is coherent, the elastic interactions arising from the
lattice mismatch between the product and matrix
phases may change the orientation relationship to pro-
vide an invariant plane condition which minimizes the
elastic energy. This will alter the number of orien-
tation variants as occurs, for example, in theα2

(DO19) to O-phase transformation in Ti–Al–Nb [1]
where a clockwise rotation and a counter clockwise
rotation of a small angle of the three original variants
produce three pairs of nearly orthogonal orientation
variants with new orientation relationships, as has
been described by Muraleedharan and Banerjee [1].

Accommodation of the long-range elastic interac-
tions between the high-symmetry and low-symmetry
phases, as well as among different orientation
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domains of the low symmetry phase, usually lead to
very complex self-accommodating morphological
patterns. Extensive experimental studies have been
carried out to study the morphological patterns for-
med during annealing of Ti–Al–Nb alloy in which
simultaneous decomposition and ordering lead to a
mixture of α2 and O-phases [1–4]. Recently, using
the phase-field approach, we systematically investi-
gated the microstructural evolution during a hexag-
onal to orthorhombic transformation [4–6]. Our simu-
lations were able to predict all the complex
morphological patterns observed in the experiments
[5, 6] as well as some new features. Examples of the
predicted morphological patterns are schematically
shown in Figs 1 and 2 for high and low volume
fractions of theO-phase, respectively. In these fig-
ures, different filling patterns are used to distinguish
the three different pairs of orientation variants. It is
interesting to note that the morphological patterns
could be very different depending on the number of
variants present. All the interfaces between theα2 and
the O-phase are found to be undistorted habit planes
of the type {470)O, and the domain boundaries
between different orientation variants of theO-phase
are twin boundaries of either {110)O or {130)O, which
agree well with experimental observations [3, 4].

A coherent multi-phase and multi-domain micro-
structure is inherently sensitive to an applied stress or
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Fig. 1. Schematic presentation of the collective morphological patterns observed in computer simulation of
α2→O-phase transformation in a Ti–Al–Nb alloy of relatively high volume fraction of the product phase.

Different filling patterns represent three different pairs of orientation variants of theO-phase.

Fig. 2. Schematic simulated patterns with relatively low volume fraction ofO-phase in anα2 matrix. Both
domain/domain and domain/matrix interfaces are involved.

strain field. In the absence of any external field, the
volume fraction of each orientation variant of theO-
phase in aα2 1 O two-phase mixture statistically
should be the same since all the variants are energeti-
cally degenerate. Moreover the presence of all the
orientation variants is necessary to fully accommo-
date the misfit strain. When an external stress or strain
field is applied, the stress-free transformation strain
associated with theα2 and each orientation variant of
the O-phase interacts differently with the applied
field. As a result, even in the case of a homogeneous
modulus, an external strain should modify the relative
amount of thea2 andO-phase as well as the relative
amount of the different orientation variants of theO-
phase, and hence change the morphology of the multi-
phase and multi-variant mixture. In this paper we
focus on the influence of an applied strain field on the
microstructural development in two Ti–Al–Nb alloys
during theα2 to O-phase transformations.

2. PHASE-FIELD APPROACH

In our previous phase-field modeling of the
α2→O-phase transformation without external field,
three long-range order (lro) parameters,
h1(r , t), h2(r , t), andh3(r ,t) (where r is the spatial
coordinate vector) were introduced to describe the
spatial distribution of the three pairs of orientation
variants of theO-phase. The composition difference
between theα2 and theO-phase is described by the
concentration field,c(r , t). The spatio-temporal evol-
ution of these variables describes the microstructural
evolution. The temporal evolution of thelro para-

meters can be obtained by solving the time-dependent
Ginzburgh–Landau equation.

