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Abstract 

The process of anisotropic grain growth driven by anisotropic grain boundary energies is investigated by Monte Carlo simulations. 
A new model is developed for describing the anisotropy of grain boundary energies. This model divides the microstructure into 
minimum elements which are labeled by different orientation numbers. The surfaces of each minimum element are associated with 
surface energies for a given orientation and are determined from a Wulff plot. The grain boundary energy is then calculated from the 
energies of the two surfaces meeting at the boundary and the binding energy of the grain boundary. The possibility of anisotropic grain 
growth is explored for different shapes of Wulff plot. 
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I. Introduction 

Grain growth has been the subject of active research 
for many years due to its importance in controlling the 
material microstructure, and thus its mechanical and 
physical properties. However, most of the previous 
theoretical and experimental investigations were 
concerned with normal grain growth during which the 
average grain size increases while the shape of the size 
distribution remains constant [1]. One of the main 
objectives of grain growth studies has been to find ways 
to obtain equiaxed, fine-grain microstructures by 
preventing abnormal grain growth, a process in which a 
few grains grow much larger than the rest of the grains. 

There is increasing evidence that certain properties 
of a material can be improved by deliberately intro- 
ducing anisotropic grains in a fine-grain matrix. For 
example, fracture toughness of a material with aniso- 
tropic grain morphologies can increase as a result of 
crack deflection and crack bridging behind the crack 
tip [2]. Electrical and magnetic properties can also be 
improved with anisotropic grains. Lath-like grains 
result in very low clamping voltages in ZnO varistors 
[3]. 

Anisotropic grain growth is a very complicated 
process. Many factors can affect the microstructure 
anisotropy, such as differences in grain boundary 
energy and mobility, segregation of solutes on different 

boundaries [4], the presence of a liquid phase [5], inter- 
face growth velocity differences during phase transfor- 
mation [6] and the anisotropy of the interfacial energy 
between two phases [7,8]. However, there is little 
fundamental understanding about how these factors 
affect the evolution of an anisotropic microstructure. 

The driving force for grain growth is the reduction in 
the total grain boundary energy. Therefore, it is natural 
that one of the most important factors for controlling 
anisotropic grain growth is the grain boundary energy 
anisotropy. However, it is almost impossible to quanti- 
tatively describe the grain boundary energy anisotropy 
since a grain boundary has nine degrees of freedom: 
three for the crystal misorientation, three for the 
position of the grain boundary plane, and three for the 
rigid-body translation vector. 

Recently, several Monte Carlo simulations have 
been proposed to determine whether grain boundary 
energy anisotropy leads to anisotropic grain growth in 
single-phase materials. Grest et al. performed Monte 
Carlo simulations employing the Read-Shockley dis- 
location model for describing the grain boundary 
energy variation with the misorientation angle, suitable 
for a low-angle grain boundary [9]. In this model, while 
the microstructure displays broader grain size distribu- 
tions than obtained with isotropic grain boundary 
energies, no anisotropic grain growth was observed. To 
model anisotropic grain growth, Kunaver and Kolar 
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simply separated the grains into two groups: aniso- 
tropic grains and isotropic grains. They assumed that 
the grain boundary energies between isotropic grains 
were isotropic while the grain boundary energies 
between anisotropic and isotropic grains were higher in 
one direction and lower in the perpendicular direction. 
If the high grain boundary energy is larger than the 
isotropic grain boundary energy and the low grain 
boundary energy is smaller than the isotropic grain 
boundary energy, then anisotropic grains were 
observed to grow into the isotropic matrix in a Monte 
Carlo simulation [10]. Such a model, however, is more 
appropriate for describing the anisotropic growth of 
one phase with anisotropic grain boundary energy 
from another phase with isotropic grain boundary 
energy, e.g. the growth of anisotropic fl-Si3N 4 from the 
isotropic a-Si3N 4 matrix, than for the anisotropic grain 
growth in single-phase materials. More recently, Cai 
and Welch proposed the grain formation energy con- 
cept to explain the evolution of anisotropic microstruc- 
ture in YBa2Cu307_ 6 ceramics [11]. They emphasized 
that the anisotropy of bonding energies along different 
directions in a single crystal control anisotropic grain 
growth. However, a serious artifact of their model is 
that the bulk energy of a grain is not rotationally 
invariant, which leads to abnormal growth of grains 
having lower bulk energies than the rest of the grains. 

