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Abstract—The microstructural development during precipitation of a coherent orthorhombic phase (O-phase)
from an a2 matrix (DO19) in a Ti–Al–Nb system is investigated through computer simulations using the
phase-field approach and through experimental observations using transmission electron microscopy (TEM).
Two compositions were considered in the simulations in order to examine the influence of volume fraction
of the O-phase on the microstructure. It is found that in the alloy with higher volume fraction of theO-
phase, the precipitates have either square or rectangular shapes on (0001)a2

or (001)O planes. All the particles
are interconnected by sharing their corners. In the alloy with lower volume fraction, the dominant morphology
for the precipitates is thin plate. The spatial distribution of precipitates is highly non-uniform with the precipi-
tates aggregating together to form various unique patterns to accommodate the elastic energy arising from
the lattice misfit between thea2 and O-phase. All the interfaces between thea2 and O-phase are found to
be undistorted habit planes of the type {470)O, and the domain boundaries between different orientation
variants of theO-phase are twin boundaries which are the strain-free planes {110)O or {130)O. The simulation
predictions agree remarkably well with existing experimental observations and the concurrent TEM study.
 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Ti–Al–Nb alloys with | 10–12 and | 25 at% Nb
have shown very promising combinations of specific
strength and rupture life at room and high tempera-
tures (for a general review, see [1]). Phase transform-
ations taking place in these alloys during thermal pro-
cessing are accompanied by both compositional and
structural changes [2], with the latter accompanied by
lattice symmetry reduction leading to complex multi-
phase and multi-domain microstructures. It is
believed that the important physical and mechanical
properties of such multi-phase and multi-domain
aggregates are determined by the detailed mor-
phology of the multi-domain structures, e.g. the size,
shape and spatial arrangement of various orientation
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variants of the low-symmetry product phase in the
matrix of the high-symmetry parent phase. Extensive
experimental studies have been carried out to study
the phase equilibria and phase transformation mech-
anisms in these alloys [3–8]. It is found that the phase
equilibria along the Ti3Al–Nb3Al pseudo-binary sec-
tion with Nb , 30 at% involves high temperature
phases of BCC-based structures and low temperature
phases of hexagonal close-packed structures [9].
Benderskyet al. proposed a transformation sequence
of Ti–25Al–12.5Nb (at%) alloy upon cooling as

A2→A20→A3 + a2→O (1)

based on the group/subgroup relationship between the
parent and product phases [9]. This prediction was
supported by their experimental work [10].

Detailed experimental studies were also performed
to characterize the orientation relationships, habit
planes, domain boundaries and self-accommodating
arrangements of different orientation variants of the
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O-phase [10–13]. Very complex collective multi-vari-
ant domain patterns have been observed. Some of the
generic features of the multi-variant domain patterns
have been analyzed based on the long-range elastic
interactions arising from the lattice mismatch between
the parent and product phases as well as between dif-
ferent orientation variants of the product phase. How-
ever, these analyses are limited to energetic aspects
of the transformations. To understand the formation
of these morphological patterns and hence to control
the microstructure for desired properties, it is essen-
tial to examine the dynamic evolution paths of the
domain structures during these phase transformations.

Computer modeling has been proved to be very
useful in studying the formation and dynamic evol-
ution of complex microstructures. Some of the gen-
eric features of the morphological patterns formed
during a congruent hexagonal to orthorhombic trans-
formation have been successfully predicted recently
by computer simulations based on a coherent phase-
field model [14, 15]. Thea2→O-phase transformation
in Ti–Al–Nb is, however, more complicated because
both structural and compositional instabilities are
involved. For example, the equilibrium microstruc-
tural state in the two alloys considered in this paper
consists of two coexisting phases of different crystal
lattice symmetry and composition. In this case,
accommodation of the lattice misfit between the par-
ent and product phases plays an equally important
role as the interactions among the different orien-
tation variants of theO-phase, and therefore different
morphological patterns are expected.

In this paper, we simulate the precipitation pro-
cesses during coherenta2→O-phase transformations
in two Ti–Al–Nb alloys of different Nb contents
which yields different volume fractions of theO-
phase. The formation and dynamic evolution of the
multi-variant and multi-phase microstructural patterns
in these alloys are described by a coherent phase field
model using experimental data for the major input
parameters. Due to the fact that the lattice misfit
between thea2 and O-phase normal to (0001)a2

is
very small, the two-phase microstructure (a2 + O-
phase) is pseudo-two-dimensional. Parallel rods (or
plates in the case of low volume fractions) of theO-
phase with interfaces normal to the (0001) plane will
be formed [12]. Therefore, the microstructural evol-
ution in the system can be effectively modeled in two
dimensions on (0001)a2

. A parallel experiment is per-
formed to validate the simulation predictions. Excel-
lent agreement between the simulation predictions
and experimental observations has been achieved.

