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Abstract

Phase-field simulations have been extensively applied to modeling microstructure evolution during various materials
processes. However, large-scale simulations of three-dimensional (3D) microstructures are still computationally expensive.
Among recent efforts to develop advanced numerical algorithms, the semi-implicit Fourier spectral method is found to be
particularly efficient for systems involving long-range interactions as it is able to utilize the fast Fourier transforms (FFT)
on uniform grids. In this paper, we report our recent progress in making grid points spatially adaptive in the physical
domain via a moving mesh strategy, while maintaining a uniform grid in the computational domain for the spectral imple-
mentation. This approach not only provides more accurate treatment at the interfaces requiring higher resolution, but also
retains the numerical efficiency of the semi-implicit Fourier spectral method. Numerical examples using the new adaptive
moving mesh semi-implicit Fourier spectral method are presented for both two and three space dimensional microstructure
simulations, and they are compared with those obtained by other methods. By maintaining a similar accuracy, the pro-
posed method is shown to be far more efficient than the existing methods for microstructures with small ratios of interfacial
widths to the domain size.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Moving mesh; Adaptive mesh; Phase-field equations; Semi-implicit; Fourier-spectral method
1. Introduction

Phase-field method has been applied to modeling mesoscale morphological pattern formation and interface
motion for many different materials processes [1]. It describes a microstructure using a set of spatially depen-
dent field variables. The temporal evolution of the field variables is then governed by systems of time-dependent
Ginzburg–Landau (TDGL) and Cahn–Hilliard (CH) equations. Numerical solutions to the phase-field
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equations yield the temporal and spatial evolution of the microstructures. However, most of the existing phase-
field simulations employ the simple explicit Euler finite-difference scheme which has severe limitations on sim-
ulation time and system size. Consequently, a number of efforts have been made to develop and implement
more advanced numerical algorithms for solving the phase-field equations. In general, existing algorithms
are designed either to increase the numerical stability with respect to time or to achieve higher accuracy in spa-
tial discretization. To achieve high accuracy in space, two types of approaches have been utilized. One is to
employ a spectral representation of a continuous spatial profile of a field variable, e.g. using a Fourier series
for a periodic system, and the other is the adaptive mesh approach in which dense grid points are used in
the interfacial regions where the field variables have large gradients [2]. The spectral method and its semi-impli-
cit implementation have proved particularly efficient for systems in which the morphologies and microstruc-
tures are dominated by long-range elastic interactions [3] while the adaptive mesh method is useful for
microstructures with a very small interfacial width compared to the domain size. However, it is a technical chal-
lenge to efficiently combine the spectral method with an adaptive mesh. The main objective of this paper is to
develop a FFT based spectral implementation of an adaptive mesh method for solving phase-field equations.

To achieve the adaptivity within the framework of Fourier-Spectral Semi-implicit methods, we employ the
moving mesh approach while maintaining the same number of Fourier modes instead of using local refinement
(either by adding extra grid points or enriching Fourier modes). The main idea of the moving mesh approach
is to construct a time-dependent mapping x(n, t) from the computational domain Xc (parameterized by n) to
the physical domain Xp (parameterized by x), such that the representation t(n, t) = u(x(n, t)) of the physical
solution u(x(n, t)) in the computational domain is ‘‘better behaved’’. The criteria for constructing the mapping
are usually expressed as certain variational principles, whose solutions via gradient flow lead to the so-called
moving mesh partial differential equations (MMPDEs) [4–9]. Similar domain or coordinate mapping ideas
have been also used in [10,11] for the adaptive pseudo spectral approximation of reaction-diffusion and com-
bustion problems. Other works on adaptive spectral methods can also be found in [12,13]. It turns out the
semi-implicit Fourier spectral method can also be effectively used to solve the MMPDEs. Taking advantages
of both the moving mesh method and the Fourier Spectral Semi-implicit scheme, larger time steps and larger
system sizes can be used in phase-field simulations to gain computational efficiency without sacrificing the
accuracy. In this paper, we demonstrate the performance of this new approach for the Phase-field equation
in both two and three space dimensions for model problems. Similar improvement can also be expected for
its application to the phase filed simulations of more realistic and complicated problems.