In this paper, a new model is proposed for deter- 
mining the effect of grain boundary energy anisotropy 
on anisotropic grain growth. The grain boundary 
energy is determined from the surface energies of two 
grains meeting at a boundary, and the binding energy of 
the grain boundary. For simplicity, the binding energy 
is assumed to be a constant which is equivalent to 
assuming that the fracture strength of the grain bound- 
ary is independent of the orientation of the grain 
boundary. The surface energy of a grain in a given 
plane is obtained from the corresponding Wulff plot. 
The anisotropy of the grain boundary energy is then 
introduced through the surface energy anisotropy. A 
two-dimensional model was employed and a variety of 
~halff plots were examined to determine the Wulff plot 
shapes that generate anisotropic grain microstructure. 

simulation, but is large enough that the bulk energies of 
all minimum elements are the same. 

Each minimum element is assigned a number q, 
which corresponds to its crystallographic orientation. 
Even though in real materials the possible number of 
orientations of a grain is infinite, only a finite number 
of orientations Q are allowed for the computer simula- 
tion. 

A hexagonal element has six surfaces with two along 
the orientation 0 = 0, two along 0 = :r/3 and two along 
0 = 2:t/3. It is assumed that the surface energies of the 
parallel surfaces are equal. The values of the surface 
energies of the minimum elements with different 
crystallographic orientations (different q) were deter- 
mined from the Wulff plot. 

A Wulff plot is a polar plot of surface energy 7(n), 
where n is the unit vector normal to a surface, with all 
vectors [7(n)n] from a common origin. The distance 
from the origin to the ~ l f f  plot envelope represents 
the energy per unit area of the surface of that orienta- 
tion. For example, the Wulff plot of a crystal with 
rectangular equilibrium shape is shown in Fig. 1. 

Using minimum elements of different orientations, a 
microstructure can be constructed. When two mini- 
mum elements with the same orientation number are 
brought together, two free surfaces are eliminated to 
become a single grain (Fig. 2(a)). The energy decreases 
in an amount equal to the sum of the surface energies 
of the two surfaces which were eliminated. When two 
minimum elements of different orientation numbers 
are brought together, two surfaces are eliminated but a 
grain boundary is formed (Fig. 2(b)). The energy 
change for this process is equal to the difference 
between the grain boundary energy and the total 
surface energy of the two surfaces meeting at the grain 
boundary which equals the binding energy of the grain 
boundary. Thus, a single grain is represented by a 
combination of minimum elements with the same 
orientation number. Grain boundaries are defined by 
adjacent minimum elements of different orientation 
numbers. 

2. The  model  

"Minimum elements" are used to construct an arbi- 
trary microstructure. Two-dimensional space can be 
completely filled only by hexagons, squares, triangles 
or rectangles. Because previous Monte Carlo simula- 
tions have shown that hexagons introduce less artifacts 
due to discretization of a microstructure [9], hexagons 
were employed as minimum elements. A minimum 
element is much smaller than a typical grain in a given Fig. 1. An example of a Wulff plot. 
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(a) 

(b) 

Fig. 2. (a) Combination of two elementary particles to form a 
single grain. (b) Combination of two elementary particles to form 
a grain boundary. 

Assuming all minimum elements have the same bulk 
energy, 0, the total energy of a microstructure Eto  t c a n  

be expressed as 

Etot  = it;" tot _ ]~" elim _ b surf 1-' surf E gb ( 1 ) 
tot where E surf is the total Surface energy of all minimum 

elements comprising the microstructure, i~Telim is the surf 
total surface energy eliminated due to the minimum 
elements having the same orientation number as neigh- 
bors, and Ebb is the total binding energy of all grain 
boundaries in the microstructure. In this model, the 
interaction energy between two arbitrary neighboring 
minimum elements can be expressed as 

Eo( ql, q2)=Jo(ql)+Jo(q2)-(1  - 6 q,qz)J b 

-- 6qlq2[Jo(ql)+ Jo(q2)] (2) 

where Jo(ql) is the surface energy of a minimum 
element ql at the plane normal to the axis 0, where 0 
could be 0, n/3, 2n/3; Jo(q=) is the surface energy of a 
minimum element q2 at the plane normal to the axis 0; 
Jb is the binding energy of the grain boundary; and 
Oqlq2 is the Kronecker 6 function 