2. COMPUTER SIMULATION METHOD

In the phase-field formulation, a multi-phase and
multi-variant microstructure is described by a set of
conserved and non-conserved field variables. Typical
examples are the concentration field which charac-
terizes the composition inhomogeneity, and the long-

range order parameter (lro) fields which characterize
the structural variation.

To describe the hexagonal to orthorhombic trans-
formation, we need threelro parameters,h1(r ,t),
h2(r ,t), andh3(r ,t), wherer is the spatial coordinate
vector. Theselro parameters characterize the spatial
distribution of three types of structural domains of the
O-phase with the following orientation relationships:
(001)O//(0001)a2

; [100]O//[21̄1̄0]a2
. During the phase

transformation, the relaxation of the elastic energy
will result in rotation of theO-phase necessary to pro-
vide invariant plane conditions. A clockwise rotation
and a counter-clockwise rotation of a small angle of
the three structural domains will produce six orien-
tation variants with new orientation relationships, as
has been described by Muraleedharanet al. [12].
Therefore, a givenlro parameter characterizes the
spatial distribution of a pair of orientation variants
of the O-phase corresponding to the clockwise and
counter-clockwise rotations. The composition differ-
ence between thea2 andO-phase is described by the
concentration field,c(r ,t). The spatio-temporal evol-
ution of these variables describes the microstructural
evolution. The temporal evolution of thelro para-
meters can be obtained by solving the time-dependent
Ginzburgh–Landau equation

∂hp(r ,t)
∂t

= 2 L
dF
dhp(r ,t)

+ xp(r ,t); p = 1,2,3 (2)

while the temporal evolution of the concentration
field can be described by the non-linear Cahn–Hilli-
ard diffusion equation

∂c(r ,t)
∂t

= M=2
dF
dc(r ,t)

+ z(r,t) (3)

whereL andM are kinetic coefficients characterizing
structural relaxation and diffusional mobility,F is the
total free energy of the system,xp(r ,t) andz(r ,t) are
Langivin random noise terms which are related to
thermal fluctuations in thelro parameter and compo-
sition, respectively. They are assumed to be Gaussian
distributed and their correlation properties meet the
requirements of the fluctuation–dissipation theorem
[16].

To present the kinetic equations in an explicit ana-
lytical form suitable for a numerical solution, the total
free energyF should be expressed as a function of the
concentration andlro parameter fields. For coherent
transformations, the total free energy should consist
of two terms: the chemical free energy (Fch) and the
elastic strain energy (Eel), i.e. F = Fch + Eel.

2.1. Free energy formulation

The non-equilibrium chemical free energy as a
function of the field variables can be approximated
by the Ginzburg–Landau coarse-grained free energy
functional, which contains a local specific free
energy,f(c,h1,h2,h3), and gradient energy terms, e.g.
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Fch = E
V

F1
2
r(=c)2 +

1
2
lO

p

(=hp)2 + f(c,h1,h2,h3)GdV

(4)

wherer and l are gradient energy coefficients. The
integration in equation (4) is carried out over the
entire system volumeV. As usual, the gradient terms
in equation (4) provide an energy penalty to inhom-
ogeneities in composition andlro parameters which
take place at interfaces. The local specific free energy
f(c,h1,h2,h3) in equation (4) defines the basic thermo-
dynamic properties of the system. It can be approxi-
mated either by a Bragg–William-type of mean-field
model or by a Landau-type polynomial expansion. In
this paper, the latter is adopted. In principle, the poly-
nomial may include any terms allowed by the sym-
metry operations with respect to the parent phase
[17]. For example, for the hexagonal to orthorhombic
ordering transformation considered in [14], an expan-
sion up to the sixth order in thelro parameters con-
tains quadratic, fourth, and sixth-order terms. In this
work, we employ a similar model, i.e.

f(c,h1,h2,h3) =
A1

2
(c 2 c1)2 +

A2

2
(c2 (5)

2 c)O
p

h2
p 2

A3

4O
p

h4
p +

A4

6
(O

p

h2
p)3,

wherec1 andc2 are constants close to the equilibrium
compositions of the parenta2 and productO-phase,
respectively.A1–A4 are positive constants. A similar
free energy model has been used for the cubic to
tetragonal transformation [18, 19]. Minimization of
the local free energy given in equation (5) with
respect to both composition andlro parameter yields
a two-phase equilibrium with three pairs of orien-
tation variants for theO-phase because the free
energy functional has three degenerated minima cor-
responding to the threelro parameters. A conven-

Fig. 1. Local specific free energy for parent and product phases
as a function of the content of Nb.

tional free energy versus composition plot can be
obtained by minimizing the free energy with respect
to the lro parameter and then substituting the equilib-
rium lro parameter as a function of composition back
into the free energy expression (see e.g. Fig. 1).

