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AbstractÐThe e�ect of elastic interaction on the formation and dynamic evolution of multi-domain micro-
structures during a hexagonal to orthorhombic transformation in the absence and presence of an externally
applied strain ®eld is investigated numerically using the phase ®eld model. In particular, three cases are
considered, which include a single variant, two variants, and all three variants of the orthorhombic phase
produced by the transformation. In each case, the morphology and spatial distribution of the orientation
variants are characterized. It is shown that nucleation and growth of a single variant produces thin plates
of the orthorhombic domains with de®nite habit planes. In the case of two variants, the domains developed
at the initial stages are also platelets of well-de®ned habit planes, which is similar to the case of a single
variant. However, the impingement and intersection of the platelets of di�erent variants results in the for-
mation of twin boundaries and ``zig-zag'' patterns. The overlap regions of the ``zig-zag'' cross sections
remain untransformed which agrees very well with experimental observations. If all three variants are pre-
sent, the hexagonal to orthorhombic transformation results in a number of unique multi-domain structures
such as the star patterns, compound star patterns, fan patterns, etc., which have been frequently observed
experimentally in systems undergoing hexagonal to orthorhombic or similar transformations. It is found
that if the boundary of the system is constrained, e.g. a grain embedded in a polycrystalline material, the
transformation can go to completion only when all three variants are present. In the presence of external
strain ®eld, the coupling between the applied strain ®eld and the stress-free transformation strain associated
with the domain formation leads to selective growth of variants. # 1999 Acta Metallurgica Inc. Published
by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Most advanced engineering materials are inherently

heterogeneous. Their microstructure consists of

di�erent orientation variants and/or phases.

Structural phase transformation is still the most

e�ective way to produce the multi-domain and

multi-phase microstructures and hence to control

the properties. For example, the hexagonal to

orthorhombic transformation observed in many sys-

tems [1±9] produces three orientation variants

which form very complicated multi-domain mor-

phological patterns. If no external ®eld is applied,

all three orientation variants are energetically equiv-

alent and hence have the same probability of

appearing during the transformation. The key fac-

tor that controls the domain structure and its tem-

poral evolution in this case is the elastic

interactions among the internal strain ®elds associ-

ated with di�erent orientation domains. The in-

ternal strain ®elds arise from the lattice

accommodation among the parent phase and the

orientation variants of the product phase as well as

among the orientation variants themselves to main-

tain the lattice continuity across the interphase and

domain boundaries. In the presence of an external

®eld, there is an additional coupling between the

external ®eld and the internal strain ®elds. Such a

coupling may change the shape, orientation, volume

fraction, and spatial distribution of the variants.

The shape, boundary orientation, spatial arrange-

ment, and relative amount of these orientation

domains play an important role in determining the

physical and mechanical properties of the material.

The main objective of this paper is to understand

the e�ect of the elastic interactions on the for-

mation of the domain structures and their temporal

evolution. The phase-®eld kinetic model is

employed for this study, which has proved to be

very useful in modeling the mesoscale microstruc-

tural evolution during coherent phase transform-

ations [10±13] where the microstructural evolution

Acta mater. Vol. 47, No. 17, pp. 4375±4386, 1999
# 1999 Acta Metallurgica Inc.

Published by Elsevier Science Ltd. All rights reserved.
Printed in Great Britain

1359-6454/99 $20.00+0.00PII: S1359-6454(99)00247-5

{To whom all correspondence should be addressed.

4375



is controlled by the elastic interactions. In this
work, we consider a hexagonal to orthorhombic

ordering in a prototype two-dimensional model sys-
tem. The interfaces between the parent and product
phases as well as between di�erent orientation

domains are assumed to remain coherent during the
entire transformation.

2. THE PHASE-FIELD KINETIC MODEL

In the phase-®eld model, an arbitrary multi-phase
and multi-domain microstructure is described by a
small set of mesoscopic ®eld variables. For the hex-

agonal to orthorhombic transformation considered
in this paper, for example, the three orientation
domains of the orthorhombic phase can be

described by three long-range order (lro) parameter
®elds

Z1�r, t�, Z2�r, t�, Z3�r, t�
where t is the time and r is the spatial coordinate
vector. Each of these lro parameter ®elds character-

izes the shape, size, and spatial distribution of one
of the three orientation domains. Each lro par-
ameter ®eld assumes a non-zero value within a par-

ticular domain and vanishes within the parent
phase and other domains. The temporal evolution
of these ®eld variables and hence the microstruc-

tural evolution are described by the time-dependent
Ginzburg±Landau (TDGL) equations [14]

@Zp�r, t�
@ t

� ÿL dF
dZp�r, t�

� xp�r, t�; p � 1, 2, 3 �1�

where L is the kinetic coe�cient and F is the total
free energy of the system, dF=dZp�r, t� forms the
thermodynamic driving force for the spatial and

temporal evolution of Zp, and xp�r, t� is the
Langevin noise term which is taken to be Gaussian
distributed and its correlation properties meet the

requirements of the ¯uctuation±dissipation theorem
[15]

hxp�r, t�xp�r 0, t 0 �i � 2kBTLd�rÿ r 0 �d�tÿ t 0 � �2�
where kB is the Boltzmann constant. The origin of
the noise term is related to the thermal ¯uctuations
of Zp at temperature T.