I~qiq2:{; ififq' = q 2 q l  # q2 (3) 

Therefore 

0 if ql = q¼ 
Eo(q~, q2) = jo(q,)+jo(q2)_jb if ql #q2 (4) 

The grain boundary motion, and thus the kinetics of 
grain growth, can be viewed as a continuous orienta- 
tion change of minimum elements which can be simu- 
lated by using the Monte Carlo technique [9]. In a 
Monte Carlo simulation, a minimum element is 
randomly selected, and its orientation is changed at 
random to one of the other (2 -  1 possible orientation 
numbers. Then, the change in the system's energy 
caused by the change in orientation is calculated. 
Finally, the probability W for changing the minimum 
element's orientation is determined by the energy 
change: 

W={~ xp(-AE/kBT) AE~<0AE>0 (6) 

where AE is the change in energy associated with the 
reorientation, kB is the Boltzmann constant and T is 
temperature. 

3. Computer simulation results 

In all computer simulations presented I below, a 
microstructure consists of an array of 256 ×256 
hexagonal minimum elements. Periodic boundary con- 
ditions are applied to eliminate the finite size effect. 
The number of allowed orientations Q is equal to 60. 
Simulation time is measured in terms of Monte Carlo 
steps (MCS), one MCS corresponding to 256 x 256 
reorientation attempts. The initial microstructure is 
generated by using a normal grain growth Monte Carlo 
model in which all grain boundary energies are equal. 
In order to decrease the computation time, zero- 
temperature Monte Carlo simulations were performed. 

The method for determining the surface energies of 
a given minimum element from a Wulff plot is illus- 
trated in Fig. 3. Suppose that the minimum element 

~=nq/Q 

t 2  

The total energy is calculated as the sum over all 
nearest-neighbor minimum elements 

e =1 2 ~ ~ E°(ql'q2) (5) 

(a) (b) 

Fig. 3. Determination of the surface energies of an elementary 
particle oriented along ~ = z~q/Q from the Wulff plot. 
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shown in Fig. 3(a) is oriented along ~i = nq /Q ,  where q 
is one of the Q possible orientations. The orientation 
vector of the minimum element corresponds to the 
direction along the x axis in the Wulff plot of Fig. 3(b). 
The surface energy of the plane normal to that orienta- 
tion is defined as J~. The angle between the orientation 
vector and vector normal to surface 1 is equal to 
f) = rrq/Q. Thus, the surface energy of surface 1 is 71. 
Since the Wulff plot has a twofold rotation symmetry, 
the surface energy of surface 2 ~2 corresponds to a 
surface orientation which is 90 ° (instead of 60 ° ) from 
that of surface 1 in the Wulff plot. The surface energy 
of surface 3 is set equal to that of surface 1 or 2, which- 
ever is lower. Therefore, grains with orientation 
number from 1 to 20 have higher surface energies 
along the 0 = 0 direction than the other two directions; 
grains with orientation number from 21 to 40 have 
higher surface energies along the 0 = re/3 orientation; 

and grains with orientation number from 41 to 60 have 
higher surface energies along the 0 = 2re/3 direction. 

3.1. Isotropic surface energy 

As a first test, the model was examined by assuming 
that the surface energy of the crystal is independent of 
orientation. In this case, the Wulff plot is a circle and, 
by definition, the grain boundary energy is isotropic. 
Therefore, the model is reduced to a normal grain 
growth model in which the grain boundaries have the 
same energy. The temporal microstructure evolution is 
shown in Fig. 4. The microstructure is isotropic and it 
has been shown previously that the kinetics of grain 
growth follows that of the normal grain growth in 
which grains continue to grow but the grain size distri- 
bution does not change with time [9]. 

p 

(a) 

(c) 

(b) 

(d) 

Fig. 4. The temporal microstructure evolution with circular Wulff plot for the case of Q = 60: (a) initial stage; (b) 2000 MCSs; (c) 8000 
MCSs; (d) 20 000 MCSs. 
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3.2. Ellipsoidal Wulff shape 