The elastic strain energy as a function of thelro
parameters associated with a coherent hexagonal to
orthorhombic transformation has been derived in [14,
15] based on the linear elasticity theory of Khachatur-
yan [20]. The final form of the total elastic energy of
a multi-variant and multi-phase mixture can be
expressed as

Eel =
V
2
Cijkl ēij ēkl

2 VCijkl ēij O3
p = 1

e0
kl(p)h2

p(r )

+
V
2
Cijkl O3

p = 1

O3
q = 1

e0
ij(p)e0

kl(q) (6)

h2
p(r )h2

q(r )

2
1
2O

3

p = 1

O3
q = 1

E d3g
(2p)3Bpq(n)

{h2
p(r )} ∗

g{h2
q(r )} g

where(…) represents the volume average of (…), V
is the total volume of the system,Cijkl is the elastic
moduli tensor. e is the elastic strain tensor, and
e0(p) is the stress-free transformation strain tensor for
variantp which was defined in equation (14) of [15].
Bpq(n) is a two-body interaction potential given by

Bpq(n) = nis0
ij(p)Vjk(n)s0

kl(q)nl (7)

wheren = g/g is a unit vector in reciprocal space and
ni is its ith component,s0

ij(p) = Cijkle
0
kl(p) and Vij(n)

is a Green function tensor which is inverse to the ten-
sor V 2 1

ij (n) = Cikljnknl,

{h2
q(r )} g = E d3g

(2p)3h
2
q(r )exp( 2 ig•r ) is the Fourier

transform ofh2
q(r ) and {h2

p(r )} ∗
g is the complex conju-

gate of {h2
p(r )} g. The readers are referred to [14, 15]

for more details.
The first two terms on the right-hand side of the

above equation describe the elastic energy due to a
homogeneous deformation. The third term describes
the elastic energy associated with deforming the
stress-free product phase back into its geometrical
shape before the transformation, and the last term
describes the heterogeneous relaxation of the precipi-
tates which does not produce any macroscopic shape
change but affects the shape, size and spatial distri-
bution of the product phase. In this work, the macro-
scopic homogeneous strainēij is assumed to be zero
which corresponds to a system of a single grain
embedded in a poly-crystal material. As a result, the
first two terms vanish.
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2.2. Normalization of the kinetic equations and
choice of the phenomenological parameters

For the convenience of numerical solution, the kin-
etic equations are transformed into dimensionless
form through the introduction of a reduced time,
defined ast = LuDfut, and reduced spatial coordinates,
defined asui = xi/l. In these definitions,uDfu is the
chemical driving force for the phase transformation
under consideration andl is the length unit of the
computational grid size. Substituting these reduced
variables into equations (4)–(6), we get the dimen-
sionless form of the kinetic equations:

∂hp(u,t)
∂t

=

2 S 2 b=2(hp(u,t)) +
∂fa

∂hp(u,t)
+ f

dE9el

dhp(u,t)D (8)

+ x9p(u,t)

∂c(u,t)
∂t

= J=2S (9)

2 a=2c(u,t) +
∂fa

∂c(u,t)D + z9(u,t)

where

f =
4Ge2

s

uDfu
; b =

l
l2uDfu

; (10)

J =
M
Ll2

; a =
r

uDful2
(11)

fa =
a1

2
(c 2 c1)2 +

a2

2
(c2 2 c)O

p

h2
p (12)

2
a3

4O
p

h4
p +

a4

6
(O

p

h2
p)3

where G is the shear modulus,ai =
Ai

uDfu
, i = 1,2,3,4;

andx9p(u,t) =
xp(r ,t)
LuDfu

; z9(u,t) =
z(r ,t)
LuDfu

);

dE9el

dhp(u,t)
=

2hp(u,t)
4Ge2

s

(

2 Cijkl ēije
0
kl(p) + O3

q = 1

kCijkle
0
ij(p)e0

kl(q)h2
q(u,t)

2 { Bpq(n){h2
q(u,t)} g9} ul),

whereg9 = gl.
The solution of the field kinetic equations

(equations (8) and (9)) is determined by the four
dimensionless parameters, i.e.f, b, a and J. The
parametersf, b anda characterize the magnitudes of
specific strain energy and gradient energies with
respect to the chemical driving force. In our simul-
ation, f, b anda have been assumed to be 35, 0.05
and 0.0, respectively. By assuminga = 0.0, we neg-
lect the gradient energy effect due to compositional
inhomogeneity in solving the Cahn–Hilliard diffusion
equation. This implies that the diffusion is described
by a non-linear diffusion equation while the interfa-
cial energy is introduced by the gradient terms in the
long-range order parameter fields only.J is assumed
to be 1.0.