∂hp(r , t)
∂t

5 2L
dF

dhp(r , t)
1 xp(r , t); p 5 1, 2, 3,

(1)

while the temporal evolution of the concentration
field can be described by the non-linear Cahn–Hilli-
ard diffusion equation

∂c(r , t)
∂t

5 M=2
dF
dc(r , t)

1 x(r , t), (2)

whereL andM are kinetic coefficients characterizing
structural relaxation and diffusional mobility,F is the
total free energy of the system,xp(r , t) andz(r , t) are
Langivin random noise terms which are related to
thermal fluctuations in thelro parameter and compo-
sition, respectively. They are assumed to be Gaussian
distributed and their correlation properties meet the
requirements of the fluctuation-dissipation theorem
[7].

To present the kinetic equations in an explicit ana-
lytical form suitable for numerical solution, the total
free energyF needs to be expressed as a functional
of the concentration andlro parameter fields. For
coherent transformations, the total free energy con-
sists of both the chemical free energy (Fch) and the
elastic strain energy (Eel) contributions. The non-equi-
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librium chemical free energy as a functional of the
field variables can be approximated using a coarse-
grained Landau–Ginzburg free energy functional,

Fch 5 E
V

F1
2
r(=c)2 1

1
2
lO3

p 5 1

(=hp)2 (3)

1 f(c, h1, h2, h3)G dV

wherer and l are gradient energy coefficients. The
integration in equation (3) is carried out over the
entire system volumeV. The gradient terms in equ-
ation (3) provide an energy penalty to inhomogen-
eities in composition andlro parameters which take
place mainly at the interfaces. The local specific free
energy f(c1, h1, h2, h3) in equation (3) defines the
basic bulk thermodynamic properties of the system.
It is approximated by a Landau-type expansion poly-
nomial,

F(c, h1, h2, h3) 5
A1

2
(c2c1)2 1

A2

2
(c2 (4)

2c) O3
p 5 1

h2
p2

A3

4 O3
p 5 1

h4
p 1

A4

6
( O3
p 5 1

h2
p)3,

wherec1 andc2 are constants close to the equilibrium
concentrations for the parentα2 phase and productO-
phase, respectively;A1–A4 are four positive phenom-
enological constants which are employed to fit the
local specific free energy to available experimental
data. All these phenomenological constants are
assumed to be the same as those employed in a recent
work dealing with the same phase transformation
without the influence of an applied field [4]. When
values of all thelro parameters are zero, it describes
the compositional dependence of the free energy of
the parent phase. At a given composition, the local
free energy has three degenerated minima corre-
sponding to the free energy of the three pairs of orien-
tation variants. The free energy as a function of com-
position for both the parentα2 phase and the
precipitateO-phase is shown in Fig. 3, which is simi-
lar to that proposed by Benderskyet al. [8].

The elastic strain energy of a coherent multi-phase
and multi-domain mixture can be expressed as [9, 10]

Eel 5
V
2
Cijkl ēij ēkl

2VCijkl ēij O3
p 5 1

eo
kl(p)h2

p(r ) (5)

1
V
2
Cijkl O3

p 5 1

O3
q 5 1

eo
ij(p)eo

kl(q)h2
p(r )h2

q(r )

2
1
2 O

3

p 5 1

O3
q 5 1

E d3g
(2p)3Bpq(n){h2
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g{h2

q(r )} g

Fig. 3. Local specific free energy for parent and product phases
as a function of the content of Nb.

In equation (5),(…) represents the volume average
of (…), V is the total volume of the system,C is the
elastic moduli tensor,ēij is the macroscopic homo-
geneous strain,eo(p) is the stress-free transformation
strain tensor of orientation variantp of the O-phase
when the corresponding order parameter assumes its
equilibrium value, i.e.h2

p(r ) 5 1. Bpq(n) is a two-body
elastic interaction potential given by

Bpq(n) 5 niso
ij(p)Vjk(n)so

kl(q)nl (6)

wheren 5 g/g is a unit vector in reciprocal space and
ni is its ith component,so

ij(p) 5 Cijkle
o
kl(p), andVij(n)