To numerically solve equation (1), one has to for-
mulate the free energy functional F in terms of the
®eld variables, Z1�r, t�, Z2�r, t�, and Z3�r, t�. In a

coherent transformation, the free energy functional
consists of the chemical free energy and the elastic
strain energy.

2.1. Chemical free energy

The non-equilibrium chemical free energy as a

functional of the ®eld variables can be approxi-
mated by the conventional Ginzburg±Landau phe-
nomenological formulation [11]. It contains a local
speci®c free energy, f �Z1, Z2, Z3�, and non-local gra-

dient terms, i.e.

F �
�
V

241

2

X3
p�1

lp�rZp�2 � f �Z1, Z2, Z3�
35 dV �3�

where lp are gradient energy coe�cients. The inte-
gration in equation (3) is carried out over the entire
system volume V. As usual, the gradient terms in

equation (3) provide an energy penalty to inhomo-
geneities in the ®eld variables which takes place pri-
marily at interfaces. The local speci®c free energy

f �Z1, Z2, Z3� in equation (3) de®nes the basic bulk
thermodynamic properties of the system and its
temperature dependences. It is usually approxi-
mated by a Landau-type polynomial expansion fol-

lowing the symmetry operations with respect to the
parent phase [9]. The number of allowed terms
included in the polynomial usually depends on the

nature (e.g. ®rst order or second order) and sym-
metry change of the transformation as well as the
desired accuracy of the local free energy. For the

hexagonal 4 orthorhombic transformation con-
sidered in this paper, a general expansion with
terms up to sixth order reads

f �Z1, Z2, Z3�

� A2

2
�Tÿ Tc��Z21 � Z22 � Z23� �

A3

3
�Z1Z2Z3�

� A41

4
�Z41 � Z42 � Z43� �

A42

4
�Z21Z22 � Z22Z

2
3

� Z21Z
2
3� �

A5

5
�Z1Z2Z3��Z21 � Z22 � Z23�

� A61

6
�Z61 � Z62 � Z63� �

A62

6
�Z41Z22 � Z42Z

2
3

� Z43Z
2
1� �

A63

6
�Z21Z22Z23� �4�

where Tc is the temperature below which the parent

hexagonal loses its stability with respect to the
transformation to the orthorhombic phase.
A hexagonal to orthorhombic transformation

such as the h.c.p.±B19 order4 disorder transform-

ation is thermodynamically ®rst order. Therefore,
the coe�cient A41 should be negative and A61 be
positive. However, as we pointed out in a recent

paper [16], the particular form of the free energy
model has no signi®cant e�ect on the domain struc-
ture since it is the competition between the domain

wall energy and the elastic strain energy that deter-
mines the domain structure after the transformation
is completed. Therefore, we employ a simpler three-

component order parameter model with fewer
expansion coe�cients to describe the local free
energy density of a homogeneous system in this
study, i.e.
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f �Z1, Z2, Z3� �
1

2
A1�Tÿ Tc��Z21 � Z22 � Z23�

ÿ 1

4
A2�Z41 � Z42 � Z43� �

1

6
A3�Z21 � Z22 � Z23�3:

�5�

2.2. Elastic strain energy

Hexagonal 4 orthorhombic congruent ordering
produces strain e0ij in the system. The stress-free

strain ®eld is related to e0ij and the lro parameter
through

e0ij�r� �
X3
p�1

e0ij� p�Z2p�r� �6�

where p denotes one of the three orthorhombic var-
iants. The elastic strain is the di�erence between the
total strain and the stress-free strain, i.e.

eel
ij �r� � eij�r� ÿ e0ij�r� � eij�r� ÿ

X3
p�1

e0ij� p�Z2p�r�: �7�

In the homogeneous modulus approximation, the
elastic stress ®eld is related to the elastic strain

through

sij�r� � Cijkleel
kl�r� � Cijkl

24ekl�r� ÿX3
p�1

e0kl� p�Z2p�r�
35
�8�

where Cijkl is the elastic modulus tensor.
The total elastic energy of the system is given by

Eel � 1

2

�
V

sij�r�eel
ij �r� d3�r�: �9�

According to Ref. [13], the ®nal form of the total
elastic energy of a multi-domain mixture can be
expressed as

