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Computer Simulation of the Dynamics of 180" Ferroelectric Domains 
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A computer simulation technique based on the time- 
dependent Ginzburg-Landau (TDGL) equations formu- 
lated in the reciprocal space was proposed for modeling the 
dynamics of ferroelectric domain formation and domain- 
wall motion. The temporal evolution of domain structures 
with 180" domain walls in a quenched paraelectric phase 
was studied. Both the long-range electric dipole-dipole 
interaction energy and the total domain wall energy for 
any arbitrary distributions of ferroelectric domains were 
evaluated in the reciprocal space. The effect of free surfaces 
on the polarization and domain morphologies was dis- 
cussed. The domain-wall motion under an electric field was 
investigated. 

I. Introduction 

UNIQUE feature common to all ferroelectric ceramics is the A formation of domain structures when a paraelectric phase 
is cooled below the ferroelectric transition temperature. The 
properties of a ferroelectric material can often be manipulated 
by controlling its domain structure.' The simplest type of 
ferroelectric domain structure consists of two neighboring 
domains with opposite alignment of electric dipoles and sepa- 
rated by 180" domain walls. Examples include lead germanate 
(Pb,Ge,O, ,) and gadolinium molybdate (Gd,(MoO,),).' It is 
quite well known that 180" domains arise because of the compe- 
tition between the depolarization energy and domain-wall 
energy.' The domain-wall energy prefers a single domain 
whereas the depolarization energy prefers an opposite align- 
ment of dipoles. The more complex type is the 90" domain-wall 
configuration in which the polarization direction changes 90" 
from one domain to another across the wall. This is very com- 
mon in ABO, ferroelectric ceramics in which the ferroelectric 
transition is accompanied by a cubic-to-tetragonal structural 
transformation resulting in three different orientation variants. 
The elastic accommodation between different tetragonal 
variants leads to the formation of 90" domain structures. For 
example, in BaTiO, ceramics, both 90" and 180" domains exist. 

The static equilibrium polarization profiles across both 90" 
and 180" domain walls have been quite extensively studied 
using Ginzburg-Landau phenomenological How- 
ever, the dynamics of domain pattern formation of a quenched 
paraelectric phase and the evolution dynamics of a domain 
structure under applied fields are less well understood. It should 
be emphasized that it is the domain dynamics, not the statics, 
that is more relevant to the applications of ferroelectric materi- 
als. In this short communication, a simple computer simulation 
technique based on the time-dependent Ginzburg-Landau 
(TDGL) equations6 is proposed for studying the dynamics of 
ferroelectric domains. As a first attempt, we apply it to the 
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simple case of 180" domains in an idealized two-dimensional 
system. 

The order parameter for describing the proper paraelecfric- 
to-ferroelectric phase transition is the polarization vector, P . In 
order to describe the dynamics of ferroelectric domains, we 
have to consider inhomogeneous systems in which the polariza- 
tion is not only time-dependent but also space-dependent. The 
domain dynamics is then characterized by the temporal and 
spatial evolution of the local polarization profile:' 

where P,(?,:t) is the ith component of the local polarization 
vector at position 3 and time t, L is the relaxation coefficient 
characterizing the mobility of ferroelectric domain walls, F is 
the total free energy which is a functional of the local polariza- 
tion, and q(7,r) is the random thermal noise term with average 
value 0 and with variance k,TL. 