Those phenomenological polynomial expansion
coefficients in equation (12) should be chosen prop-
erly to provide a qualitatively correct description of
the specific free energy of the system. Although an
accurate phase diagram of the system and the free
energy curves ofa2 andO-phase are not available at
the present time, we have chosen
(a1,a2,a3,a4,c1,c2) = (100.0,24.0,22.0,27.8,0.15,0.245)
to fit the estimation of the free energy curves given
by Benderskyet al. (see Fig. 18 in [10]) based on
their experimental work. The local free energy min-
ima defined by equation (12) with the above chosen
parameters are projected onto thef–c plane and plot-
ted in Fig. 1. It shows two branches, one describing
the a2 phase and the other describing theO-phase.
As can be seen, it reproduces what was estimated by
Benderskyet al. (see Fig. 18 in [10]). It should be
noted that the accuracy of the specific free energy is
not critical as long as the sequence of the morphologi-
cal transformation rather than the quantitative values
of the transformation rate is concerned.

3. SIMULATION RESULTS

All the simulations are carried out on a two dimen-
sional (2D) unit cell with 1024× 1024 mesh points.
Equations (8) and (9) are solved numerically in the
Fourier space using a semi-explicit algorithm [21].
Assuming that the microstructure is macroscopically
homogeneous, we can apply periodical boundary con-
ditions along both dimensions. The spatial and time
increment in our numerical solution have been chosen
as dux = duy = 0.125 and dt = 0.02.

The initial condition for the simulation is a homo-
geneousa2 phase described by

c(r ) = c̄; h1(r ) = 0, h2(r ) = 0, h3(r ) = 0;

wherec̄ is the mean Nb composition of the alloy. As
indicated by the common tangent in Fig. 1, the equi-
librium composition for the two coexisting phases are
| 7% (for thea2 phase) and| 15% Nb (at%) (for
the O-phase). Two alloys with c̄ = 12.5 at%
(corresponds to Alloy 1 in Fig. 1) andc̄ = 10 at% Nb
(Alloy 2 in Fig. 1) are considered in this work. In the
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absence of coherent stress, the equilibrium volume
fractions of theO-phase in the two alloys are 69 and
37%, respectively.

According to the local specific free energy curve
in Fig. 1 with the phenomenological parameters
specified in Section 2.2, the initial hexagonal phase
is metastable. The transformation takes place through
a nucleation and growth mechanism. In the simula-
tions, the nucleation process is simulated through the
noise terms in the kinetic equations (8) and (9) which
result in local fluctuations in concentration andlro
parameters leading to nucleation of theO-phase.

The simulated microstructural evolution during iso-
thermal aging of Alloy 1 is shown in Fig. 2. The
shades of gray in the simulated micrographs represent
the values of (h2

1 + h2
2 + h3

2), e.g. the higher the value,
the brighter the shade. Therefore, the white areas rep-
resent theO-phase and the black background rep-
resents thea2 phase. At the reduced timet = 4 (Fig.
2(a)), many precipitates of theO-phase have
appeared. Then the noise terms in the kinetic equa-
tions were turned off. Further evolution of the micro-
structure is controlled by growth and coarsening (Fig.
2(b–d)). At t = 40 (Fig. 2(b)), most of theO-phase
precipitates have rectangle/square shapes and their
spatial arrangements form some unique patterns. This

Fig. 2. Simulated precipitation process of orthorhombic domains from a hexagonal matrix started from the
nucleation stage.

becomes more evident in later stages as shown in Fig.
2(c) and (d). Most of the rectangles and squares are
connected at their corners. In the upper left corner of
Fig. 2(c), one can find some nearly perfect hexagons
of the parenta2 phase surrounded by the variants of
the O-phase which are connected at their corners and
are evenly spaced. Some other regular patterns can
also be found depending on how the variants of the
O-phase come into contact.