Eel � V

2
Cijkleijekl ÿ VCijkleij

X3
p�1

e0kl� p�Z2p�r�

� V

2
Cijkl

X3
p�1

X3
q�1

e0ij� p�e0kl�q�Z2p�r�Z2q�r�

ÿ 1

2

X3
p�1

X3
q�1

�
d3g

�2p�3Bpq�n�
n
Z2p�r�

o�
g

n
Z2q�r�

o
g

where �. . .� represents the volume average of ( . . .)
and V is the total volume of the system. In this

work, we limit ourselves to the case that the whole
system is subject to a homogeneous applied strain.
For this particular case, eij is equal to the applied

strain ea
ij [13]. The ®rst term on the right-hand side

of the above equation represents the increment of
elastic energy related solely to the applied strain/
stress. The second term re¯ects the interaction of

the applied strain/stress with the stress-free trans-
formation strain of the product phase which is
usually referred to as the mechanical driving force

in the context of martensitic transformation [17±
19]. The last two terms correspond to the elastic

energy generated by an arbitrary structure hetero-
geneity where Bpq(n) is a two-body interaction po-
tential given by

Bpq�n� � nis0ij� p�Ojk�n�s0kl�q�nl �11�
where n � g=g is a unit vector in reciprocal space
and ni is its ith component, s0ij� p� � Cijkle0kl� p�, and
Oij(n) is a Green function tensor which is inverse to
the tensor Oÿ1ij �n� � Cikljnknln

Z2q�r�
o

g
�
�

d3g

�2p�3 Z
2
q�r�exp�ÿig � r�

is the Fourier transform of Z2q�r� and fZ2p�r�g�g is the
complex conjugate of fZ2p�r�gg.

3. APPLICATION OF THE MODEL TO COHERENT
HEXAGONAL TO ORTHORHOMBIC

TRANSFORMATIONS

The general stress-free transformation strain ten-

sor for a hexagonal to orthorhombic transformation
is given by

e0�1� �
0@ a 0 0
0 b 0
0 0 c

1A: �12�

If we assume that there is no volume change for the

transformation and the lattice parameter di�erence
between the hexagonal and orthorhombic phases
along the c-direction can be neglected, the trans-
formation strain becomes

e0�1� � es

0@ 1 0 0
0 ÿ1 0
0 0 0

1A �13�

where es represents the magnitude of the shear de-
formation. The transformation strains for the other
two variants can be obtained by symmetry oper-

ations, a 1208 and a 2408 rotation, respectively,
which is illustrated in Fig. 1. Therefore, the stress-
free strain tensors for all three variants are given by

e0�1� � es

�
1 0
0 ÿ1

�
,

e0�2� � es

�
ÿ1=2 ���

3
p
=2���

3
p
=2 1=2

�
,

e0�3� � es

�
ÿ1=2 ÿ ���

3
p
=2

ÿ ���
3
p
=2 1=2

�
:

�14�

With the particular form of the transformation

strain given in equations (14), the domain structure
evolution during the hexagonal 4 orthorhombic
transformation can be e�ectively modeled in two
dimensions without losing any essential physics.

Assuming that the gradient energy coe�cients are
independent of the lro parameters, i.e. lp � l, and
taking the variational derivative of the chemical
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free energy and elastic strain energy with respect to

the lro parameters, the ®eld kinetic equation (1)
becomes

@Zp�r, t�
@ t

� ÿL
(
ÿ lr2�Zp�r, t�� �

@ f

@Zp�r, t�
� dEel

@Zp�r, t�

)

� xp�r, t�; p � 1, 2, 3

where f is de®ned in equation (5)

dEel

dZp�r, t�
� 2Zp�r, t�

24ÿ Cijklea
ije

0
kl� p�

�
X3
q�1

"
Cijkle0ij� p�e0kl�q�Z2q�r, t�

ÿ
�
Bpq�n�

n
Z2q�r, t�

o
g

�
r

#35
where fBpq�n�fZ2q�r, t�gggr is the inverse Fourier
transform of Bpq�n�fZ2q�r, t�gg. The readers are
referred to Refs [12, 13] for more details.

Assuming that the system is elastically isotropic
(on the basal plane of a hexagonal lattice, the elas-
tic constants are indeed isotropic) the Green func-

tion in equation (11) becomes

Oij�n� � dij
G
ÿ ninj

2G�1ÿ n� �17�

where G is the shear modulus and n is Poisson's

ratio of the material under investigation.
Substituting equation (17) into equation (11) and
using equations (14) in the de®nition of s0ij� p� �
Cijkle0kl� p� gives

Bpq�n� � 4Gnie0ij� p�e0jl�q�nl

ÿ 2G
1

1ÿ n
�nie0ij� p�nj ��nke0kl�q�nl �: �18�

Substituting the transformation strains (14) into

equation (18), we have

Bpq�n� � 2Ge2s

�
3dij ÿ 1ÿ 1

1ÿ n
I� p�I�q�

�
�19�

where dij is the Kronecker-delta function and

I� p� �
�
n21 ÿ n22, ÿ

n21
2
� n22

2
�

���
3
p

n1n2,

ÿ n21
2
� n22

2
ÿ

���
3
p

n1n2

�
:

�20�

The diagonal terms of Bpq represent the self energies
of the three orientation variants and the o�-diag-
onal terms represent the interactions between the

variants. In principle, if we assume the interfacial
energy of the domain boundaries to be isotropic,
their orientations can be determined from the elastic
energy minimization. The coe�cient Ge2s in

equation (19) de®nes the typical elastic energy of
the system. It has been used in the simulation as a
normalization factor. The shear magnitude es is

used as the unit to de®ne the externally applied
strain.
Before the numerical simulation, the kinetic

equations should be presented in their dimensionless
forms. Following the same line as in Ref. [12], we
have introduced a reduced time, de®ned as

t � LjDf, and reduced spatial coordinates, de®ned
as ui � x i=l. In these de®nitions, jDfj is the free
energy di�erence between the hexagonal and
orthorhombic phases (it is a driving force for the

transformation at the aging temperature), and l is
the length scale assigned to the computational grid
increment. Substituting these reduced variables into

equations (15) and (16), we get the dimensionless
form of the kinetic equation:

@Zp�u, t�
@t

� ÿ
(
ÿ br2�Zp�u, t��

� @ fa
@Zp�u, t�

� a
dE 0el

dZp�u, t�

)
� x 0p�u, t�

�21�

where

a � 4Ge2s��Df�� , b � l
l2
��Df��

fa � 1

2
a1�Z21 � Z22 � Z23� ÿ

1

4
a2�Z41 � Z42 � Z43�

� 1

6
a3�Z21 � Z22 � Z23�3 �22�

with

Fig. 1. Relative position of the three domains.
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a1 � A1��Df�� , a2 � A2��Df�� , a3 � A3��Df��
and

dE 0el

dZp�u, t�
� 2Zp�u, t�

4Ge2s

24ÿ Cijklea
ije

0
kl� p�

�
X3
q�1

"
Cijkle0ij� p�e0kl�q�Z2q�u, t�

ÿ
�
Bpq�n�

n
Z2q�u, t�

o
g 0

�
u

#35
where

g 0 � gl,

hx 0p�u, t�xp�u 0, t 0 �i �
2kBT��Df��l3 d�uÿ u 0 �d�tÿ t 0 �:

To solve equation (21), the dimensionless par-
ameters a, b, a1, a2, and a3 need to be speci®ed. a
and b characterize the ratio of strain energy and
interfacial energy vs chemical driving force. They

are assumed to be 15.0 and 0.1, respectively, in this
simulation. The parameters a1, a2, and a3 de®ne the
chemical free energy. These polynomial expansion

coe�cients in our phenomenological chemical free
energy functional have been chosen in such a way
that it provides a qualitatively correct geometry of

the free energy surface, e.g. with triple degenerated
global minima at �Z1 � 1, Z2 � 0, Z3 � 0�,
�Z1 � 0, Z2 � 1, Z3 � 0�, and �Z1 � 0, Z2 � 0, Z3 � 1�,
which correspond to each of the three orientation

variants of the orthorhombic phase, and a local
minimum at �Z1 � 0, Z2 � 0, Z3 � 0�, which corre-
sponds to the parent hexagonal phase. The follow-

ing values have been used in this work: a1 � 1:82,
a2 � 19:7, and a3 � 18:0. The normalized chemical
free energy for one single domain is illustrated in

Fig. 2.

4. RESULTS AND DISCUSSION

Equation (21) is solved numerically in reciprocal
space using a semi-explicit algorithm [20]. The sys-
tem size is 1024� 1024 grid points for all the simu-

lations. Periodical boundary conditions are applied
along both dimensions. All the simulations start
from a homogeneous hexagonal phase characterized

by Z1 � Z2 � Z3 � 0, which is metastable according
to Fig. 2. The nucleation process of the stable
orthorhombic phase is described by the Langevin

noise terms in the equation. After a certain number
of nuclei have been generated, the noise terms are
switched o� and the microstructural evolution is
controlled by growth and coarsening of the nuclei.

