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Abstract. In recent years, Fourier spectral methods have emerged as competitive nu-
merical methods for large-scale phase field simulations of microstructures in computa-
tional materials sciences. To further improve their effectiveness, we recently developed
a new adaptive Fourier-spectral semi-implicit method (AFSIM) for solving the phase
field equation by combining an adaptive moving mesh method and the semi-implicit
Fourier spectral algorithm. In this paper, we present the application of AFSIM to the
Cahn-Hilliard equation with inhomogeneous, anisotropic elasticity. Numerical imple-
mentations and test examples in both two and three dimensions are considered with a
particular illustration using the well-studied example of mis-fitting particles in a solid
as they approach to their equilibrium shapes. It is shown that significant savings in
memory and computational time is achieved while accurate solutions are preserved.
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1 Introduction

Phase field method has been extensively applied to modeling microstructure evolution
for various materials processes including solidification, solid state phase transformations,
grain or phase coarsening, etc. It is an attractive and popular approach since the evolu-
tion of different microstructural features can be predicted by means of a single set of
equations, and there are no explicit boundary conditions defined at interfaces [2, 10].
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However, full three-dimensional computer simulations using the phase field method are
still computationally challenging in both memory and computational time.

Much of the earlier phase field simulations employed numerical algorithms such as
the explicit Euler finite difference method, which suffered severe limitations on the sim-
ulation time step and system size. More advanced numerical algorithms have been pro-
posed recently. Generally, these algorithms are designed to increase the numerical stabil-
ity and the accuracy. Implicit or semi-implicit methods are typically required to increase
the time step and improve the stability [10, 14]. To achieve high accuracy in space, two
types of approaches have been utilized. One is to employ a spectral representation of a
continuous spatial profile of a field variable whenever applicable, e.g. using a Fourier
series for a periodic system, and the other is the adaptive mesh approach in which dense
grid points are used in the interfacial regions where the field variables have large gradi-
ents. The Fourier spectral method and its semi-implicit implementation have shown to
be particularly efficient for systems in which the morphologies and microstructures are
dominated by long-range elastic interactions [10, 11, 42].

Fourier-spectral methods are best defined for a fixed uniformly distributed spatial
mesh. On the other hand, recent studies on adaptive meshing techniques have led to sig-
nificant improvement of the computational efficiency of traditional fixed grid methods in
many applications, including phase field modeling [6, 16, 26, 32, 39]. Particular examples
of adaptivity include the mesh refinement and coarsening as well as mesh movement,
and it is clear that adaptive mesh methods are useful for microstructures with a very
small interfacial width compared to the domain size. An interesting question to be an-
swered is how the efficiency of spectral methods can also be improved through adaptiv-
ity. Naturally, many approaches may be offered for different applications [3, 4, 18, 27, 28].

Recently, a new adaptive Fourier-spectral semi-implicit method (AFSIM) is devel-
oped which takes advantages of both the moving mesh method and the Fourier Spectral
Semi-implicit scheme [17, 40]. With periodic boundary conditions, the key ingredients
making the new adaptive method highly efficient and different from some traditional
ones include the utilization of a varying physical domain cell for the Fourier spectral
implementation and the coupling of iterative schemes with semi-implicit time discretiza-
tion. A comparison of different ways to incorporate the moving mesh strategy was given
in [40] along with some preliminary discussion on the application of AFSIM to various
phase field models. Detailed implementation of AFSIM for the numerical solution of the
Allen-Cahn equation has been presented in [17] which has demonstrated that it is possi-
ble to keep the high accuracy using AFSIM with larger time steps and fewer grid points
than previous algorithms. Many solid state phase transformations and microstructure
involve the solution of the Cahn-Hilliard diffusion equation and the elasticity equation.
Furthermore, the elastic modulus is not only generally anisotropic, but also inhomoge-
neous, i.e. its magnitude and anisotropy depend on composition, and thus are spatially
dependent. In these cases, the implementation of AFSIM is significantly more challeng-
ing.