is a Green function tensor which is inverse to the

tensorV21
ij (n) 5 Cikljnknl,{h2

q(r )} g 5 E d3g
(2p)3h

2
q(r ) exp

(2ig·r ) is the Fourier transform ofh2
q(r ) and

{h2
p(r )} ∗

g is the complex conjugate of {h2
p(r )} g. The

readers are referred to Refs [5, 6] for more details.
The first two terms on the right-hand side of the

above equation describe the elastic energy due to a
homogeneous deformation. The third term describes
the elastic energy associated with deforming the
stress-free product phase back into its geometrical
shape before the transformation. The last term
describes the heterogeneous relaxation of the precipi-
tates and matrix which does not produce any macro-
scopic shape change but affects the shape, size and
spatial distribution of the precipitates. In this work,
we limit ourselves to the case when the whole system
is subject to a homogeneous applied strain. For this
particular case,ēij is equal to the applied strain
eapplied

ij [10].

3. SIMULATION RESULTS AND DISCUSSION

As pointed out in our previous work [4–6] the
microstructure associated with the
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hexagonal→orthorhombic transformation is pseudo-
two-dimensional. Parallel rods (or plates in the case
of low volume fractions) of orthorhombic phase are
directed along the normal of the close-packed plane
(0001)hcp. In this case, we can simply focus on the
microstructure evolution on the (0001)hcp plane.
Therefore, all the simulations performed in this work
are carried out on 2D systems of 102431024 mesh
points. Assuming that the microstructure is macro-
scopically homogeneous, a periodical boundary con-
dition is imposed along both dimensions. The initial
condition for the simulation is a homogeneous hexag-
onal phase described by

c(r ) 5 c̄; h1(r ) 5 0, h2(r ) 5 0, h3(r ) 5 0,

wherec̄ is the mean composition of Nb. The kinetic
equations are solved numerically in the Fourier space
using a semi-explicit algorithm [11].

As indicated by the common tangent in Fig. 3, the
equilibrium compositions for the two-phase mixture
without considering the influence of the elastic strain
energy are 7% and 15% Nb (at.%) forα2 and O-
phase, respectively. In order to study the morphologi-
cal features with different fractions of the productO-
phase under the applied strain field, two alloys with
different Nb compositions are selected (see Fig. 3).

When an external strain is applied, the applied
strain and the stress-free transformation strains
are coupled. This coupling is described by

2CijklēijO3

p 5 1

eo
kl(p)h2

p(r ) in equation (5). Since the

three pairs of orientation variants have different
stress-free transformation strains in the global frame
coordinate [6], this coupling term has different values
for different orientation variants and thus promotes or
suppresses the growth of certain orientation variants.
As a result, the growth of the domains becomes selec-
tive.

For simplicity, we apply a homogeneous uniaxial
strain to investigate its influence on the microstruc-
tural evolution. The strain is applied along such a
direction that the first two pairs of orientation variants
are equally favored, while pair 3 is unfavored. In the
simulation, the total homogeneous strain is kept con-
stant and is given by

ē 5 eampS 3/4 √3/4

√3/4 1/4
D, (7)

where eamp is the amplitude of the homogeneous
strain which contains the applied elastic strain and the
homogeneous strain due to the phase transformation
and microstructure changes induced by the applied
strain. The total homogeneous strain is given in the
unit of the shear magnitude of the stress-free trans-
formation strain,es [4–6]. The simulation results are

presented in Figs 4, 7 and 9 , where different gray
levels are used to distinguish theO-phase and the par-
entα2 phase as well as the different pairs of the orien-
tation variants of theO-phase. The gray levels in
thesefigures represent the values of (h2

12h2
2223h2

3);
the higher the values, the brighter the shade. There-
fore, the four different gray levels from brightest to
darkest correspond to pair 1, parentα2 phase, pair 2
and pair 3, respectively.