To better identify and understand these patterns we
need to distinguish the three pairs of orientation vari-
ants of theO-phase. For this purpose, we recast the
result shown in Fig. 2(d) by a different plotting
scheme (Fig. 3) where the shades of gray represent
the values of (h2

1 2 h2
2 2 2 × h2

3). Accordingly, four
different shades of gray correspond to pair one, parent
a2 phase, pair two, and pair three, respectively, with
decreasing brightness. Our simulation demonstrates
that in those areas where only two orientation variants
of theO-phase are present, the rectangular and square
shaped precipitates form a chess-board pattern (refer
to the area enclosed by a dashed circle and the basic
element of the pattern shown in Fig. 4(a)) which is
very similar to the microstructure obtained by Bouar
et al. for the cubic→tetragonal transformation in a
Co–Pt alloy in their numerical and experimental stud-
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Fig. 3. Recast of microstructure shown in Fig. 2(d) to dis-
tinguish three pairs of orientation variants of theO-phase. The
chess-board-like structure can be found in an area enclosed by
a dashed circle where only two orientation variants of theO-
phase are present. Enclosed in the white ellipses are some par-

allel striations of alternatinga2 + O.

ies [22]. Since there are only two orientation variants
in their 2D simulations of the cubic→tetragonal trans-
formation, the chess-board structure is the only pat-
tern observed. In the current simulation, however,
there are three pairs of orientation variants and more
complex morphological patterns are formed. For
example, when three or more variants are present,
four different kinds of morphological patterns have
been found in our simulation, as illustrated in Fig.
4(b–e). There are also some parallel striations of alter-
natinga2 andO-phase (refer to those areas enclosed
in white ellipses in Fig. 3). These patterns are unique
for a two-phase mixture of thea2 and O-phases and
were not found in the single phase multi-variant mix-
ture produced by a congruent transformation from
hexagonal to orthorhombic in our previous simulation
studies [14, 15]. In these patterns, thea2 parent phase
particles enclosed by theO-phase precipitates assume
different shapes including triangles, trapezia, irregular
pentagons, or hexagons with included angles in mul-
tiples of 60°. The final microstructure shown in Fig.
2(d) consists of various combinations of these basic
patterns.

Fig. 4. Schematic simulated patterns where different filling patterns are employed to represent three pairs of
orientation variants of theO-phase. The central untransformeda2 phase assume different shapes including

triangles, trapezia, irregular pentagons, or hexagons with included angles in multiples of 60°.

The simulated microstructural evolution during
precipitation in Alloy 2 with 10.0 at%Nb is shown in
Fig. 5. The shades of gray are the same as those
employed in Fig. 3. In this simulation, the noise terms
were also turned off att = 4. The particles of theO-
phase formed at this moment are illustrated in Fig.
5(a). Further growth and coarsening of theO-phase
particles lead to some unique patterns which are
enclosed by dashed ellipses in Fig. 5(b). These pat-
terns are summarized in Fig. 6. Some of them are
similar to what have been summarized in Fig. 4, but
the dominant morphology of precipitates is thin plate
in Fig. 5(b) in contrast to that of rectangle/square
found in Fig. 2. This difference can be attributed to
the fact that there is less interference among the three
pairs of variants in the current case with lower vol-
ume fraction of theO-phase. As we have demon-
strated before [15], a single variant without inter-
ference from other variants always forms a thin plate
of well-defined habit plane as a result of minimizing
the associated elastic energy.

The spatial distribution of precipitates is rather
inhomogeneous. In areas where more precipitates are
present (see those areas highlighted by white circles
in Fig. 5(b)), one can find that the dominant particle
shapes for theO-phase are rectangle/square which are
essentially the same as those described earlier in Fig.
2 with higher volume fraction of theO-phase. How-
ever, these kind of structures are unstable against
coarsening due to the fact that they have more inter-
faces and the elastic energy associated with the struc-
tures is also higher than that associated with a thin
plate. For example, the precipitates enclosed in the
lower white circle in Fig. 5(b) almost completely dis-
appeared at a later stage att = 180 (Fig. 5(c)). The
precipitates enclosed in the upper white circle in Fig.
5(b) also disappeared att = 600 (Fig. 5(d)). As a
result, one can hardly find precipitates of
rectangle/square shapes in the final microstructure
shown in Fig. 5(d) after a relatively long period of
coarsening.

It is interesting to note that strong particle
rearrangement takes place during the coarsening pro-
cess. One example is the alignment of two black
plates enclosed in the solid ellipse in Fig. 5(c) as com-
pared to its configuration at earlier stages (e.g. Fig.
5(b)). As a result, a very regular pattern is formed.
In another area of Fig. 5(c) (enclosed by a dashed
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Fig. 5. Simulated precipitation process with 10.0 at%Nb as the mean composition of the Ti–Al–Nb alloy.
Microstructural patterns enclosed by dashed ellipses in (b) and (d) are to be compared with experimental
observations. The shades of gray representing the parenta2 and the three pairs of orientation variants of the

O-phase are indicated in (c).