The work here continues our earlier discussions and represents the first attempt, as
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we are aware of, to demonstrate the effectiveness of solving the Cahn-Hilliard diffusion
model with inhomogeneous, anisotropic elasticity using a combination of adaptive mov-
ing mesh and semi-implicit Fourier spectral method. We consider the specific example of
coherent precipitates in a solid matrix as they approach to their equilibrium morphology
which play an important role in determining the physical properties of a material. Ther-
modynamically, the shape of a precipitate is determined by both the interfacial energy
and elastic energy while kinetically the evolution of a precipitate is achieved through
diffusion. The interfacial energy is dominant in determining the particle shape at small
sizes, while the elastic energy becomes more important at larger sizes [23]. Therefore, the
application of an adaptive moving mesh method is very appealing for the simulation of
these excellent examples of microstructure evolutions in many alloy systems that require
the solution of diffusion equations coupled with elasticity.

The paper is organized as follows: in Section 2, a brief description of variational for-
mulation based moving mesh techniques is given along with their implementations in
Fourier spectral methods. Applications to Cahn-Hilliard equations and the associated
elasticity equations are considered in Section 3. Numerical examples are presented in
Section 4 with a final conclusion given in Section 5.

2 Variational formulations of moving mesh PDEs

A number of different approaches have been developed in the literature regarding the
mesh adaptivity such as adding and removing grid points, reconnecting grid points
and also redistributing grid points. For time dependent problems, the redistribution of
mesh points may be dynamically performed, leading to the moving mesh methods. Our
present study focuses on the latter category. One advantage of such an approach lies in
the preservation of the mesh topology, which are important for numerical approxima-
tions based on Fourier pseudo-spectral methods.

2.1 Moving mesh PDEs

Moving-mesh PDEs (MMPDEs) can be formulated either on a computational domain
[9] or on a physical domain [20]. Numerical illustrations and comparisons of both ap-
proaches have been given in [40] which revealed some interesting behavior in the way
grids are redistributed. In this paper, as in [17], we consider mainly the physical domain
based variational formulation (PDVF), which is derived on a more rigorous basis, though
with a slightly more complicated MMPDE. The criteria for redistributing the mesh are
usually expressed as certain variational principles. Their solution via the gradient flow
approach leads to the so-called moving mesh partial differential equations [20–22]. There
are also other strategies such as those based on a posteriori error analysis. We note that
in the gradient flow, time can also be viewed as an artificial relaxation variable.

To be more specific, one can get the high grid density in the high gradient region in
the physical domain Ωp (parameterized by x) by smoothing the gradient in the compu-
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tational domain Ωc (parameterized by ξ) [17, 40]. For this purpose, a mapping x(ξ) is
constructed from the computational domain to the physical domain such that the repre-
sentation v(ξ)=u(x(ξ)) of the physical solution u=u(x) in the computational domain is
better behaved [5,9,20,25,37,38]. The criteria for constructing the mapping are usually ex-
pressed as certain variational principles. For instance, the mesh PDE for x=x(ξ) can take
on the form like ∇ξ ·(w∇ξ x) = 0 with suitable boundary conditions, yielding solutions

that minimize the functional
∫

Ωc

w|∇ξ x|2dΩc

so that the mesh tends to concentrate near where w is large [37]. Here w is the so called
monitor function that connects the mesh with the physical solution u. A particular form
of w which is adopted in this paper is given by

w=
√

1+β2|∇ξu|2,

where β is a scaling constant for the control of mesh concentration. For additional dis-
cussion on the choice of monitor functions and the parameters, we refer to [9, 20, 38, 40].

For the physical domain based PDVF approach [20], the aim is to find the inverse
mapping ξ = ξ(x,t) of x = x(ξ,t). Given an appropriate matrix monitor function G, the
mapping ξ =ξ(x,t) can be constructed by solving the following variational problem

minξ(x) I(ξ)=
∫

Ωp
∑

i

(∇xξ i)TG−1∇xξ idx . (2.1)

The matrix form of G allows the introduction of anisotropically distributed mesh points.
The variational problem (2.1) can be solved via a gradient flow, leading to the moving
mesh PDE (MMPDE):

∂

∂t
ξ i(x,t)= p∇x ·(G−1∇xξ i), i=1,2,3, (2.2)

where the mobility p is a positive function and can vary in space.
By interchanging the roles of dependent and independent variables in (2.2), the equa-

tion (2.2) may be more conveniently given in the computational domain. Using the co-
variant and contravariant basis vectors as in [20], ai = ∂x/∂ξ i , ai =∇xξ i for i =1,2,3, and
the Jacobian J =a1 ·(a2×a3), the equation (2.2) can be transformed into

∂x

∂t
= p

[

∑
i,j

(a
i ·G−1

a
j)

∂2x

∂ξ i∂ξ j
−∑

i,j

(

a
i ·

∂G−1

∂ξ j
a

j

)

∂x

∂ξ i

]

.