4.1. Nucleation and growth of the orthorhombic
phase in a single-variant system

The main concern here is the habit plane orien-
tation of a single domain. This can be determined
from the elastic energy minimization. As can be
seen from the elastic energy expression in equation

(10), the ®rst three terms on the right-hand side are
independent of the microscopic arrangement of the
structural pattern and they are either a function of

applied ®elds or a function of the total amount of
the transformed domain. The last term containing
Bpq is, however, microstructure-dependent. The

energy will be minimized when Bpq(n) reaches its
maximum. The three single domains should be
aligned along the orientations with maximized
B11(n), B22(n), B33(n), respectively. This requires

that (I(1))
2
, (I(2))

2
, and (I(3))

2
be minimum consid-

ering the expression of Bpq(n) in equation (19).
Taking the expression of I(p) in equation (20) and

substituting n1 and n2 with cos(y) and sin(y), re-
spectively, one has

�I� p��2 � �cos2�2y�,

cos2�2y� 60�, cos2�2yÿ 60��:
�23�

Minimization of (I(1))
2
, (I(2))

2
, and (I(3))

2
with

respect to y leads to the habit plane orientations for
each variant:

y�domain 1� �2458, y�domain 2� �
�
158
ÿ758 ,

y�domain 3� �
�
758
ÿ158 :

�24�

Each variant has two identical orthogonal domains.

The predicted habit plane orientations for the three
domains are illustrated in Fig. 3. The domain struc-
ture of the three variants obtained from the compu-
ter simulation is shown in Fig. 4. The white regions

Fig. 2. The speci®c free energy as a function of the lro
parameter.
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represent the orthorhombic phase while the black

areas represent the parent hexagonal phase. Figures
4(a)±(c) show the particle morphologies of the three
variants of the orthorhombic phase formed at an
early stage of nucleation and growth (t � 30) while

Figs 4(d)±(f) correspond to a later stage (t � 1000).
At all stages, the orthorhombic phase particles
assume a thin plate morphology along the predi-

cated habit plane orientations. At earlier stages of

the transformation, more plates are present.
Further aging leads to domain growth and coarsen-

ing, resulting in fewer plates (t � 1000).
It should be pointed out that the orthorhombic

precipitates and the hexagonal matrix in Fig. 4 have

the same composition. Since the chemical free
energy of the orthorhombic phase is lower than the
hexagonal phase (see, e.g. Fig. 2), the entire system

is expected to transform to the orthorhombic phase.
The fact that the transformation from the hexago-
nal phase to the orthorhombic phase cannot go to

completion reveals the importance of the elastic
energy contribution to phase equilibria. Similar
results were also obtained in the phase ®eld simu-
lation of martensitic transformations [12]. As a

result of the elastic energy contribution which is
roughly proportional to the precipitate volume, a
two-phase equilibrium can be established even in a

single-phase system. The amount of transformed
orthorhombic phase will increase when the system
is quenched to a lower temperature as the chemical

driving force increases.

4.2. Morphological evolution of a two-variant system

Figure 5 shows the simulated morphological evol-
ution in the presence of variants 1 and 2. The
bright, dark, and gray areas represent variant 1,
variant 2, and the hexagonal matrix, respectively.

Figure 5(a) shows the nucleated orthorhombic par-

Fig. 3. Schema of predicted habit plane normals.

Fig. 4. Morphology of domains for the three variants of the orthorhombic phase at two di�erent stages
when they exist alone: (a)±(c) are at t � 30 and (d)±(f) at t � 1000.
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ticles at t � 10. Domains of both variants grow
along their respective habit orientations as shown in
the previous section (refer to Fig. 4). Their mor-

phology is mainly thin plate, similar to the single-
variant system discussed above. However, when the
domains of di�erent orientation variant intersect,

interesting ``zig-zag'' con®gurations are formed
[refer to those areas in Fig. 5(b) highlighted by
dashed circles and ellipsoids, respectively]. It is

interesting to note that the overlapping regions of
two di�erent variants retain the parent phase sym-
metry [refer to areas enclosed by the solid circles in
Figs 5(c) and (d)]. This phenomenon was observed

experimentally by Yang and Wayman during the
intersecting of two e-martensite variants in Fe±Mn±
Si shape memory alloy (see ®g. 4 in Ref. [21]). The

transformation of h.c.p. e-martensite from the f.c.c.

matrix is accomplished by a shear which is the
same as in our case.
Coarsening of the domain structure results in the

disappearance of small platelets and growth of large
ones, leaving the total amount of the orthorhombic
phase unchanged. Similar to the single-variant sys-

tem, the hexagonal to orthorhombic transformation
cannot go to completion as a result of the elastic
energy contribution.

4.3. Morphological evolution in a three-variant sys-
tem

For the three-variant system, we use di�erent

shades of gray, i.e. bright, gray, and dark, to rep-
resent variants 1, 2, and 3, respectively. Similar to
the single- and two-variant systems, the transform-

ation starts from nucleation and growth of the

Fig. 5. Morphology evolution with two domains transforming concurrently.
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orthorhombic domains from the hexagonal matrix,
followed by domain coarsening. Details of the

domain evolution process for this three-variant sys-
tem without external ®elds have been presented in a
previous publication [16].

