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Abstract

We present a multiscale model for studying the growth and coarsening of h0 precipitates in Al–Cu alloys. Our approach utilizes a

novel combination of the mesoscale phase-field method with atomistic approaches such as first-principles total energy and linear

response calculations, as well as a mixed-space cluster expansion coupled with Monte Carlo simulations. We give quantitative first-

principles predictions of: (i) bulk energetics of the Al–Cu solid solution and h0 precipitate phases, (ii) interfacial energies of the

coherent and semi-coherent h0/Al interfaces, and (iii) stress-free misfit strains and coherency strain energies of the h0/Al system. These

first-principles data comprise all the necessary energetic information to construct our phase-field model of microstructural evolution.

Using our multiscale approach, we elucidate the effects of various energetic contributions on the equilibrium shape of h0 precipitates,
finding that both the elastic energy and interfacial energy anisotropy contributions play critical roles in determining the aspect ratio

of h0 precipitates. Additionally, we have performed a quantitative study of the morphology of two-dimensional multi-precipitate

microstructures during growth and coarsening, and compared the calculated results with experimentally observed morphologies.

Our multiscale first-principles/phase-field method is completely general and should therefore be applicable to a wide variety of

problems in microstructural evolution.

� 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The solid-state Al-rich portion of the Al–Cu phase
diagram consists of an Al solid solution and a two-phase

field between the Al solid solution and h-Al2Cu, an or-

dered intermetallic phase. h is the thermodynamically

stable phase at high temperatures (for a discussion of the

low-temperature stability, however, see [1]) but is ki-

netically unfavorable for direct precipitation from the

solid solution, especially at temperatures below 250 �C.
The kinetically driven precipitation reaction below
250 �C proceeds through a well accepted sequence of

transformations:

AlSSðsupersaturatedÞ ! AlSS þGP zones ! AlSS þ h0

! AlSS þ h;
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where AlSS represents the aluminum solid solution, and

the Guinier–Preston (GP) zones and h0 are metastable

precipitate phases. Experimental measurements of me-
chanical properties as a function of aging time, aging

temperature, and alloy composition show that the

maximum hardness that occurs in the temperature range

of 190–230 �C in binary Al–Cu alloys is associated with

the presence of h0 precipitates in the alloy [2,3]. Me-

chanical properties, such as yield strength, are con-

trolled not merely by the amount of h0 present, but also
by the morphology of the h0 precipitate microstructure.
Thus, understanding the morphology and evolution of

precipitate microstructure is a key step towards predic-

tive modeling of mechanical properties.

A large amount of experimental work has yielded a

wealth of information about h0 crystal structure, mor-

phology, and interface structure: h0-Al2Cu is a tetrago-

nal phase (a slight tetragonal distortion of the cubic

CaF2 structure) with the the following orientation
ll rights reserved.
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Fig. 1. Schematic of the multiscale model, showing different constitu-

ent models and their links along with their associated length scales.
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relationship with the Al-matrix ð001Þh0 kf001gAl [4].

This orientation relationship, where the c-axis of the

tetragonal precipitate aligns along the cube axes of the

fcc matrix, gives rise to three orientational variants. h0

precipitates possess a plate-shaped morphology with
coherent ð001Þh0 kf001gAl interfaces along the broad

faces of the plates and semi-coherent interfaces around

the rim of the plates [4–8]. The observed, large aspect

ratios of h0 plates (often �40 and higher) vary with aging

conditions and the processing history of the sample.