In case of Winslow type of monitor function G=wI [37], where w is a scalar and I the
identity matrix, the above equation can be further simplified into

∂x

∂t
=

p

w2 ∑
i,j

(a
i ·aj)

∂

∂ξ i

(

w
∂x

∂ξ j

)

. (2.3)
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Figure 1: A regular grid on the computational domain (unit square) is mapped to an adaptive grid on the
physical domain (non-square).

Discussions on the mobility function p have been made in [17, 40], along with a compar-
ison of the equation (2.3) with its counterpart in the computational domain approach.
A simpler choice of the mobility function (than that given in [20]) has been proposed as
p = µw2/λ where λ is the largest eigenvalue of the positive-definite matrix A = (Ai,j) =

(ai ·aj). The generic constant µ used in p controls the artificial time scale of the MMPDE
as compared with the physical time t.

2.2 Fourier-spectral implementation

To match with the periodic boundary condition used in the Fourier-spectral methods
for phase field simulations, an important contribution has been made in [17, 40] where
periodic boundary conditions are adopted for the MMPDE thus allowing a changing
physical domain cell. Given a computational domain on a unit square [0,1]×[0,1], the
displacement of the adaptive grid point from its inverse image on the regular grid, i.e.
X(ξ,t)= x(ξ,t)−ξ, satisfies the periodic boundary conditions on the unit square, that is,

x(ξ+(k,l),t)= x(ξ,t)+(k,l), ∀ integer pair (k,l) . (2.4)

Interestingly, this condition does not require that x(ξ,t) maps a unit square onto a unit
square. This observation has also been made in [12] for moving mesh finite element
methods for the Navier-Stokes equations. The Fourier spectral implementation consid-
ered here allows the mesh moving equations be solved in the similar fashion as the phase
field equations. With periodic boundary conditions, the physical domain does not main-
tain a square shape, while the computational domain does. An illustration is given in
Fig. 1 to show how the mesh is adapted to a particular microstructure pattern in the
physical domain. Although the physical domain boundaries are curvy, the condition
(2.4) guarantees that the periodic copies of Ωp (a non-square shape) cover the whole 2-
dimensional space as effectively as periodic copies of the unit square. In particular, it can
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be seen that (2.4) implies that the area of the physical domain Ωp is the same as that of
Ωc.

For the physical domain PDVF approach studied here, in terms of X , (2.3) becomes

∂X

∂t
=µ∑

i,j

ai ·aj

λ

∂

∂ξ i

[

w(
∂X

∂ξ j
+ej)

]

, (2.5)

where ei is the canonical unit vector (ith column of the identity matrix). The semi-implicit
Fourier spectral (or Fourier collocation, Fourier pseudo-spectral) scheme can be used to
solve it numerically. A particular form as used in [17], in the Fourier variables, is given
by

(1+µWδτk
2)( ˆ̄X−X̂)=µδτ

{

∑
i,j

ai ·aj

λ

∂

∂ξ i

[

w(
∂X

∂ξ j
+ej)

]

}∧

, (2.6)

where X̄ is the value of X at the next time step, W is the maximum of w on Ωc, k denotes
the wave vector, and ∧ represents the Fourier transform.

3 Cahn-Hilliard equation

The Cahn-Hilliard equation with constant mobility and elasticity is

∂

∂t
c(x,t)=△x

δF

δc
=△x(

∂

∂c
f (c)+

∂

∂c
e−ǫ2△x c) , (3.1)

where c is the composition, F the total free energy, f the local free energy, e the elastic
energy, and ǫ the gradient energy coefficient. Microstructure evolution takes place to
reduce the total free energy in the system that may include the bulk chemical free energy,
interfacial energy, and the long-range interaction energies such as the elastic energy.