The rest of the paper is organized as follows: we first review the framework for the MMPDEs, and discuss
its Fourier-Spectral implementation, in particular, for the Phase-field equation. We then present numerical
simulation results and make comparisons with other existing methods. Some concluding remarks are given
in the end.

2. Formulations of moving mesh PDEs and applications to Phase-field equations

We first present the variational formulations of the moving-mesh PDEs, then we discuss the applications to
Phase-field equations and their spectral implementation.

2.1. The moving-mesh PDEs

Moving-mesh PDEs can be formulated either on a computational domain [14] or on a physical domain [15].
The former has the advantage of being simple and efficient, though bearing a lesser rigorous derivation. The
latter is derived on a more rigorous basis, but the resulting MMPDE is slightly more complicated. More com-
parisons of the implementation based on the two different approaches are given in [16]. In this paper, we
briefly discuss both approaches, although only the second approach, the physical domain variational formu-
lation (PDVF), is implemented in the numerical simulations.

To explain the idea, we first describe the MMPDE in one dimension. Fig. 1 shows the discretization of a
function in the physical domain and in the computational domain, respectively. One can achieve the high grid
density in the high gradient region in the physical domain (Fig. 1, left) by smoothing the gradient in the com-
putational domain (Fig. 1, right).



Fig. 1. The physical domain (left) and the computational domain (right).
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To make t(n, t) = u(x(n, t)) a nicely behaved function, we seek the solution to the following minimization
problem:
min
xðn;tÞ
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This special functional corresponds to the arc length and its associated Euler–Lagrange equation in the
computational domain is given by
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The solution to the above equation gives the transformation, x(n, t), between the computational domain
described by n to the physical domain by x. The PDE in Eq. (3) is difficult to solve since it involves a rather
singular coefficient on the left-hand side and a stiff source term on the right-hand side. However, through
numerical experiments [14], it is found that one can achieve the same goal of smoothing the physical solution
in the computational space by solving a much simpler PDE,
o

on
ðxxnÞ ¼ 0; ð4Þ
where x ¼
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xx2
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q
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n

q
is the so-called monitor function that connects the mesh with the physical

solution. In general, the monitor function should be problem-dependent as this function ultimately determines
the compression and deformation of the mesh. The mesh will concentrate more on places where x is larger.
Other geometric controls such as mesh orientation and orthogonality can also be built in the monitor function

[17]. A common choice is x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2u2

n

q
where b is a scaling constant for the control of mesh concentration.

Since both the MMPDE (4) and the monitor function are expressed in computational domain, the implemen-
tation is rather straightforward.

For the PDVF approach [15], the goal is to find the inverse mapping n = n(x, t) of x = x(n, t). Given an
appropriate matrix monitor function G, the mapping can be obtained by solving the following variational
problem
min
nðx;tÞ
¼
Z
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ox
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dx: ð5Þ
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In higher dimensions, the objective function in (5) becomes
I ½n� ¼
Z

Xp

X
i

ðrniÞT G�1rni dx ð6Þ
where $ is the gradient operator with respect to x, x is the monitor function.
The Euler–Lagrange equation associated with this variational problem is
dI ½n�
dni ¼ 0 or r � ðG�1rniÞ ¼ 0; i ¼ 1; 2; 3: ð7Þ
The static PDE (7) can be converted to a time-dependent problem via gradient flow:
o

ot
niðx; tÞ ¼ pr � ðG�1rniÞ; i ¼ 1; 2; 3; ð8Þ
where the mobility p is a positive function and can vary in space.
Some complications arise when one converts (8) to a more convenient version in the computational space.

This is done by interchanging the roles of dependent and independent variables in (8). Following [15], it is
convenient to introduce the covariant and contravariant basis vectors
ai ¼
ox

oni ; ai ¼ rni; i ¼ 1; 2; 3; ð9Þ
which are related by
ai ¼ 1

J
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where dl
i is the Kronecker delta function, and J is the Jacobian J = a1 Æ (a2 · a3) [15].