3.1. Precipitation under an applied strain

As shown in Fig. 3, alloy 1 has an average compo-
sition of 12.5% and the equilibrium volume fraction
of the O-phase is 69% without considering the effect
of coherency strain. The effect of the applied strain
field on the microstructure developed at the reduced
time t 5 200, at which the volume fraction of each
phase is close to its equilibrium value (i.e. no signifi-
cant change with time), is shown in Fig. 4. When the
applied strain is 1/10 of the typical shear deformation
of the O-phase [Fig. 4(a)], the resulting microstruc-
tural patterns look quite similar to those obtained
from a precipitation process without an external field
[4]. However, a close examination of the microstruc-
ture reveals that the volume fractions of pairs 1 and
2 are significantly higher than that of pair 3 (Fig. 5),
while the total amount of the precipitates is only
slightly higher than what was observed in the case
without an external field [4]. This result demonstrates
a selective growth of orientation variants due to the
applied strain field. It should be pointed out that the
growth in real alloys may occur through a ledge
mechanism and the externally applied strain field may
affect ledge nucleation and migration leading to
selective growth. This detailed atomistic mechanism
is difficult to consider in the framework of the con-
tinuum phase field model employed in this study
unless detailed knowledge on how the ledge
nucleation and migration rates are related to the
macroscopic mobilities of the interfaces are known.
However, the main simulation results obtained con-
cerning the effect of the applied strain on the mor-
phology and the equilibrium volume fraction of the
orthorhombic phase should not be affected.

If we further increase the applied strain to 1/4 ofes,
the total volume fraction of the precipitates increases
slightly while the difference in volume fraction
between the two pairs of favored orientation variants
and the unfavored pair 3 changes dramatically, which
is clearly shown in Fig. 5. As a result, the volume
fraction of pair 3 is much lower than that observed
in the case without an external field and the micro-
structure patterns are dominated by the simplest zig-
zag pattern consisting of two pairs of orientation vari-
ants, as shown in Fig. 1(a). The combination of the
zigzag patterns leads to a typical stair-like mor-
phology. In locations where pair 3 is present, all those
patterns shown in Figs 1(b)–(e) can still be found.

When the applied strain is further increased up to
a half of the typical shear deformation [Fig. 4(c)], pair
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Fig. 4. Simulated microstructure att 5 200 for precipitation under different levels of applied strain. The mean
composition of the Ti–Al–Nb alloy contains 12.5 at.% Nb. In (a),M representsα2, and 1–3, three pairs of
orientation variants of theO-phase. (a)eamp 5 0.1es; (b) eamp 5 0.25es; (c) eamp 5 0.5es and (d)eamp 5 1.0es

.

3 completely disappears and the resulting microstruc-
ture is significantly different from those obtained in
the previous simulations. The dominant morphology
for a single precipitate changes to a long band from
the original square-like block. The corresponding
microstructural patterns are rather simple. They can
be described by those shown in Figs 2(a) and (b),
which have been observed in alloys with low volume
fractions of the precipitate phase under no external
field [4]. Further increase in the applied strain up to
the same amount as the typical shear deformation
results in a single product phase consisting of evenly
distributed long strips of pairs 1 and 2 [Fig. 4(d)].
The formation of such a single-phase microstructure
in a two-phase alloy indicates that the influence of
the external field on the phase equilibrium is domi-
nant over that of the chemical free energy. It should

be pointed out that an applied strain of the same mag-
nitude ases may correspond to a very high strain and
the material under consideration may not be within
the elastic deformation regime anymore. The above
results may, however, serve as an upper limit of how
the microstructure responds to an increasing applied
strain. It may also be worth noting that the formation
of some sharp tips at the intersection area [for
example, see those areas indicated by black arrows in
Fig. 4(d)] is a result of minimizing the elastic energy,
as pointed out in a previous work [6].