In the present work, we use a predictive, multiscale

computational methodology to elucidate the physical

factors controlling the h0 morphology in Al–Cu alloys.
Despite the fact that the h0 precipitate/matrix interfaces

are coherent along broad faces and semi-coherent

around the rims of the plates, many theoretical analyses

related to the equilibrium aspect ratios of h0 plates have
only considered the interfacial energy anisotropy, i.e. the

coherency strain energy contribution to morphology is

ignored. A recent study, however, has analyzed the

observed morphologies of h0 plates within the frame-
work of Khachaturyan–Hairapetyan thermoelastic the-

ory, including both interfacial and coherency strain

effects [9]. These authors have found that this theory

could successfully explain many of the observed mor-

phologies. However, the Khachaturyan–Hairapetyan

thermoelastic theory is formulated in terms of such

quantities as the interfacial energies and elastic con-

stants of precipitate and matrix, and many of these
quantities are unknown for the h0/Al case. Therefore, the

authors in [9] inferred the unknown quantities from

measured precipitate morphologies. We take a different

approach. We wish to calculate all of the physical

quantities controlling the h0 morphology starting from

highly accurate first-principles total energy calculations.

We then transfer the information from these atomic

scale first-principles derived quantities to a mesoscale
phase-field model of h0 microstructural evolution, and

analyze the effects of the various physical contributions

on precipitate morphology. We recently introduced this

multiscale model in [10], and the present work provides

a more detailed account of the various computational

models involved as well as the links between them.

Further, we test the quantitative predictions of the

multiscale model via a critical comparison against
measured data on h0 morphologies (diameter, thickness,

aspect ratio) as a function of aging time. In addition, we

use our model to elucidate the relevant physical factors

controlling h0 morphology.

The crux of our multiscale model is the phase-field

method, a powerful technique for modeling the micro-

structure evolution during phase transformations and

coarsening ([11] and references therein). However, the
phase-field method relies on various energy contribu-

tions that drive the microstructure evolution: (i) bulk,

(ii) interfacial and (iii) coherency strain energies. The
dearth of reliable values of these energetic parameters

from experiments has been one primary reason for the

predominantly qualitative nature of microstructure

studies using phase-field. We show how first-principles

calculations based on density functional theory (DFT)
may be used to compute all of the energetic contribu-

tions entering the phase-field model. Thus, we arrive at a

truly predictive model of microstructural evolution.
2. Methodologies used to construct the multiscale model

The multiscale model, which is an integration of
many different computational methodologies, is illus-

trated in Fig. 1. We next briefly describe each of these

methodologies.

2.1. First-principles total energies

First-principles calculations used in this work are

based on density functional theory within the local
density approximation (LDA) with the exchange-corre-

lation of Ceperley and Alder [12,13]. In some cases, we

have also compared the LDA results with those from

generalized gradient approximation (GGA) of Perdew

[14]. For total energy calculations, we use both full-

potential linearized augmented plane wave method

(FLAPW) [15] and the pseudopotential method utilizing

ultrasoft pseudopotentials as implemented in the Vienna
ab initio Simulation Package (VASP) [16]. The first-

principles vibrational entropies used in this work are

taken from the linear response calculations of Wolver-

ton and Ozolins [1], which utilized norm-conserving

pseudopotentials.

Using extensive tests, we have ensured that the first-

principles energetics are converged with respect to k
points (up to 16� 16� 16 grids were used) and basis-set
cutoffs (Ecut ¼ 16:7 and 21.5 Ryd were used in the
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FLAPW and VASP calculations, respectively). The

structures, in all cases, were fully relaxed with respect to

volume as well as all cell-internal and -external coordi-

nates. The combination of different first-principles en-

ergetics into a single microstructural model might
initially cause concern, however, we tested the formation

energies of more than 20 different fully relaxed fcc-based

ordered compounds of Al–Cu with both the FLAPW

and VASP methods. The average deviation between the

two methods� energies is extremely small (�6 meV/atom

out of the average formation energies of more than 100

meV/atom), thus inspiring confidence that the FLAPW/

VASP energies are basically interchangeable for this
system. The comparison between FLAPW and VASP

energies in Al–Cu is shown in Fig. 2.