Fig. 6. Schematic simulated patterns with relatively low volume fraction ofO-phase in ana2 matrix. Both
domain/domain and domain/matrix interfaces are involved.

ellipse), a spear-like pattern formed by two different
variants is in contact with a black variant from a pat-
tern below. With further coarsening, we found that
the pattern below disappeared (Fig. 5(d)) leaving the
black variant joining the spear-like pattern and con-
verting it into another regular pattern as shown in Fig.
6(c). This pattern was observed by Muraleedharan
and Banerjee [12]. They have suggested that this kind
of pattern is most likely formed by nucleation of a
third variant at the junction of two existing variants
because it is unlikely that three plates could have ter-
minated at the same point. Our dynamic simulation
suggests that nucleation of a third variant is not
necessary for the formation of this particular pattern,

i.e. the pattern can simply emerge during the coarsen-
ing process.

During the coarsening process, most precipitates
show simple scaling. Following the dynamic evol-
ution of some individual variants/patterns, e.g. the
black and white variants indicated by black arrows in
Fig. 5(c) and the spear-like pattern enclosed by the
solid ellipse in Fig. 5(d), one can find significant plate
thickening (thinning) and domain coarsening took
place betweent = 180 andt = 600.

4. EXPERIMENTAL VALIDATION AND DISCUSSION

Our computer simulations performed without any
a priori assumption on the possible geometry of the
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microstructure have revealed some very interesting
morphological patterns for the two-phase and multi-
variant coherent mixture of Ti–Al–Nb alloys. The
morphology and mutual arrangement of theO-phase
are very different from those predicted for the hexag-
onal→orthorhombic congruent ordering [14, 15]
where the equilibrium state is a single-phase multi-
variant coherent aggregate. In addition, the volume
fraction of theO-phase has been shown to have a
strong influence on the domain structure formed. To
validate these predictions, in the following we com-
pare our simulation results with experimental obser-
vations and discuss the mechanisms underlying the
formation of those basic motifs shown in Figs 4
and 6.

Experimental study of the transformation is perfor-
med by TEM on an alloy with a composition Ti–
31.25Al–18.75Nb (at%). In this alloya2 precipitates
first form in a B2 matrix at 1373 K, with the compo-
sitions of thea2 and B2 phases being Ti–29Al–15Nb
(at%) and Ti–34.5Al–14Nb (at%), respectively.
Annealing of this alloy at 973| 1073 K results in
further decomposition of thea2 phase into a two-
phase mixture ofa21O-phase. As one may have
noticed, the alloy composition is not exactly the same
as either of those that we employed in our simulation
and the phase transformation path is more compli-
cated. However, the volume fraction of theO-phase
within the a2 phase is found to be similar to that in
Alloy 2 chosen in the simulation. In addition, the
interfaces betweena2 and O-phase are found to be
coherent. In the simulation, we have employed the
same lattice parameters for the equilibriuma2 andO-
phase found in the experiment. Therefore, the experi-
mental observations can be employed to validate
our predictions.

To compare the experimental observation with the
simulation predictions, we need to examine the
microstructure in the direction of thec-axis of the
hexagonal phase. In this orientation diffraction pat-
terns of thea2 and O-phase are different only by a
small difference in lattice parameters, and therefore
it is extremely difficult to identify different variants
from selected area or microdiffraction patterns (Fig.
7). In our microstructural analysis we use orientations
of domain boundaries anda2/O-phase interfaces to
identify thea2 matrix and three pairs of variants of
the O-phase. We assumed that the inter-phase and
inter-variant interfaces are strain-free coherent habit
planes, with orientations dictated by lattice mismatch
and symmetry relationship, respectively. The
expected orientations of the habit planes are shown
in Fig. 7(b) and (c), where the strain-freea2/O-phase
interfaces are calculated to be approximately {470)O*
using the following orthorhombic lattice parameters:

* {470) means that the first two numbers can be permuted
and have their signs changed but the third number is spe-
cific.

a2: a = 0.59 nm, b = 0.985 nm,c = 0.465 nm; O-
phase:a = 0.609 nm,b = 0.957 nm,c = 0.465 nm.

Fig. 8 shows an example of a transformed precipi-
tate in the alloy annealed at 1373 K (to forma2) and
then at 1123 K. The precipitate has an envelope of
an inter-diffusion zone where thea2 transforms to the
O-phase. The interior of the precipitate has undergone
the a2→a2 + O decomposition where three pairs of
variants of theO-phase coexist with thea2 matrix.