For an inhomogeneous state with domain walls, the total free 
energy of the system, F, is given by 

F = F,- + FG + F,,, + Fa, (2) 
where the first term is the Landau bulk free energy of the 
system. For simplicity, we assume that the polarization direc- 
tion is along the x direction and consider a second-order feTo- 
electric transition in which the local free energy density, f ( P ) ,  
for the ferroelectric phase can be expanded using only the 
second- and fourth-order terms with respect to the paraelectric 
phase, i.e., 

( 3 )  

where 01 and p are phenomenological coefficients, T is the 
temperature, and T, is the ferroelectric transition temperature. 
Therefore, the total Landau free energy is given by 

F , ~  = F,, + l[:cx(T - T,)P;(F,:t) + 

where F,, is the free energy of the paraelectric phase. 

energy associated with the domain wall: 
The second term in Eq. (2) is the gradient energy or Ginzburg 

J> 

where K is the gradient energy coefficient. 
The third term in Eq. (2) is the depolarization energy arising 

from the electrical dipole-dipole interactions. Since the electri- 
cal dipole4ipole interaction is a long-range interaction just like 
elastic dipole4ipole and magnetic dipole-dipole interactions, 
it is nonlocal and has to be calculated separately from the local 
Landau free energy and the Ginzburg gradient energy,' 
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Fig. 1. 
T,) = -1.0, p = 1.0, At  = 0.01,y = 0.0; (a) t* = 0, (b) t* = 0.04, (c) t* = 0.09, (d) t* = 0.39, (e) t* = 2.00. 

Temporal evolution of ferroelectric domain structures €or a paraelectric phase aged below the ferroelectric transition temperature; a(T - 

Fig. 2. 
T,) = -1.0, p = 1.0, At  = 0.01, q = 0.0; (a) t* = 0, (b) t* = 0.04, (c) t* = 0.09, (d) t* = 0.39, (e) t* = 2.00. 

Temporal evolution of ferroelectric domain structures for a paraelectric thin film aged below the ferroelectric transition temperature; a(T - 

According to Khachaturyan,* the double summation in real 
space in Eq. (6) can be converted to a single summation in 
reciprocal space, 

where P,( 2, t) is the Fourier transform of P,( 7, t )  and n,  is equal 
to k,/k. 

The fourth term in Eq. (2)  is the interaction energy of the 
system with the applied electric field: 

where I!?~ is the applied electric field. 
Substituting Eqs. (2) ,  (4), (5 ) ,  (7), and (8) into Eq. (1) and 

Fourier transforming Eq. (1) into the reciprocal space, we have 
+ 

-- dPx(k)'t - -L( [a(T + T,) + K k 2  + ~ T ~ I z Y ] P , ( ~ , ~ )  
dt 

+ P[PV,t)l; - & I  + d J )  (9) 

where E,, is the x component of the applied electrical field. 
In order to solve the kinetic equation (9) numerically in a 

computer, we have to discretize it both spatially and temporally. 
In the computer simulations presented below, the equation is 
discretized using 256 by 256 reciprocal grid points (or real 
space grid points). The time derivative of the Fourier compo- 
nents of local polarization at a given reciprocal lattice point is 
approximated by the explicit Euler technique. 

The temporal evolution of PA( F,t), and thus the dynamics+of 
domain evolution, is obtained by Fourier transforming P,( k , t )  
back to the real space at each time step. The initial condition is 
generated by assigning zero value of local polarization every- 
where plus very small random fluctuations. This initial polar- 
ization distribution corresponds to the paraelectric state in 
which the polarization is zero everywhere. 

Figure 1 shows the temporal evolution of domain structures 
when the paraelectric phase is quenched to a temperature below 
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Fig. 3. Vanation of local polarization along the y direction. The 
~ol id  line represents the polarization near the surface, the dotted line 
represents the polarization in the center of the film. 
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Fig. 4. Variation of local polarization along x direction. 
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Fig. 5. 
t* = 0 ,  (b) t* = 0.03, (c) t* = 0.06, (d) t* = 0.09, (e )  t* = 0.14. 

180” ferroelectric domain wall motion under an applied 
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Fig. 6. 
of applied electric field. 