In recent years, phase field models have been developed to incorporate the elastic
effect by expressing the elastic strain energy as a function of field variables (see for exam-
ple, [19, 42] and the references cited therein). To be specific, the elastic energy density in
the Cahn-Hilliard equation Eq. (3.1) can be calculated by e= 1

2 Cijklε
el
ijε

el
kl with a summation

convention. Here the elastic strain εel is the difference between total strain ε and stress-
free strain ε0 since stress-free strain does not contribute to the total elastic energy, i.e.
εel

kl = εkl−ε0
kl , while εkl = ε̄kl +δεkl with ε̄ being the homogeneous strain which determines

the macroscopic shape and volume change produced by internal stress and externally ap-
plied stress, δε the inhomogeneous local strain which is related to the local displacement
field u by the usual elasticity relation,

δεkl =
1

2

(

∂uk

∂xl
+

∂ul

∂xk

)

.

We now discuss the application of adaptive Fourier spectral semi-implicit scheme for the
Cahn-Hilliard equation coupled with the elasticity equation.
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3.1 Moving mesh formulation of the Cahn-Hilliard equation

Treating c as a function of ξ and t, we have

∂

∂t
c(ξ,t)= ẋ·∇xc+△x(

∂

∂c
f (c)+

∂

∂c
e−ǫ2△x c), (3.2)

where ẋ=∂x(ξ,t)/∂t is the mesh velocity determined from the MMPDEs. The convection
term ẋ·∇xc represents the change of the inverse image of the field variable c on the
computational domain due to the mesh motion. Using the notation defined earlier, one
may easily verify

∇xc=∑
i

a
i ∂c

∂ξ i
, △xc=

1

J
∇ξ ·(JA∇ξc),

where A = (Ai,j) = (ai ·aj). In order to apply the semi-implicit Fourier spectral scheme,
we denote by λ∗ the maximum among the eigenvalues of A over Ωc, and introduce the
splitting in the Fourier space:

(1+(λ∗
k

2)2δt)( ˆ̄c− ĉ)=δt

{

ẋ·∇xc+△x(
∂

∂c
f (c)+

∂

∂c
e−ǫ2△x c)

}∧

. (3.3)

We may also split the nonlinear term to get a modified scheme

(1+(λ∗
k

2)2δt+σ∗
k

2δt)( ˆ̄c− ĉ)=δt

{

ẋ·∇xc+△x(
∂

∂c
f (c)+

∂

∂c
e−ǫ2△x c)

}∧

, (3.4)

where σ∗
>0 is chosen such that f (c)+σ∗c remains monotone for physically meaningful

values of c. The addition of terms involving λ∗ and σ∗ effectively introduces damping
terms like δt(λ∗△x)2 and −δtσ∗△x to the left hand side of the equation (3.2). The split-
ting reduces the stiffness of the equation, helps maintaining the stability, and allows the
efficient implementation using FFT.

3.2 Inhomogeneous elasticity equations and an iterative scheme

We first recall the treatment of the homogeneous elasticity system corresponding to the
following mechanical equilibrium equation:

λijkl
∂2

∂xj∂xl
u0

k =λijkl
∂δc

∂xj
ε0

kl , (3.5)

where δc=c(x)−c0, λijkl the homogeneous elasticity modulus tensor, u0 the local displace-

ment in the homogeneous (zeroth order) approximation, ε0 the local stress-free strain, and
c0 the average composition as the zero stress reference.

Under the variable transform ξ→ x, the elasticity system can be rewritten as

λiαkβ

∂ξ j

∂xα

∂

∂ξ j

(

∂ξ l

∂xβ

∂u0
k

∂ξ l

)

=λijkl
∂δc

∂xj
ε0

kl . (3.6)
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We first introduce a splitting to majorize the 4-rank tensor

λ̃ijkl =λiαkβ

∂ξ j

∂xα

∂ξ l

∂xβ
.

In particular, we want to control λ̃ijkl by a scalar ν2 multiple of λijkl in the sense that for
any matrix (pij),

ν2 pijλijkl pkl ≥ pijλ̃ijkl pkl .

The constant ν is chosen to be the Frobenius norm of ∂ξi/∂xj, i.e.,

ν2 =∑
i

∑
j

(

∂ξi

∂xj

)2

.