It is interesting to note that some of the experimen-
tally observed two-phase microstructures in Ti–Al–
Nb alloys without explicitly applying an external
strain or stress field are similar to those predicted in
our simulations with an external strain field. An
example is shown in Fig. 6 [4], in which 1|3 denote
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Fig. 5. Influence of the magnitude of an applied strain on the
volume fractions of the productO-phase and its three pairs of
orientation variants corresponding to the final configuration, as
shown in Fig. 4. The dot and dashed line represents the antici-
pated total volume fraction of theO-phase in the case without

elastic interaction.

Fig. 6. TEM micrograph of a two-phase microstructure
(α2 1 O-phase) in the Ti–Al–Nb alloy.

the three pairs of orientation variants of theO-phase
andM denotes the matrix (α2 phase). It can be seen
that distribution of the three pairs of orientation vari-
ants is highly inhomogeneous. The central part of the
micrograph consists of mainly pairs 1 and 2, while
the rest is dominated by pair 3. We have shown that
without an external field, the misfit strain is most
effectively accommodated when all three pairs of
orientation variants are present [4]. Therefore, as orig-
inally suggested by Bendersky [12], a non-uniform
distribution of the three pairs of orientation variants,
as it occurs in Fig. 6, could be from a local inhomo-
geneous stress distribution.

The above results are obtained for a relatively
higher volume fraction of theO-phase. In alloy 2,
where the average composition is 10 at.% Nb (Fig.
3), the equilibrium volume fraction of the stress free
O-phase is about 37%. The microstructures obtained
under different magnitudes of the applied strain field

are shown in Fig. 7. The general effect of the applied
strain on the microstructural evolution is similar to
that observed in alloy 1. When the applied strain is
relatively small, one can find all the basic morpho-
logical patterns (motifs) shown in Fig. 2, which were
observed in the same system without an applied field
[4]. However, when the applied strain is increased to
1/4es, pair 3 (black) is dropping out while pairs 1 and
2 are becoming dominant. Accordingly, the basic
morphological patterns observed in the presence of
all three pairs of orientation variants [Figs 2(c)–(f)]
disappear. The dominant morphological patterns are
those shown in Figs 2(a) and (b), which are based
upon the contact of two pairs of orientation variants.
When the applied strain further increases to a higher
level, e.g. 1/2es [Fig. 7(c)] and 1.0es [Fig. 7(d)], the
microstructures are roughly the same as those pre-
dicted for alloy 1 containing 12.5 at.% Nb [Figs 4(c)
and (d)]. These results indicate that the transform-
ations are controlled by the accommodation of the
applied strain.

3.2. Influence of applied strain on two-phase equilib-
rium

The study of thermodynamics of stressed crystals
was pioneered by Larche´ and Cahn [13]. In a coherent
system, the equilibrium state of a phase is determined
by minimization of the total free energy, which con-
tains the elastic strain energy [9, 14]. Since the elastic
energy depends sensitively on the mesoscopic mor-
phological patterns, the equilibrium volume fraction
of the coherent phases will depend on the degree of
elastic strain accommodation of a particular morpho-
logical pattern. For example, our previous simulation
on a coherent hexagonal to orthorhombic transform-
ation concluded that the transformation cannot go to
completion when any one of the three pairs of orien-
tation variants is absent (see Figs 4–6 in [6]). For the
α2→O-phase transformation considered here, the total
volume fraction of the precipitates without an exter-
nal field is about 55% (see the value indicated by the
black triangle ateamp 5 0 in Fig. 5), which is much
lower than the equilibrium volume fraction (69%)
predicted by the stress-freef–c plot (Fig. 3). When an
external strain field is applied, the equilibrium volume
fraction is further altered because of the coupling
between the internal stress field and the applied field.
As predicted in our computer simulation shown in the
previous section the applied strain has a strong effect
on the equilibrium volume fraction of the precipi-
tate phase.