With the aid of the following formulae:
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the Eq. (8) can be transformed into
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In the case of Winslow type of monitor function G = xi [18], with i being the identity matrix, the above
equation can be further simplified into
ox
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oni x
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� �
: ð14Þ
In this paper, we focus only on the case where G = xi, though more general matrix forms can also be used
in order to introduce anisotropic adaptive grids. We adopt the following variable mobility in practical
calculation
p ¼ lx2=k; ð15Þ

where k is the largest eigenvalue of the positive-definite matrix A = (Ai,j) = (ai Æ aj). Here, the generic constant
l introduces an artificial time scale for the MMPDE as compared with the physical time t. It should be noted
that our choice of the mobility function is simpler than the form suggested in [15]. Our motivation for choos-
ing such a mobility is to make (14) behave similarly to a simple diffusion equation, and our numerical expe-
riences seem to indicate that this choice helps increase the stability of the MMPDE significantly.
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2.2. Fourier-spectral implementation of MMPDEs

In [15], three types of boundary conditions have been suggested to supplement the moving mesh PDEs: (1)
Dirichlet conditions where the boundary points are held fixed; (2) orthogonal conditions where one set of
coordinate lines are required to be orthogonal to the physical boundary; and (3) boundary conditions deter-
mined by a lower dimensional MMPDE. In this paper, we discuss an implementation of the periodic boundary
conditions for the MMPDEs, since periodic boundary conditions are the most commonly used in phase-field
simulations. Suppose the computational domain is a unit square [0,1] · [0, 1]. Though periodic boundary con-
ditions can be understood in a straightforward way on the unit square, it is not immediately clear how the
resulting adaptive mesh inherits the periodic properties. In fact, it is the displacement of the adaptive grid
point from its inverse image on the regular grid, i.e. x(n, t) � n, that satisfies the periodic boundary conditions
on the unit square, i.e.,
Fig. 2.
square
xðnþ ðk; lÞ; tÞ ¼ xðn; tÞ þ ðk; lÞ; integer pairðk; lÞ: ð16Þ

Interestingly, this condition does not require that the mapping x(n, t) maps a unit square onto a unit square.

In other words, with periodic boundary conditions, the physical domain may not turn out to be a square even
though the computational domain is. This can be seen in Fig. 2 which shows a mesh adapting to a circular
interface centered near the upper-right corner of the physical domain. Although the physical domain bound-
aries are curved, the condition (16) guarantees that the periodic copies of Xp (non-square) cover the whole
two-dimensional space as effectively as periodic copies of the unit square. In particular, it is easy to verify that
(16) implies that the area of the physical domain Xp is the same as that of Xc.

Consider the PDVF approach in [15], with periodic boundary conditions on X = x � n, Eq. (14) becomes
oX
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where ei is the canonical unit vector (the ith column of the identity matrix). This can be solved by the semi-
implicit Fourier spectral method [3] through
X i � X i
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where X is the value of X at the next time step and W is the maximum of x on Xc. An equivalent represen-
tation in the Fourier space is
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where the � represents the Fourier transform.
A domain mapping from regular grids on the computational domain (unit square) to irregular grids on the physical domain (non-
).
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2.3. Phase-field equations

In the phase-field simulation, MMPDEs are solved together with the phase-field equations alternately. We
now discuss how the phase-field equations are transformed into the computational domain and their numer-
ical solutions. As an illustration, we consider the Allen–Cahn equation with a constant mobility [1]:
o

ot
gðx; tÞ ¼ f ðgÞ þ r2

xg: ð20Þ
We also refer the above equation as a time-dependent Ginzburg–Landau (TDGL) equation. The nonlinear
term f = f(g) is specified later. Now, by introducing the variable transformation x = x(n, t) and treating g as
a function of n and t, we have
o

ot
gðn; tÞ ¼ _x � rxgþ f ðgÞ þ r2

xg; ð21Þ
where _x ¼ oxðn;tÞ
ot is the velocity of the moving mesh determined from the MMPDEs. The extra convection term

_x � rxg represents the change of the inverse image of the field variable g on the computational domain due to
the mesh motion. Using (11) and (12), one may easily verify that
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where A = (Ai,j) = (ai Æ aj). In order to apply the semi-implicit Fourier spectral scheme, we denote by k* the
maximum among the eigenvalues of A over the whole domain Xc (maximum of k in (15)) and introduce
the splitting
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whose counterpart in the Fourier space conjugate to Xc reads
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3. Numerical simulations and discussion

We now report numerical simulation results using the AFSIM (adaptive Fourier-spectral semi-implicit
method) for a popular bench-mark problem and some more realistic problems.