After the splitting, we have the equivalent representation of the elasticity system,

ν2λijkl

∂2u0
k

∂ξ j∂ξl
+λijkl

∂2u0
k

∂xj∂xl
=λijkl

∂δc

∂xj
ε0

kl +ν2λijkl

∂2u0
k

∂ξ j∂ξl
(3.7)

and arrive at the iterative-perturbation scheme as in [42],

ν2λijkl

∂2(ũ0
k−u0

k)

∂ξ j∂ξl
=λijkl

∂δc

∂xj
ε0

kl−λijkl

∂2u0
k

∂xj∂xl
,

where ũ0
k is the new value of u0

k after the iteration. We can also view the scaling factor ν
as an effective time scale introduced for the iterative scheme.

The above iterative scheme in the Fourier spectral setting is given by

ˆ̃u0
k = û0

k−
Ωij

κ2ν2

(

λijkl
∂δc

∂xj
ε0

kl−λijkl

∂2u0
k

∂xj∂xl

)∧

, (3.8)

where Ω−1
ij = λijklnknl, κ being the magnitude of the wave vector, and n the normalized

wave vector. For an inhomogeneous elasticity system

∂

∂xj

(

Cijkl
∂uk

∂xl

)

=
∂δc

∂xj

[

(2λ′
ijklδc+λijkl)ε0

kl−λ′
ijkl ε̄kl

]

, (3.9)

where Cijkl =λijkl +λ′
ijklδc is the elasticity modulus with a homogeneous part λijkl and an

inhomogeneous part λ′
ijklδc [19], similar to the homogeneous case, we introduce the vari-

able transform ξ→x and the splitting scheme. After the splitting, we have the equivalent
representation of the elasticity system:

ν2λijkl
∂2ũk

∂ξ j∂ξl
+

∂

∂xj

(

Cijkl
∂uk

∂xl

)

=
∂δc

∂xj

[

(2λ′
ijklδc+λijkl)ε0

kl−λ′
ijkl ε̄kl

]

+ν2λijkl
∂2uk

∂ξ j∂ξl
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and arrive at analog of the iterative-perturbation scheme as in [42],

λijkl
∂2(ũk−uk)

∂ξ j∂ξl
=

1

ν2

{

∂δc

∂xj

[

(2λ′
ijklδc+λijkl)ε0

kl−λ′
ijkl ε̄kl

]

−
∂

∂xj

(

Cijkl
∂uk

∂xl

)}

, (3.10)

where ũk is the new value of uk after the iteration. Simplifying and formulating in the
Fourier space, we obtain the final form of the iterative-perturbation scheme

ˆ̃uk = ûk−
Ωij

κ2ν2

{

∂δc

∂xj

[

(2λ′
ijklδc+λijkl)ε0

kl−λ′
ijkl ε̄kl

]

−
∂

∂xj

(

Cijkl
∂uk

∂xl

)}∧

. (3.11)

We refer to [40] for more discussions on the computational cost.

3.3 Switching on the mesh adaptation

The adaptive Fourier spectral methods bring potentially significant savings, but they are
also associated with extra overhead costs. The savings become more dramatic when the
interfacial regions are more concentrated spatially. In practice, the mesh adaption can be
used as an independent module to complement the existing phase field simulation on a
uniform mesh, and mesh adaptation can be switched on only when the potential pay-
off is evident. There are two important factors that affect this decision: efficiency and
accuracy.

More specifically, we are concerned with whether the computational savings resulting
from the mesh adaptation would out-weigh the overheads caused by the extra Fourier
transforms required to solve the phase field equations in the computational domain.
Meanwhile, as much as we would like to save on a smaller (adaptive) grid, we cannot
sacrifice the computational accuracy. Following the discussions given in [40], in practice,
we may take the guideline that the mesh adaption will be switched on when the volume
fraction of the interfacial region falls below certain threshold chosen for the particular
simulation, and lock in the savings by successively reducing the grid size provided that
it still allows accurate determination of the driving forces. Since the solution behavior
away from the interfacial region also affects the interface motion, we anticipate that a
better alternative than this heuristic rule may be developed based on a more complete a
posteriori error analysis.

4 Numerical simulations and discussion

We now present numerical examples to illustrate the effectiveness of the adaptive Fourier-
spectral Semi-implicit method (AFSIM) for the Cahn-Hilliard equation with elasticity.