The focus here is on the e�ect of mutual lattice
accommodation among the orientation variants on
the domain patterns by comparing the three-variant

system with the single- and two-variant systems. In
contrast to the single- and two-variant systems, the
hexagonal to orthorhombic transformation in the

three-variant system can readily go to completion.
It can be shown that the bulk elastic energy can be
essentially reduced to zero by a mixture of three
variants whose transformation strains are described

by equations (14). With equal volume fraction of
1/3 for each variant, the average transformation
strain (�e ) within a volume element whose volume is

much larger than the typical domain size, is given
by

�e � 1

3
e0�1� � 1

3
e0�2� � 1

3
e0�3� � 1

3
es�

1 0
0 ÿ1

�
� 1

3
es

�
ÿ1=2 ���

3
p
=2���

3
p
=2 1=2

�
� 1

3
es�

ÿ1=2 ÿ ���
3
p
=2

ÿ ���
3
p
=2 1=2

�
: �25�

It turns out that the average transformation strain

vanishes within a mixture of three variants of equal
fraction. This is impossible in single- and two-var-
iant systems.
As a result of the elastic energy accommodation,

most of the orthorhombic domains in the three-var-
iant system adopt di�erent morphologies as com-
pared to the previous cases. As shown in Fig. 6, by

the time t � 20 [Fig. 6(a)], essentially the entire sys-

tem has transformed into a single orthorhombic
phase with a mixture of three orientation variants

of roughly equal volume fractions. The domain
structure after signi®cant coarsening is shown in

Fig. 6(b). There are a lot of interesting complex
multi-domain patterns resulting from the elastic

energy accommodation. For example, we can ®nd a
number of star patterns as highlighted by circles in

Fig. 6(b). There are also compound stars formed by
the combination of two single stars [indicated by

ellipsoids in Fig. 6(b)]. These morphological pat-
terns are very similar to the experimentally observed

ones [see Fig. 7(b)]. The joint of a star structure

with a fan-like one (enclosed by a dotted square)
also shows remarkable agreement with experimental

observations [refer to Fig. 7(c)]. Moreover, there is
a perfect star pattern (refer to the area enclosed by

a square in the lower left) which is exactly the same
as shown in Fig. 7(b).

The system size of our simulations can be esti-
mated by ®tting the speci®c domain boundary

energy calculated from the computer simulation to
the corresponding experimental value. In order to

compare the domain size obtained by our simu-

lation [Fig. 6(b)] with those observed by exper-
iments as shown in Fig. 7, we need to ®nd speci®c

domain boundary energy g, the shear modulus G,
and the shear magnitude es for lead orthovanadate

crystal. Unfortunately, we could not locate these
data in the literature. If we take g to be 200 mJ/m

2
,

the same as the interfacial energy in g-TiAl [22],
and use the shear modulus G � 46:15 GPa for

TiAlNb [23], and assume the shear magnitude es to
be 0.03 [24], then the grid increment l is estimated

to be 5� 10ÿ8 cm [16]. Based on this estimation,
the system size is approximately 0.5 mm (1024� l).

Fig. 6. Temporal microstructural evolution during nucleation and growth of orthorhombic domains
from a hexagonal matrix obtained using the phase-®eld model with 1024� 1024 grid points: (a) t � 20;

(b) t � 5000.
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Getting back to the simulated morphology shown
in Fig. 6(b), the length scale of the star pattern
enclosed by a white square in the lower left is

roughly 1/6 of the system size which corresponds to
a size of 0.08 mm. This value agrees very well with
that observed experimentally in Fig. 7(b).

4.4. In¯uence of externally applied strain

All the domain structures presented so far are
free from external ®elds. When an external ®eld

(strain in our case) is applied, the coupling between
the applied strain and the stress-free transformation
strain of domains could strongly a�ect the micro-
structural evolution. This e�ect is re¯ected by the

coupling term, ÿVCijkleij
P3

p�1 e
0
kl� p�Z2p�r� in

equation (10). Since the three variants have di�erent
stress-free transformation strains in the global

frame coordinate as expressed in equations (14),
this coupling term has di�erent values for di�erent
variants and thus promotes or depresses the growth

of certain orientation domains. As a result, the
growth of the domains becomes selective.
For simplicity, we applied a uniaxial strain to in-

vestigate its in¯uence on the microstructural evol-
ution. The external strain is applied along such a
direction that variants 1 and 2 are equally favored
while variant 3 is unfavored. Such a strain is given

by

eapplied � eamp

�
3=4

���
3
p
=4���

3
p
=4 1=4

�
�26�

where eamp
is the amount of applied strain given in

the unit of the shear magnitude of the stress-free
transformation strain, es in equations (14). Three

di�erent magnitudes of the applied strain, i.e. 0.1es,
0.25es, and 1.0es, respectively, are considered.
In Fig. 8, we show the in¯uence of an applied

strain ®eld on the morphological evolution in a
three-variant system. We use the same shades of
gray to represent di�erent orientation variants of
the orthorhombic phase as described in the previous

section, i.e. bright, gray, and dark represent var-
iants 1, 2, and 3, respectively. Figures 8(a)±(c) show
the domain evolution under a relatively small

applied strain with a magnitude of 0.1es. Figures
8(d)±(f) correspond to a moderate applied strain
with magnitude of 0.25es, and the last three micro-

graphs in Fig. 8 correspond to a high applied strain
with a magnitude of 1.0es. Microstructures devel-
oped at three di�erent times, i.e. t � 50, 100, and

500, are presented for the three cases.
As can be seen from Figs 8(a)±(c), the domain

structures are more or less similar to the case with-
out an externally applied strain. The e�ect of the

Fig. 7. Characteristic orientation domain con®gurations observed during hexagonal4monoclinic trans-
formations by Manolikas and Amelinckx [8] (with permission from the publisher to include it here).