3.1. Two dimensional implementation

3.1.1. Temporal evolution of a circular domain

The first example presented here is chosen for testing the accuracy and efficiency of the proposed moving
mesh based adaptive Fourier-spectral Semi-implicit method (AFSIM) since it is the most commonly used
bench-mark example for which an analytical solution for the temporal evolution kinetics is known. In light
of the numerical studies already carried out in [3] which demonstrated the high efficiency and accuracy of uni-
form Fourier-spectral semi-implicit method (UFSIM), we only need to compare the performance of AFSIM
and UFSIM.

To compare the accuracy and efficiency of various schemes, we considered the TDGL Eq. (20) in two
dimensions (with the system or domain size being 256 · 256) with various grid sizes dx and time step sizes
dt (because the system size is fixed, if we for example use dx = 4, then it implies the number of grid points
used is 64 · 64). We use the double well free energy, F = �1/2g2 + 1/4g4, so that we have f(g) = �oF/
og = g � g3 in the Eq. (20). In the implementation of AFSIM, we take b2 = 0.15 in the monitor function
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and pick l = 1 to get the mobility in the Eq. (15). These are the only extra parameters required in the computer
simulation other than those already used in the standard UFSIM.

We first consider the shrinkage kinetics of a circular domain in two dimensions. Both the equilibrium pro-
files and the velocity of a moving interface are monitored. At t = 0, a circular domain with a radius of 100 is
prescribed. The phase-field parameter values inside the circle are assigned �l and +1 outside. Such a circular
interface is unstable and the driving force for its motion is the mean curvature. Therefore, the circle will shrink
and eventually disappear (Fig. 3). If the radius of the circle is much larger than the interfacial thickness, the
velocity of the moving interface, V, is given by [19]
V ¼ dR
dt
¼ � 1

R
; ð26Þ
where R is the radius of the circle at a given time t. Furthermore, the area of the circle as a function of time can
be described as
A ¼ A0 � 2pt; ð27Þ

where A is the area of the circle at time t and A0 is the initial area.

The area of the circle is proportional to the time with a slope �2p. The areas as a function of time obtained
from both schemes are shown in Fig. 4. All the results show a linear dependence of the area on time. However,
the slopes of the lines are different. The thick solid line labeled as ‘‘theory’’ is a plot of Eq. (27) with a slope of
�2p. We may characterize the accuracy of different schemes by comparing the slopes of the lines with the ana-
lytical solution (27). The resulting errors are shown in Table 1.
Fig. 3. Mesh distribution corresponding to the temporal evolution of a two dimensional circular domain (dx = 4).

Fig. 4. Areas of a circular domain as a function of time.
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Notice that the errors of UFSIM range from 2.4733% to 28.9439%, which yield large discrepancies in the
solutions. On the other hand, there is no significant difference between the errors obtained from AFSIM,
with different grid sizes dx and time step sizes dt, which means the newly developed AFSIM is much more
accurate.

The overall computational capacity and computing time are crucial issues in large-scale simulations, espe-
cially three-dimensional simulations. AFSIM can significantly increase the spatial scale of the simulation and
improve the efficiency, while ensuring the computation accuracy as well. Table 2 shows the computing time of
both schemes with different grid sizes and time step sizes. One may notice that, by providing the same kinetics
(Fig. 5) and a similar accuracy (2.4205% vs. 2.4733%), the AFSIM with parameter values (dx = 4, dt = 0.5) is
about 18 times faster than the UFSIM with (dx = 1, dt = 0.05), in addition to potential memory savings by
using fewer grid points.