4.1 One-dimensional implementation

The first example presented in this paper is to test the accuracy of the proposed adap-
tive Fourier-spectral Semi-implicit method (AFSIM). We choose the evolution of a cosine



W. M. Feng et al. / Commun. Comput. Phys., 5 (2009), pp. 582-599 591

Figure 2: Concentration and mesh distribution of AFSIM (left) and the composition evolution with time (right).

profile c = c0(t)cos(2πx) with free energy f (c) = c2/2. We consider the Cahn-Hilliard
Eq. (3.1) in one dimension without elasticity, so that we have

∂

∂t
c(x,t)=△x(c−ǫ2△x c)=−(4π2+16π4ǫ2)c0(t)cos(2πx) , (4.1)

with an exact solution

c= e−(4π2+16π4ǫ2)tcos(2πx) .

In the implementation of AFSIM, the system or domain size is taken to be of unit length.
We take 32 grid points and β2 =0.01 in the monitor function. This particular value of β is
selected without any special consideration but it is found to be a good choice of making
the simulation stable. At t=0, an initial composition distribution is prescribed. A certain
number of steps (e.g. 100 steps) are performed to prepare for the initial adaptive mesh
distribution.

More specifically, during the initial preparation, only MMPDE (2.6) is solved. The
change of composition due to the mesh motion ẋ·∇xc can then be calculated. The com-
position distribution for the system is updated. After a number of time steps, we get
an adaptive mesh distribution (Fig. 2, left). We see that mesh density is higher when
composition gradient is higher. After that, the evolution of composition is turned on.

The time step size of mesh motion, denoted by δτ can be different from the time step
size δt for the Cahn-Hilliard equation (3.3). In the present simulation, δτ = 1E−03 and
δt = 1E−05. The number of mesh motion steps can be performed differently from that
for the solution of the PDE. In this simulation, we evolve the mesh and solve the PDE
with the same steps once beyond the initial preparation. Once beyond the initial stage,
in every time step, the MMPDE is solved first, and the change of composition due to the
mesh motion ẋ·∇xc can then be calculated, followed by the update of the composition
distribution for the system using Eq. (3.3). Since an analytical solution for the temporal
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evolution kinetics is known, we can compare the simulation results with the analytical
solution. Fig. 2 (right) shows the evolution of the composition. Dashed lines are from
the analytical solution, dotted lines from simulation. The largest relative L2 error of the
AFSIM solution at any time is about 0.08%. We can thus see that the simulation results
agree quite well with the analytical solution. We note that this example is only used
to verify the accuracy of the AFSIM. Since the analytic solution does not have spatially
highly concentrated derivative, methods based on the uniform mesh can also be very
accurate in this case.

4.2 Two-dimensional implementation

We present two examples here. The first example is chosen for testing the accuracy and
efficiency of the proposed AFSIM. In light of the numerical studies already carried out
in [11] which demonstrated the high efficiency and accuracy of uniform Fourier-spectral
semi-implicit method (UFSIM) in comparison with low order methods developed earlier
in the literature, we elect to compare the performance of AFSIM and UFSIM. The second
example illustrates the effectiveness of the AFSIM in simulating the evolution of random
microstructure.

To compare the accuracy and efficiency of various schemes, we first consider the
Cahn-Hilliard Eq. (3.1) with inhomogeneous elasticity in two dimensions (again with
unit system or domain size) with various grid sizes dx and time step sizes δt and δτ (note
a grid size of dx = 1/64 implies the number of grid points used is 64×64). The double-
well free energy f (c)=−c2/2+c4/4 is used in this case. The other parameters are chosen
without any special consideration. For example, the gradient coefficient is chosen to be
ǫ = 0.002, ε0

ij is assumed purely dilatational ε0
ij = 0.04δij with I being the identity matrix,

and λ11 =600, λ12 =400, λ44 =200, λ′
11 =−100, λ′

12 =−75, λ′
44 =−25.

At t=0, a circular domain with a radius of 0.25 is prescribed. The composition values
are assigned +1 inside the circle and −1 outside using

c=−tanh((
√

(x−0.5)2+(y−0.5)2−0.25)/ǫ).

The interface is automatically generated by the tanh function. We first take 500 steps
of the MMPDE to generate the initial mesh, same as in the above example. After that,
in each step, Eq. (2.6) is first solved to evolve the mesh. The elasticity equation (3.8) is
then solved for an elastically homogeneous modulus system, and the iterative procedure
(Eq. (3.11)) is used to obtain the elasticity solution for the more general, inhomogeneous
modulus case. With the equilibrium elastic displacements, the composition distribution
for the system is updated using Eq. (3.3).