WEN et al.: ELASTIC INTERACTION 4383



applied strain on the shapes and mutual arrange-
ment of domains is not signi®cant when the magni-

tude of the applied strain is small. For example,
one can still ®nd the star structure in Fig. 8(c)
(highlighted by a solid circle), compound star struc-

ture (enclosed by a solid ellipsoid), swastika-sym-
bol-like structure (enclosed by a solid squares), and
fan-pattern structure (enclosed by a dashed ellip-

soid), etc.

When the applied strain becomes larger (0.25es)
[Figs 8(d)±(f)], the situation changes. During the

early stages of the aging process [Fig. 8(d)], for
example, only domains of variants 1 (bright) and 2
(dark) which are favored by the externally applied

strain nucleate and grow. Domains of variant 3 are
absent. This implies that the externally applied
strain results in a selective nucleation and growth of

domains of variants 1 and 2. The mutual arrange-

Fig. 8. In¯uence of di�erent amount of applied strains on the temporal domain evolution.
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ment of these domains is similar to the two-variant
system without an externally applied strain as pre-

sented in Fig. 5. Also the spatial arrangement of
domains (relative angles among the plates) is similar
[compare the results shown in Fig. 8(d) with those

in Fig. 5(b)]. However, at a later time, domain 3
(black) appeared as shown in Fig. 8(e). This is an
indication that the internal strain (or stress) accu-

mulated because the absence of domain 3 becomes
increasingly important as the domains of variants 1
and 2 grow. As a result, further aging leads to a sig-

ni®cant increase in the volume fraction of variant 3.
However, its total amount is still much less than
those of variants 1 and 2 in the ®nal stage as shown
in Fig. 8(f). In some local area, one can even ®nd a

star pattern accompanying the appearance of all the
three variants [highlighted by a solid circle in Fig.
8(f)].

When the applied strain is further increased to be
of the same magnitude as the shear deformation
(1.0es) [Figs 8(g)±(i)], the resultant domain structure

consists of predominantly domains of variants 1
and 2 during the entire evolution process which
means the applied strain plays a dominant role in

the whole process. The two domains show some
preferred orientations, approximately 308 or 1208
relative to the x-axis of the system, in order to well
accommodate their transformation strains. Such a

structure pattern agrees very well with those
observed experimentally during a DO19 4 O-phase
transformation by Bendersky (see results shown in

®gs 3 and 7 in Ref. [25]). In explaining why it has
predominantly two orientation domains, he argued
one possible reason might be due to the e�ect of

quenched stresses. Our numerical results can lend
support to his reasoning.
In Fig. 8(i), it is interesting to note some sharp

tips at the end of some domains approaching an

intersection with some other domains (indicated by
white open arrows) in an e�ort to minimize corre-
sponding elastic energy. This kind of domain mor-

phology is quite common and has been observed in
di�erent materials. For instance, in TiAlNb alloy
by Bendersky [24], Pb3(PO4)2 by J. Torres and

YBa2Cu3O7 superconductor (see ®g. 7.17 in Ref.
[26]), etc.

5. SUMMARY

The formation and temporal evolution of domain

structures during a hexagonal to orthorhombic
transformation is studied using a phase-®eld model.
The focus has been on the e�ect of elastic inter-

actions on the domain formation and evolution
during nucleation, growth, and coarsening. It is
shown that the elastic interactions among the orien-

tation variants of the orthorhombic phase are criti-
cal in controlling the domain morphology. In order
to demonstrate the importance of mutual accommo-
dation among the three variants, we examined the

domain pattern evolution during the transformation
of the hexagonal phase into a single variant, two

variants, and three variants of the orthorhombic
phase. With the same chemical driving force and
the same magnitude of the transformation strain,

the phase transformation for the single- and two-
variant systems cannot go to completion, resulting
in a stable two-phase mixture with plate-shaped

orthorhombic precipitates coherently embedded in
the hexagonal matrix, whereas the transformation
can readily go to completion in the three-variant

system, resulting in a single orthorhombic phase
with the three variants forming complex domain
patterns. The domain patterns obtained from the
simulations show excellent agreement with existing

experimental observations on systems undergoing
hexagonal to orthorhombic or to monoclinic trans-
formations.