The effect of the applied strain on the two-phase
equilibrium can be understood by examining the
coupling term,

2Cijklēij O3
p 5 1

eo
kl(p)h2

p(r )

in equation (5). In contrast to the last two terms in
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Fig. 7. Simulated microstructure att 5 200 for precipitation under different levels of applied strain. The mean
composition of the Ti–Al–Nb alloy contains 10.0 at.% Nb. (a)eamp 5 0.1es; (b) eamp 5 0.25es; (c) eamp 5

0.5es and (d)eamp 5 1.0es.

equation (5), this coupling term is configuration-inde-
pendent. Therefore, a qualitative analysis can be
made by simply adding this term to the local specific
free energy in equation (4). Figure 8 illustrates the
effect of addition of this term on thef–c curves and
the equilibrium volume fractions of the parent phase
and the three pairs of orientation variants of theO-
phase. It is readily seen that the applied strain leads
to a decrease in the free energy of pairs 1 and 2 [Fig.
8(a)] and an increase for pair 3 [Fig. 8(b)]. The vari-
ation is proportional to the magnitude of the applied
strain. As a result, the applied strain causes a rotation
of the common tangent (CT) lines (see the solid lines
between twoI (eamp 5 1.0es) and between two( (
eamp 5 0) which leads to an increase in the equilib-
rium volume fraction of pairs 1 and 2 and a decrease
in the equilibrium fraction of pair 3. The total volume
fraction of all three pairs of orientation variants of the

O-phase is also a sensitive function of the applied
strain field (Fig. 5). For instance, the equilibrium vol-
ume fraction of the product phase is predicted to be
|37% for alloy 2 from thef–c curve (Fig. 3) without
the influence of the elastic energy. However, the
microstructure shown in Fig. 7(c) (0.5es) contains
|2/3 product phase (pairs 1 and 2) and the one shown
in Fig. 7(d) contains|100% product phase.

We note that different equilibrium volume fractions
of the three pairs of orientation variants of the product
phase will be expected if the external strain field is
applied along a different direction. This has been con-
firmed by a computer simulation parallel to that
shown in Fig. 7(c), in which the original tensile strain
(0.5es) has been changed to a compressive strain with-
out changing its magnitude. The microstructure pre-
dicted at t 5 200 is shown in Fig. 9. Since the
applied compressive strain will promote pair 3 and
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Fig. 8. Influence of applied strain on the free energy: (a) for
pair 1 or 2; (b) for pair 3. The solid lines denote the common

tangent, which is abbreviated as “CT” in the figure.

Fig. 9. Microstructure att 5 200 with a compressional applied
strain of 0.5es. Three pairs of the orientation variants are indi-

cated in the figure.

suppress pairs 1 and 2, the microstructure consists of
predominantly pair 3 and the parent phase, the
amount of pairs 1 and 2 being negligible (less than
2%). The total volume fraction of theO-phase is
|34%, which is about one-half of that predicted under
tensile strain. It is also lower than the equilibrium vol-
ume fraction predicted for the stress free system (e.g.
37% for alloy 2).

4. SUMMARY

The effect of an externally applied strain field on
the equilibrium volume fraction of the product phase
and microstructural patterns formed during a coherent
α2 to O-phase precipitation process in the Ti–Al–Nb
system is investigated numerically using the phase
field model. Two alloys with differing Nb content are
considered and hence different volume fractions of
the O-phase. When the applied strain is 1/10 of the
shear magnitude of the stress free strain, the micro-
structural patterns are not greatly altered, although
selective growth of orientation variants is obvious.
With further increases in the applied field, selective
growth becomes more intensive and the elastic strain
energy becomes dominant over the chemical free
energy, leading to very similar microstructures in the
two alloys with differing Nb content. A single-phase
structure of theO-phase can be obtained for both
alloys when the applied strain field is of the same
magnitude as the shear deformation of theO-phase.
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