The evolution of the circular domain from phase field simulations is shown in Figs. 3
and 4 for an elastically inhomogeneous cubic system with anisotropy parameter

ψ=2λ44/(λ11−λ12)>1.
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Figure 3: Concentration distribution for the 2d circular domain simulation.

Figure 4: Mesh distribution for the 2d circular domain simulation.

As previously predicted by others, the precipitate shape gradually changes from a sphere
to a cube with the sides along the {100} planes. So the moving mesh correctly predicts the
diffuse-controlled evolution of a coherent precipitate. In the implementation of AFSIM,
we take β2=0.02 in the monitor function and pick µ=1 to get the mobility in the Eq. (2.6).
These are the only extra parameters required in the computer simulation other than those
already used in the standard UFSIM.

Since there is no analytical solution for this case, we take the simulation result of
UFSIM (with dx=1/1024) as the accurate solution. We may characterize the accuracy of
different schemes by comparing the final area of the domain with the accurate solution.
The resulting relative errors (in terms of the percentage of the area) are shown in Table 1.
It is noticeable that with different grid sizes dx and time step sizes δt and δτ, the newly
developed AFSIM is much more accurate and stable.

The overall computational capacity and computing time are crucial issues in large-
scale simulations, especially three-dimensional simulations. AFSIM can significantly in-
crease the spatial scale of the simulation and improve the efficiency, and ensure the com-
putation accuracy as well. Table 2 shows the computing time of both schemes with differ-
ent grid sizes and time step sizes. One may notice that, by providing a similar accuracy,
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Table 1: The error percentages of the area for 2D circular domain.

δt 5E-06 1E-05 5E-05 1E-04

UFSIM dx=1/256 0.76 unstable unstable unstable

UFSIM dx=1/128 1.35 unstable unstable unstable

AFSIM dx=1/64 0.78 0.79 0.81 0.98

Table 2: The computing time for the 2D circular domain (unit: s).

δt 5E-06 1E-05 5E-05 1E-04

UFSIM dx=1/256 5092 – – –

UFSIM dx=1/128 1124 – – –

AFSIM dx=1/64 1543 788 157 80

the AFSIM is more than 20 times faster than the UFSIM, in addition to potential memory
savings by using fewer grid points.

The AFSIM scheme presented here can be used to simulate more realistic microstruc-
tures, although it is expected to perform much better for microstructures with a small
fraction of interfaces. We next consider the evolution of a random domain structure. The
same free energy and parameters used above are employed unless otherwise specified.
λ′

11 =300, λ′
12 =200, λ′

44 =100 and ǫ=0.004. At t=0, the initial distribution of phase field
parameter is around 0 with a spatial small random noise valued within (−0.25,0.25).

The random structures shown in the left column of Fig. 5 are obtained during the time
evolution using UFSIM with dx=1/256, δt=5×10−6. To compare, we take the distribu-
tion at t = 1.2 using UFSIM as the input for AFSIM. The second column of Fig. 5 shows
the mesh distribution during evolution using AFSIM with dx=1/128, δt =5×10−5, and
β2 =0.05. The associated composition distribution is plotted in the third column of Fig. 5.
It can be seen that the results in the different columns of Fig. 5 agree quite well. In the
right column of Fig .5 shows the composition distribution from t = 1.20 to t = 1.30 us-
ing UFSIM with dx = 1/128 and δt = 5×10−6. Notice that the microstructure evolution
displayed in the right column of Fig .5 is nearly stopped, as seen most evidently in the
smallest particle (highlighted in circles), due to insufficient grid points in the interfaces.
Thus, the UFSIM with the same degree of freedom as the AFSIM produces qualitatively
different results and is unable to accurately reproduce the same morphology as shown in
the AFSIM and the finer UFSIM calculation. This again illustrates the enhanced resolu-
tion provided by AFSIM over the UFSIM when the same number of grid points is used.
Although the accuracy of these two methods cannot be compared quantitatively for the
present case because there is no analytical solution, the efficiency of the two methods are
studied by using the AFSIM solution with dx=1/128 and δt=5×10−5 as the benchmark
to compare the computational cost involved. It is found that the AFSIM with less Fourier
modes and larger time step is five times more efficient than UFSIM with more Fourier
modes and smaller time step.
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Figure 5: Temporal evolution of a random domain structure: two UFSIM simulations (left and right columns)
and an AFSIM simulation along with the moving mesh (two center columns).