We also investigated the e�ect of an applied
strain ®eld on the domain structure development.
We show that the domain evolution depends on the

magnitude and direction of the applied load. A rela-
tively low applied strain (compared to the magni-
tude of the transformation strain for domain

formation) has no signi®cant in¯uence on the
domain structure. A moderate applied strain results
in a selective nucleation of only two orthorhombic
variants in the initial stages of transformation. The

third variant appears at later times when the in-
ternal strain/stress accumulated with the selective
growth of two variants becomes comparable with

the e�ect due to the externally applied strain. A
high applied strain results in a strongly orientated
domain structure. In order to avoid direct intersec-

tion with another approaching domain and thus
avoid a high interaction energy, some sharp tips
emerge at the end of domains. This phenomenon
was commonly observed in di�erent materials with

orientation domains.

AcknowledgementsÐWe are grateful for the ®nancial sup-
port by ONR under grant number N00014-95-1-0577
(Wen and Chen), DMR-96-33719 (Chen), and NSF under
grant DMR-9703044 (Wen and Wang). The simulation
was performed at the San Diego Supercomputer Center
and the Pittsburgh Supercomputing Center.

REFERENCES

1. Igonin, G. S., Makogon, M. B. and Igonina, T. N.,
Fizika Metall. Metalloved., 1970, 30, 543.

2. Igonin, G. S., Makogon, M. B. and Igonina, T. N.,
Fizika Metall. Metalloved., 1970, 30, 727.

3. Vicens, J. and Delavignette, P., Physica status solidi
(a), 1976, 33, 497.

4. Sinclair, R. and Dutkiewicz, J., Acta metall., 1977, 25,
235.

5. Bendersky, L. A. and Boettinger, W. J., J. Res. Natn.
Inst. Stand. Technol., 1993, 98, 585.

6. Kitano, Y. and Kifune, K., Ultramicroscopy, 1991, 39,
279.

WEN et al.: ELASTIC INTERACTION 4385



7. Kitano, Y., Kifune, K. and Komura, Y., J. Physique,
Colloque C, 1988, 5, 201.

8. Manolikas, C. and Amelinckx, S., Physica status solidi
(a), 1980, 60, 607.

9. Izyumov, Yu. A. and Syromyatnikov, V. N., Phase
Transitions and Crystal Symmetry, Fundamental
Theories of Physics. Kluwer Academic, New York,
1990.

10. Wang, Y., Chen, L. and Khachaturyan, A., in Solid±
Solid Phase Transformations, ed. W. C. Johnson, J. M.
Howe, D. E. Laughlin and W. A. So�a. The Minerals,
Metals and Materials Society, Warrendale, PA, 1994,
p. 245.

11. Khachaturyan, A. G., Theory of Structural
Transformations in Solids. John Wiley, New York,
1983.

12. Wang, Y. and Khachaturyan, A. G., Acta mater.,
1997, 45, 759.

13. Li, D. Y. and Chen, L. Q., Acta mater., 1998, 46,
639.

14. Gunton, J. D., Miguel, M. S. and Sahni, P. S., in
Phase Transitions and Critical Phenomena, Vol. 8, ed.
C. Domb and J. L. Lebowith. Academic Press, New
York, 1983, pp. 267±466.

15. Lifshitz, E. M. and Pitaevskii, L. P., Statistical
Physics. Pergamon Press, Oxford, 1980.

16. Wen, Y. H., Wang, Y. Z. and Chen, L. Q., Phil. Mag.
A, in press.

17. Gangho�er, J. F., Denis, S., Gautier, E., Simon, A.
and Sjostrom, S., Eur. J. Mech. A, 1993, 12, 21.

18. Wen, Y. H., Denis, S. and Gautier, E., J. Physique
IV, Colloque C2, 1995, 5, 531.

19. Wen, Y. H., Denis, S. and Gautier, E., J. Physique
IV, Colloque C1, 1996, 6, 475.

20. Chen, L. Q. and Shen, J., Comput. Phys. Commun.,
1998, 108, 147.

21. Yang, J. H. and Wayman, C. M., Acta metall. mater.,
1992, 40, 2011.

22. Rao, S., Woodward, C. and Hassledine, P. M., Mater.
Res. Soc. Symp. Proc., 1994, 319, 285.

23. Boyer, R., Welsch, G. and Collings, E. W., Materials
Properties Handbook, Titanium Alloys. ASM
International, Materials Park, OH, 1994.

24. Bendersky, L. A., Private communication, 1998.
25. Bendersky, L. A., Scripta metall., 1993, 29, 1645.
26. Salje, E. K. H., Phase Transitions in Ferroelastic and

Co-elastic Crystals. Cambridge University Press,
Cambridge, 1993.

WEN et al.: ELASTIC INTERACTION4386