One of the simplest anisotropic Wulff plots is an 
ellipsoid (Fig. 5). For this simulation, it was assumed 
that the maximum surface energy J1 is 1.6 and the 
lowest surface energy J2 is 0.8. The grain boundary 
binding energy was assumed to be constant, Jb = 0.3. 
Since the surface energy is anisotropic, the correspond- 
ing grain boundary energy is also anisotropic. There- 
fore, unlike the normal grain growth model, the energy 
of a grain boundary is a function of the orientations of 
grains on either side of the grain boundary. The tem- 
poral microstructure evolution is illustrated in Fig. 6 
for 0, 2000, 5000 and 20 000 MCs. In the initial stage, 
the grains are very small and isotropic with a narrow 
size distribution (Fig. 6(a)). With time some grains grow 
anisotropically and become elongated, while others 
remain isotropic. The elongated grains grow much 
faster than the isotropic grains by consuming the 

isotropic grains. At a later stage of grain growth, the 
boundaries become straight and the elongated grains 
impinge upon each other (Fig. 6(d)). The finer grains 
between the anisotropic grains coarsen. 

2=0.8 

-~J~:l.~ 

Fig. 5. The ellipsoidal V~lff plot. 

(a) (b) 

(c) (d) 

Fig. 6. The temporal microstructure evolution with the ellipsoidal Wulff plot (long axis = 1.6, short axis = 0.8, binding energy = 0.3): 
(a) initial stage; (b) 2000MCSs;(c) 8000MCSs;(d) 20 000MCSs. 
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3.3. Ellipsoidal Wulff shape with one cusp 

The ellipsoidal Wulff plot with one cusp is shown in 
Fig. 7 and the corresponding temporal microstructure 
evolution is displayed in Fig. 8. A comparison of Fig. 8 
with Fig. 6 indicates that the overall temporal micro- 
structure evolution in these two cases is very similar. 
The only difference seems to be that the aspect ratio 
of the anisotropic grains in Fig. 8 is larger than that in 
Fig. 6. 

3.4. Wulff shape with two cusps 

Fig. 9 shows a Wulff plot with two cusps for equiva- 
lent surface energies to the system above; but the 
microstructure generated by this Wulff plot is more like 
abnormal grain growth and is significantly different 
from the two previous cases discussed above (Fig. 10). 
Some grains grow extremely fast at the expense of 

smaller grains. The microstructure also shows a certain 
degree of anisotropy due to the surface energy aniso- 
tropy, but the aspect ratio is considerably less than the 
two previous cases. 

(b) 

(d) 

Fig. 7. The ellipsoidal Wulff plot with one cusp. 

(a) 

),. 

(c) 

Fig. 8. The temporal microstructure evolution for the ellipsoidal Wulff plot with one cusp (long axis = 1.6, short axis = 0.8, binding 
energy = 0.3): (a) initial stage; (b) 2000 MCSs; (c) 8000 MCSs; (d) 20 000 MCSs. 
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4. Discussion 

From the above computer simulations, it is clear that 
the shape of the Wulff plot is a critical factor in the 
development of an anisotropic grain microstructure. 
For grains with anisotropic grain boundary energies, 
the thermodynamic driving force for grain growth 

(a) 

~Jl=l.6 

Fig. 9. The Wulff plot with two cusps. 

depends on the product of two factors, the grain 
boundary energy per unit area and the grain boundary 
area. For materials with a circular V~lff plot, the grain 
boundary energy per unit length (area in three dimen- 
sions) is the same in all directions which causes the 
grains to grow isotropically. However, for materials 
with a non-circular Wulff plot, the driving force for 
migration is larger for high energy grain boundaries 
than low energy boundaries which results in the growth 
of anisotropic grains. In the initial stage, the grains are 
small, have a large curvature and grain growth is mainly 
due to the decrease of the grain curvature. As the 
grains grow, the grain boundaries become less curved; 
but the anisotropy in grain boundary energy allows 
high energy grain boundaries to move faster than low 
energy grain boundaries, such that the fraction of low 
energy boundaries increases. 