4.3 Three dimensional implementation

Recently we have produced the first three dimensional simulation that combined the
moving mesh strategy with the Fourier spectral discretization in the context of Allen-
Cahn dynamics [17]. Here we use the three-dimensional implementation of AFSIM scheme
to examine the equilibrium shapes of the second-phase precipitates. In the following, we
consider the Cahn-Hillard Eq. (3.1) with elasticity in three dimensions with a unit system
size, and dx = 1/64. The other parameters are the same as the second example unless
stated otherwise. We first examine the equilibrium shape of a precipitate for a previously
studied elastically homogeneous cubic system with negative anisotropy ψ>1 (λ11 =300,
λ12 =175, λ44 =125). The equilibrium shapes of the precipitate from phase field simula-
tions are shown in Fig. 6. Same as in the 2D case, the precipitate shape gradually changes
from a sphere to a cube with the sides along the {100} planes. The equilibrium shapes of
the precipitate for the cubic system with positive anisotropy ψ < 1 (λ11 = 250, λ12 = 100,
λ44 =25) are also shown in Fig. 7. The shape changes to an octahedron with sides along
{111} planes. These results agree very well with the previous studies [29, 33].

We note that the simulation using UFSIM with the same parameters is unstable, which
gives another demonstration of the advantage of AFSIM.

4.4 Discussions

Because the monitor function automatically gathers mesh points around the interface re-
gion and scales mesh appropriately in the computational domain, the stiffness of the so-
lution is reduced. The new method results in significant efficiency savings over uniform
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Figure 6: The equilibrium shape, its center section, and the quadrant section of mesh distribution for ψ>1.

Figure 7: The equilibrium shape, its center section, and the quadrant section of mesh distribution for ψ<1.

mesh methods in particular cases. In addition to the savings of Fourier-spectral semi-
implicit method, larger time steps and larger grid size can be used without sacrificing the
accuracy by taking advantages of the moving mesh method. It should be noticed that the
new AFSIM requires more CPU time in constructing a time-dependent mapping from
the computational domain to the physical domain, which constitutes the overhead of the
moving mesh strategy. Counting the cost of solving MMPDE and Cahn-Hilliard equation
with inhomogeneous elasticity together, we need 214 Fourier transforms in 3D. In con-
trast, solving the Cahn-Hilliard equation with inhomogeneous on a regular uniform grid
requires 35 Fourier transforms. Therefore, an adaptive grid with a compression ratio of
three in each dimension would already noticeably reduce the overall computational cost.
As the number of Fourier modes is reduced, we also see potential savings in the memory.
Although the new moving mesh strategy can be used for all problems, the computational
efficiency does not improve significantly if the microstructure has high interface volume
fraction. In such a case, the mesh distribution tends to be homogeneous, the moving
mesh method would lose much of its advantage.
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5 Conclusions

A new numerical scheme has been developed to solve the phase field equations. It com-
bines the adaptive moving mesh method with the semi-implicit Fourier spectral algo-
rithm. The scheme has been implemented in both two and three dimensions for solving
Cahn-Hilliard equation with elasticity. It is demonstrated that for a prescribed accuracy,
the new moving mesh method can potentially lead to an order of magnitude improve-
ment in efficiency over the conventional uniform mesh spectral method. In particular,
many alloy systems, e.g. Al alloys, contain a low volume fraction of precipitates with
separation distances significantly larger than their dimensions. In such systems, the ap-
plication of an adaptive moving mesh can be very appealing as the amount of interfaces
per unit volume is relatively small. Applications to phase field simulations of microstruc-
ture evolution and other processes [10,15,35,43] will be studied in the future. In addition,
the examples shown here and those in [17] indicate that with the reduction of the num-
ber of Fourier modes, larger time steps can also be taken in the phase field simulation.
Intuitively, the adaptive mesh tends to provide better resolution to the large gradients
in the solution in both one and higher space dimensions, and in the latter case, the grid
distribution is effectively adjusted in an anisotropical fashion. These may all be factors
contributing to better time accuracy and stability. It will be interesting to examine such
an effect more closely and to investigate the coupling of spatial adaptivity of Fourier
spectral methods with the time adaptivity of variable step size.
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