3.1.2. Temporal evolution of a random domain structure

AFSIM is expected to perform well for microstructures with a small fraction of interfaces. To simulate a
more realistic microstructure, we consider the evolution of a random domain structure. The same free energy
Table 1
The errors in the slopes of the area dependence (2D)

Schemes dt = 0.05 (%) dt = 0.25 (%) dt = 0.5 (%) dt = 1 (%)

UFSIM dx = 1 2.4733 9.5397 17.1410 28.9439
AFSIM dx = 1 0.6978 1.5801 2.4204 3.8661
AFSIM dx = 2 0.7021 1.5792 2.4220 3.8655
AFSIM dx = 4 0.7168 1.5743 2.4205 3.8644

Table 2
The computing time for the 2D problem (unit: s)

Schemes dt = 0.05 dt = 0.25 dt = 0.5 dt = 1

UFSIM dx = 1 381 76 38 18
AFSIM dx = 1 8220 1656 745 362
AFSIM dx = 2 1390 266 133 67
AFSIM dx = 4 220 41 21 10

Fig. 5. Phase-field parameter profile evolution with time.
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and parameters used above are employed. At t = 0, the initial distribution of phase-field parameter is around 0
with a spatial small random noise valued within (�0.5, 0.5). Interconnected structures shown in Fig. 6 are
obtained during evolution using UFSIM.

To compare, we take the distribution at t = 50 using UFSIM as the input for AFSIM. Fig. 7 shows the
mesh distribution during evolution using AFSIM. The associated phase-field parameter distribution is plotted
in Fig. 8. It can be seen that Figs. 6 and 8 agree quite well. Although the accuracy of these two methods cannot
be compared quantitatively because there is no analytical solution for this case, the efficiency of the two meth-
ods are studied and it is found that AFSIM using smaller number of Fourier modes and larger time step is
three times more efficient than UFSIM with more Fourier models and smaller time step.

As an additional example, we use the same parameters as in the above example, but take a tilted double
well free energy: F = 0.2g � 1/2g2 � 0.2 * 1/3g3 + 1/4g4. Thus, in Eq. (20), we have f(g) = �oF/og = (g �
0.2)(1 � g2). At t = 0, the initial distribution of phase-field parameter is taken to be around 0.3 with a spatially
distributed small random noise with values in (�0.5, 0.5). Fig. 9(a) is obtained using UFSIM with dx = 1,
dt = 0.05 and the plots correspond to solutions at t = 100 and t = 150, respectively during the microstructure
evolution. To compare with the AFSIM, we take the simulation result of the UFSIM at t = 100 as the input for
AFSIM. Fig. 9(b) shows the mesh distribution (see Fig. 9(b) left) during evolution (from t = 100 to t = 150)
using the AFSIM with dx = 2, dt = 0.5 and the associated phase-field parameter distribution (Fig. 9(b) right).
Fig. 6. Phase-field parameter distribution (UFSIM, dx = 1, dt = 0.05).

Fig. 7. Mesh distribution (AFSIM, dx = 2, dt = 0.5).

Fig. 8. Phase-field parameter distribution (AFSIM, dx = 2, dt = 0.5).



Fig. 9. Temporal evolution of a random domain structure.
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It can be seen that Fig. 9(a) and (b) agree again very well, with AFSIM being again three times more efficient
than to obtain than UFSIM. In comparison, Fig. 9(c) shows the phase-field parameter distribution from
t = 100 to t = 150 using UFSIM with dx = 2, dt = 0.5. Notice that the microstructure at t = 150 displayed
in Fig. 9(c) show a square like morphology instead of the circular one showing in Fig. 9(a) and (b) computed
by more accurate simulations. Thus, the UFSIM with the same degree of freedom as the AFSIM produces qual-
itatively different results and is unable to accurately reproduce the same morphology as shown in the AFSIM
and the finer UFSIM calculation. This again illustrates the enhanced resolution provided by AFSIM over the
UFSIM when the same number of grid points and step size are used.

3.2. Three dimensional implementation

While a number of 1D and 2D moving mesh methods have been developed in the last 20 years, such as
those in [2,4–8,20,21], few have been applied in three spatial dimensions [6,22,26]. Two and three dimensional
adaptive Phase-field simulations have been implemented before but often in the finite difference and finite ele-
ment contexts [23–25]. To our knowledge, the combination of moving mesh strategy with the Fourier spectral
discretization in three dimensions in the context of phase field modeling has not been attempted in the liter-
ature before.