By examining various shapes of the Wulff plot, we 
found that, to develop highly anisotropic grain struc- 
tures, the Wulff plot must have a maximum surface 

(c) 

(b) 

(d) 
Fig. 10. The temporal microstructure evolution for the Wulff plot with two cusps (long axis=l .6 ,  short axis=0.8, binding 
energy = 0.3): (a)initial stage; (b) 2000 MCSs; (c) 8000 MCSs; (d) 20 000 MCSs. 
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energy in one direction and a minimum surface energy 
in the perpendicular direction such that grains with a 
higher energy on its high energy surface compared to 
another grain should have a lower energy on its low 
energy surface. For example, one grain has a surface 
energy Yl on its high energy surface and Y2 on its low 
energy surface, the other grain has a surface energy 71' 
on its high energy surface and 72' on its low energy 
surface. If YI is greater than Yl', Y2 should be less than 
Y2'. The faster growing direction of an anisotropic 
grain corresponds to the surface normal to the high 
surface energy whereas the slow growing direction 
corresponds to the surface normal to the low surface 
energy. An ellipsoidal Wulff plot and an ellipsoidal 
Wulff plot with one cusp, discussed above, satisfy this 
requirement. The planes which move fast are those 
with high surface energies. When some grains impinge 
upon each other, one grain has highest surface energy 
at the high energy surface and lowest surface energy at 
the low energy surface compared to other grains. This 
grain's high energy surface tends to grow fast whereas 
the low energy surface tends to grow slowly such that it 
becomes elongated and grows larger. Other grains 
grow slowly or are consumed by elongated grains 
during the growth competition. If the impinging grains 
have similar surface energies, they tend to remain 
isotropic. That is the reason that some isotropic grain 
regions exist in the microstructure. 

After most of the boundaries become straight, the 
only place where the grain growth is allowed is at a 
trijunction. The low surface energy grains can still 
penetrate the grains with high surface energy along the 
grain boundary until they form the equilibrium trijunc- 
tion. 

Even though idealized two-dimensional models 
were employed, the observed anisotropic grain struc- 
tures appear to be similar to those observed in alumina 
which seems to have a similar Wulff plot to the Wulff 
plot having one cusp [12]. In alumina, there exist large 
tabular grains whose basal planes have low surface 
energy and the plane perpendicular to the basal plane 
has a high surface energy [13]. The similarity of the 
anisotropic grain microstructure of alumina and that 
from our computer simulation is quite remarkable 
(Fig. 11). 

In the case of a Wulff plot with two cusps, a grain 
having a low energy on its high energy surface com- 
pared to another grain should have a lower energy on 
its low energy surface. A few grains have the lowest 
surface energies on both high energy and low energy 
planes. These grains can grow on both sides because 
this will create more and more low energy surfaces. 
They grow very fast and consume the small grains. The 
microstructure evolution shows abnormal grain growth 
features. Depending on the relative values of the 

Fig. 11. A typical A1203 microstructure dominated by large 
anisotropic grains. 

surface energies along the two cusps, anisotropic grains 
may appear but with low aspect ratios. 

According to Eq. (4) and computer simulation 
results, when the surface energy is isotropic, the 
present model is reduced to a normal grain growth 
model in which all boundaries are assumed to have the 
same energy. 

The present model for grain boundary anisotropy 
ensures that the bulk energies of all the grains are the 
same, i.e. the bulk energy of a grain is both trans- 
lationally and rotationally invariant. In the model of 
Cai and Welch [11], the bulk energies of grains with 
certain orientations are lower than the others, i.e. not 
rotationally invariant, which results in an artifact that 
the chemical potential per atom (or per unit volume) in 
the interior of a grain varies as the grain is rotated. 
Therefore, part of the driving force for abnormal grain 
growth in Cai and Welch's model is the differences in 
the chemical potentials of interior atoms between 
grains with different orientations, which is not consis- 
tent with our conventional definition that the driving 
force for grain growth is the total grain boundary 
energy. 

If minimum elements with anisotropic surface 
energies and those with isotropic surface energies are 
mixed together, the present model can be used to 
model the kinetics of grain growth in two-phase sys- 
tems in a manner similar to that obtained by Kunaver 
and Kolar [10]. 

5. Summarizing remarks 

A new model, developed for describing the aniso- 
tropy of grain boundary energy in a single-phase 
material, was employed in a Monte Carlo simulation 
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technique for studying the possibility of anisotropic 
grain growth. It was found that, in a single-phase poly- 
crystalline phase, anisotropic grain boundary energy 
alone may lead to an anisotropic microstructure. 
Anisotropic grains with the lowest surface energy for 
the slow moving boundary and highest surface energy 
for the fast moving boundary, compared to the neigh- 
boring grains, can be developed. Effects of other 
factors such as the initial microstructure, seeding and 
liquid phase on the anisotropic grain growth kinetics 
are being examined and will be reported in future 
publications. 
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