Speed of domain wall motion as a function of the magnitude 

the ferroelectric transition temperature. Periodic boundary con- 
ditions are assumed along both x and y directions. The “gray 
levels” represent different magnitudes of the polarization. A 
completely black “gray level” indicates that the polarization is 
equal to - 1 and the polarization direction is along the negative 
x direction; a completely white “gray level” means that the 
polarization is equal to 1 and the polarization direction is along 
the positive x direction. The time is measured in terms of the 
reduced unit, t* = Lt, where t is real time and L is the kinetic 
coefficient. It can be clearly seen from Figs. l(a) and (b) that 
the initial stage during aging of a paraelectric phase below the 
ferroelectric transition temperature is the nucleation and growth 
of ferroelectric domains. As the aging time increases, the 
ferroelectric domains coarsen and at the same time gradually 
align along the x direction forming the 180” domain structure 
(Figs. l(c), (d), and (0). The final equilibrium domain structure 
consists of two domains with the same size and separated by a 
180” domain boundary. In this case, the periodicity of the 
domain structure is fixed by the periodicity of the computation 
cell in real space. 

In real materials, the size of a crystal is always finite and the 
periodicity of the 180” domain structure depends on the crystal 
size. Moreover, it is expected that the magnitude of polarization 
in the bulk will be different from that in the surface regions. 
Our computer simulation shows that this is indeed the case. For 
example, in Fig. 2, two surfaces along the y directions are 
introduced, simulating a thin film situation. The temporal evo- 
lution of the domain structure is similar to the case with peri- 
odic boundary conditions. However, in this case, the periodicity 
of the 180” domain structure is not fixed by the computational 
cell size, but is dependent on the thickness of the film. Figure 3 
shows the polarization along the y direction near the surface 
and in the middle of the film. As expected, the polarization 
varies nearly periodically along the y direction. The variation of 
the polarization along the x direction is shown in Fig. 4. From 
both Fig. 3 and Fig. 4, it can be seen that the polarization in the 
middle of the film is much larger than that near the surface. We 
also observed that as the film thickness decreases, the domain 

electric field; a ( T  - T,) = -1.0. p = 1.0, A t  = 0.01, E = 0.30, q = 0.0; (a) 

width decreases. In the extreme case, as the film thickness is 
reduced to a few times (it is about 4.0 times in this particular 
model) the thickness of the domain boundary, no ferroelectric 
domains are formed; i.e., there is no ferroelectric phase transi- 
tion. The reason is that the increase in free energy due to 
domain boundary formation is larger than the decrease in bulk 
free energy due to ferroelectric domain formation. 

As is well known, the polarization direction can be switched 
by applying an electric field. An example of domain-wall 
motion is shown in Fig. S for the case in which an electric field 
is applied to a domain structure consisting of two domains 
separated by a 180” domain boundary. It is demonstrated that 
the 180” domain wall moves along its normal until a single 
domain is formed (Fig. S(e)). The speed of domain wall motion 
is shown to depend on the magnitude of the applied electric 
field (Fig. 6). In the local electric field regime, the dependence 
is shown to be linear. However, as the electric field increases, 
the dependence deviates significantly from the linearity. It is 
emphasized the case discussed here involves a static electric 
field. If a time-dependent electric field, e.g., a sinusoidal time- 
dependent electric field, is applied, the domain dynamics are 
expected to depend on the domain wall mobility characterized 
by the coefficient L in the kinetic equation and the frequency of 
an applied electric field, v. For example, if v << L,  the domain 
switching is expected to be similar to the case of a static electric 
field. On the other hand, if v >> L, no switching is expected. 

In summary, a computer simulation technique based on the 
TDGL equations has been proposed for modeling the temporal 
evolution of ferroelectric domain structures. It is demonstrated 
by using a two-dimensional example that this technique can be 
employed to model the nucleation and growth of 180” ferroelec- 
tric domains in a quenched paraelectric phase, as well as the 
kinetics of domain coarsening and the domain switching under 
an applied electric field. With the addition of the elastic energy 
contribution to the total free energy, this model can also be used 
to model the dynamics of both 90” and 180” domains with and 
without applied electric or stress fields. 
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