Examples of different microstructural patterns
involving interaction between two or more variants
of the O-phase in thea2 matrix observed in the
experiment are shown in Fig. 9. Fig. 9(a) shows
impingement between two variants leading to a spear-
like pattern with a twin interface between them. In
Fig. 9(b), one can find that the thickness of variant 2
is affected by the contact of variant 1 which is very
similar to what has been predicted by our simulation
(compare it with the pattern enclosed by the white
dashed ellipse in Fig. 5). Fig. 9(c) shows a pattern of
two intersecting variants with an island of the matrix
phase at the intersection. Such a configuration is the
most frequently observed pattern in this alloy. Fig.
9(d–f) shows some patterns consisting of more vari-
ants. All these patterns agree very well with those
predicted in our simulation as shown in Fig. 6.

Muraleedharanet al. [11, 12] have also studied the
morphology and spatial distribution of theO-phase in
Ti–Al–Nb alloys. They have identified a composition
range and a heat treatment schedule with which an
isothermal decomposition of thea2 into a two-phase
mixture ofa2 andO-phase takes place without inter-
vention of theb phase. They investigated the morpho-
logies and distribution of theO-phase at various aging
temperatures ranging from 1173 to 673 K. The aging
temperature was shown to have a significant influence
on the volume fraction of theO-phase. The volume
fractions of theO-phase formed at the aging tempera-
tures of 1173 and 1073 K are comparable with those
in the two alloys presented in Section 3. In the follow-
ing, these results are compared to our simulation pre-
dictions.

On aging at 1173 K, which produces a relatively
low volume fraction of theO-phase, the experimental
observations show that the morphology of theO-
phase precipitate is also thin plate and the mutual
arrangement of these plates forms some intersection
in multiples of 30° with respect to each other (Figs
7, 8, 10 and 11 in [12]), which agrees remarkably
well with those predicted by our simulations (Figs 5
and 6).

On aging at 1073 K, which produces a relatively
high volume fraction of theO-phase (see Fig. 3 in
[11]), the initial microstructures contain some fine
scale domain structures as a result of the decompo-
sition. These domains develop into “mosaic” patterns
during the growth and coarsening process. The
mosaic patterns are composed of alternatinga2 and
O-phase platelets which are similar to what we pre-
dicted. For example, there are many substructures of
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Fig. 7. (a) Selected area diffraction pattern from an area where all three pairs of variants of theO-phase and
thea2 matrix are present; (b) domain/domain interfaces along {110)O or {130)O where I, II, and III represent
the three pairs of structural variants of theO-phase. Interface between two variants, say variant I and II, is
illustrated by I–II; and (c) domain/matrix interfaces along {470)O where I1 and I2 correspond to two near-

orthogonal strain-free interfaces of variant I with the matrix.

Fig. 8. TEM image of a precipitate in the alloy annealed at 1373 K and then at 1123 K for 77 h. The precipitate
has an envelope of inter-diffusion zone where 100%O-phase was formed. Interior of the precipitate undergoes

the a2→a2 + O decomposition.

parallel striations of alternatinga2 andO-phase in the
experimental observation (Fig. 3 in [11]). In Fig. 3,
one can also find this kind of microstructural pattern
(refer to those areas enclosed in white ellipses). In
addition, our simulations have predicted some other
microstructural features consisting of the basic pat-
terns illustrated in Fig. 4. In our parallel experimental
study carried out in an alloy with comparable volume
fraction of theO-phase, we have observed the chess-
board-like structure (see the central part of Fig. 10).
Similar patterns can be easily identified in Fig. 3.
However, microstructural patterns based on some
other basic motifs, e.g. (b–e) shown in Fig. 4, have
not been observed yet in the existing experimental
studies. Further validation from experimental studies
is desirable.

Further lowering the aging temperature to 973 K, a
completely different microstructural pattern emerges
(Fig. 11(a)). While alternatinga2 + O can still be
found in some areas, the microstructure is mainly
composed of colonies consisting solely of the three
pairs of variants of theO-phase, which indicates that
the aging at 973 K has resulted in an even higher
volume fraction of theO-phase. To test the influence
of a very high volume fraction of theO-phase on the

microstructural pattern, we have carried out an
additional simulation with the mean composition of
Nb being 25.0 at%, with which the alloy is situated
in a congruent transformation regime (refer to Figs
1 and 12. In Fig. 11(b), we show the corresponding
microstructure formed at the final stage of the simul-
ation. The shades of gray are the same as those
employed in Fig. 5 but here there is no retaineda2

phase. The microstructure shown in Fig. 11(b) is
completely different from those shown earlier in Figs
2 and 5. The dominant morphology for a single vari-
ant is diamond-like which is what has been observed
in Fig. 11(a). The spatial arrangement among differ-
ent variants forms various patterns, e.g. a star pattern
enclosed by a black ellipse in Fig. 11(b) which is very
similar to the experimentally observed one enclosed
by a white ellipse in Fig. 11(a).