Here we discuss the three-dimensional implementation of AFSIM scheme. In the following, we considered
the Allen–Cahn (or TDGL) Eq. (20) in three dimensions with a system size 256 · 256 · 256 and various grid
sizes dx and time step sizes dt (again, the system size is fixed, e.g. dx = 4 corresponds to a 64 · 64 · 64 grid).
Similar to the first example in the two-dimensional case, we assume that at t = 0, there is a spherical domain
with a radius of 100. The sphere will shrink and eventually disappear as illustrated in Fig. 10. The velocity of
the moving interface, V, is given by
V ¼ dR
dt
¼ � 2

R
; ð28Þ
where R is the radius of the circle at a given time t. Furthermore, the volume of the sphere as a function of time
can be described as
9pV 2

16

� �1
3

¼ 9pV 2
0

16

� �1
3

� 4pt; ð29Þ



Fig. 10. Mesh distributions for the temporal evolution of a shrinking three dimensional spherical domain (cross-sections in a quadrant are
shown, dx = 4).
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where V is the volume of the sphere at time t and V0 is the initial volume. Again, the errors of different schemes
by comparing the slopes of the lines with the analytical solution (29) are shown in Table 3.

Table 4 shows the computing time of both schemes with different grid sizes and time step sizes. One may
notice that, by providing a similar accuracy (2.4135% vs. 2.4642%), the AFSIM with parameter values
(dx = 4, dt = 0.5) is about 18 times faster than the UFSIM with (dx = 1, dt = 0.05), in addition to potential
memory savings by using fewer grid points.

3.3. Discussions

By taking advantages of the moving mesh method, larger time steps can be used to gain computational effi-
ciency without sacrificing the accuracy, in addition to the savings of Fourier-spectral semi-implicit method.
This makes sense because the stiffness of the solution is reduced in the computational domain. Also since
we got high grids density in high gradient area, we can use less grid points to save the computing time, e.g.
we used 64 · 64 grid points to calculate a system sizes of 256 · 256.

We should notice that the new AFSIM requires more CPU time in constructing a time-dependent mapping
from the computational domain to the physical domain, which constitutes the overhead of the moving mesh
strategy. Counting the cost of solving MMPDE and Allen–Cahn equation together, we need 32 Fourier trans-
forms in 2D and 66 Fourier transforms in 3D. In contrast, solving the simplest Allen–Cahn equation on a
regular uniform grid requires only three Fourier transforms. Therefore, we may need a compression ratio
of four in each dimension to gain some savings by using the adaptive grids. The savings of course would
be much more apparent if an Allen–Cahn equation with variable mobility had been considered. For example,
in 2D, the Allen–Cahn equation with a variable mobility generally requires seven Fourier transforms on a reg-
ular uniform grid, then an adaptive grid with a compression ratio of three would already noticeably reduce the
overall computational cost. As the number of Fourier modes is reduced, we also see potential savings in the
memory, in spite of the extra memory overhead allocated for the additional variables, which is often another
crucial concern in large scale three dimensional simulations.
Table 3
The errors in the slopes of the area dependence (3D)

Schemes dt = 0.05 (%) dt = 0.25 (%) dt = 0.5 (%) dt = 1 (%)

UFSIM dx = 1 2.4642 9.5292 17.0555 28.9232
AFSIM dx = 4 0.7023 1.5660 2.4135 3.8639

Table 4
The computing time for the 3D problem (unit: h)

Schemes dt = 0.05 dt = 0.25 dt = 0.5 dt = 1

UFSIM dx = 1 41.03 8.22 4.07 2.01
AFSIM dx = 4 22.64 4.53 2.27 1.15
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4. Conclusions

A new numerical scheme has been developed to solve the phase-field equations. It combines the adaptive
moving mesh method with the semi-implicit Fourier spectral algorithm. The scheme has been implemented
in both two and three dimensions for solving a single Allen–Cahn (TDGL) equation. It is demonstrated that
for a prescribed accuracy in both the equilibrium profile of a phase-field parameter and the interface velocity,
the new moving mesh method can potentially lead to an order of magnitude improvement in efficiency over the
conventional uniform mesh spectral method, particularly for problems that the volume fraction of interfacial
region is small. It is naturally possible to apply this scheme to systems of Allen–Cahn, Cahn–Hilliard, and
systems involving elasticity equations (currently under development and see [16] for additional discussions).
The use of a hydrodynamic approach for the moving mesh PDEs is also being explored [27].
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