In our previous work dealing with congruent hex-
agonal to orthorhombic transformation [15], we cal-
culated the habit plane orientations for the three pairs
of orientation variants of theO-phase. Each of these
habit planes actually corresponds to an invariant plane
strain condition (or strain-free interface) which can
be obtained by simple calculations [20, 23]. As shown
in Fig. 7(c), one can find that those invariant planes
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Fig. 9. Typical patterns observed in the Ti–31.25Al–18.75Nb
(at%) alloy.M stands for thea2 matrix, 1–3 for the three pairs

of orientation variants of theO-phase.

Fig. 10. TEM micrograph of a Ti–Al–Nb alloy with higher
volume fraction of theO-phase.M representsa2 and 1–3 the
three pairs of orientation variants of theO-phase. The arrange-
ment of the two variants of theO-phase in the central region

forms the chess-board-like pattern.

are rotated with respect to each other by multiples of
30°. This explains why the three pairs of orientation
variants in the alloy of high volume fraction of the
O-phase (Fig. 3) favor the shape of a rectangle
because it is bounded by invariant planes. By forming

those collective patterns shown in Fig. 4, the elastic
energy of the system could be further minimized.

In the case with lower volume fraction of theO-
phase (Figs 5 and 6), the same principle should also
apply (e.g. see those variants enclosed by white
circles in Fig. 5(b)). However, the dominant mor-
phology of a variant here is a thin plate. Most of the
thin plates end up with a sharp tip (Fig. 5(d)) sharing
a common interface with another variant like those
illustrated in Fig. 6(b) and (c). As a result, it intro-
duces two types of interfaces, i.e. those between
domain/matrix and domain/domain. As can be seen
from Fig. 7(b), the strain-free orientations of the
domain/domain interfaces are also rotated with
respect to each other by multiples of 30° and they
were determined to be {110}O and {130}O planes
[13]. Those orientations for the two types of inter-
faces illustrated by dashed lines in Fig. 7(b) and (c)
coincide if we rotate one set (each with six members)
with respect to the other by)| 15°. This is the origin
of the pattern shown in Fig. 4(b) where two variants
30° rotated with respect to each other are evenly sep-
arated by a midrib (domain/domain interface) leaving
the tips of each variant at an angle of approximately
15°. For the pattern shown in Fig. 4(c), it is basically
the same but the tip of the central variant is 30°
spread due to the fact that it is accommodated by two
domain/domain interfaces on both sides. The above
analysis can be extended in a similar way to explain
those more complicated patterns shown in Fig. 4(d),
(f) and (g) where two types of interfaces coexist.

It should be pointed out that only homogeneous
nucleation is considered and the nucleation density
is assumed to be very high in our simulations. The
morphological evolution may follow different paths
if heterogeneous nucleation is the prevailing mech-
anism or the nucleation density is relatively low. Cor-
responding studies with controlled nucleus density
are underway.

5. SUMMARY

A phase-field model was developed to simulate the
precipitation process of orthorhombic (O-phase)
phase particles from a hexagonal (a2) matrix in the
Ti–Al–Nb alloy system. Two alloy compositions
were considered to examine the influence of volume
fraction of the O-phase on the microstructure. Our
simulation demonstrates that in the alloy with a
higher volume fraction of theO-phase the mor-
phology of the precipitates will be mainly
rectangle/square shapes on the (0001) plane of thea2

phase. These rectangle/square precipitates contact
each other at their corners, forming various self-
accommodating patterns. In the alloy with lower vol-
ume fraction of theO-phase, the dominant mor-
phology for the precipitate is thin plates and their
mutual arrangement also leads to a number of unique
patterns. The morphology of an individual precipitate
and those unique patterns formed by collective
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Fig. 11. (a) Microstructural pattern observed on aging at 973 K [11]. (b) Simulated morphological pattern at
t = 300 with 25.0 at%Nb as the mean composition of the Ti–Al–Nb alloy.

Fig. 12. Plot of local specific free energy against onelro para-
meter for different representative content of Nb.

arrangement of several orientation variants of precipi-
tates agree remarkably well with experimental obser-
vations. All the inter-phase and inter-variant inter-
faces are found to be invariant planes which minimize
the elastic energy.
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