2.2. Mixed-space cluster expansion

The calculation of finite temperature free energy of a

disordered solid solution phase is outside the realm of

direct first-principles calculations, due to the disorder
involved as well as the configurational entropy contri-

bution associated with it. However, the mixed-space

cluster expansion (MSCE) technique parameterized

from first-principles calculations enables the calculation

of disordered solid solution phases at finite temperatures

including the important energetic effects of atomic re-

laxations, all with the accuracy of first-principles ener-

gies [17]. In the MSCE technique, energetics of small
unit cell ordered compounds are mapped onto a gen-

eralized Ising-like model for a particular lattice type,

involving 2-, 3-, and 4-body interactions plus coherency
strain energies (atomic misfit strain). The Hamiltonian

can be incorporated into mixed-space Monte Carlo

simulations of N � 105 atoms [18], effectively allowing

one to explore the complexity of the 2N configurational

space at finite temperatures. The mixed-space CE
Hamiltonian for fcc Al–Cu used here has been previ-

ously constructed from first-principles total energies of

41 ordered structures [18].
2.3. Monte Carlo simulations and thermodynamic inte-

gration

Using the first-principles MSCE Hamiltonian in
Monte Carlo simulations, we can obtain the energy (per

atom) of the Al–Cu solid solution (ESS) as a function of

temperature for different solute (Cu) compositions. The

mixing enthalpy of the solid solution (DHSS) is obtained

from ESS by subtracting the composition-weighted av-

erage of the pure constituent energies

DHSS ¼ ESS � XCuECu½ þ 1ð � XCuÞEAl�; ð1Þ
where XCu is the concentration of copper, and ECu and

EAl are the energies per atom of copper and aluminum,

respectively, in their equilibrium fcc structures. Monte
Carlo simulations can give energetics such as Eq. (1)

directly as an output. However, the entropy cannot be

directed computed in a Monte Carlo simulation; instead

one must use techniques such as thermodynamic inte-

gration: The configurational entropy of the disordered

alloy at any finite temperature T is computed from a

Monte Carlo simulation starting at very high tempera-

tures (‘‘T ¼ 1’’) and slowly cooling down [19]. The
following thermodynamic relation gives the configura-

tional entropy at temperature T

DSconfðT Þ ¼ DSideal þ
DHSSðT Þ

T
� kB

Z b

0

DHSSðb0Þ db0;

ð2Þ
where DSideal ¼ �kB½XCu lnðXCuÞ þ ð1� XCuÞ lnð1� XCuÞ�
is the configurational entropy of an ideal solution (ref-

erence entropy at T ¼ 1), and b ¼ 1=ðkBT Þ, where T is

the temperature (in K) and kB is the Boltzmann con-

stant. The free energy is then given by

DFSSðT Þ ¼ DHSSðT Þ � TDSconfðT Þ

¼ 1

b

Z b

0

DHSSðb0Þ db0 � TDSideal: ð3Þ

To facilitate the integration in Eq. (3), we fit the mixing

enthalpy to a polynomial in b.
The vibrational entropy contribution to the solid

solution free energy is not included in this calculation.

While a systematic computation of the vibrational en-

tropy of configurationally disordered solid solutions in

Al–Cu would be interesting, the complexity of such

calculations is considerable.
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2.4. Phase-field model

In the phase-field methodology, a precipitate micro-

structure is described by a set of continuum order pa-

rameter fields characterizing the difference in composition
and structure between the precipitate andmatrix [11]. In a

two-dimensional representation of h0 precipitates in a

binary Al–Cu alloy, the precipitate microstructure is de-

scribed by one composition field and two orientation-re-

lated long range order parameter fields.

The chemical free energy of the microstructure, in-

cluding the bulk and interfacial energy, is then expressed

as

Fbulk þ Fint ¼
Z
V

f ðc; g1; g2; g3Þ
 

þ a
2

rcð Þ2

þ 1

2

X
p

bijðpÞrigprjgp

!
dV ; ð4Þ

where a and bijðpÞ are gradient energy coefficients for

composition and order parameters, respectively. bijðpÞ is
retained as a second rank tensor to incorporate the

(tetragonal) anisotropy in interfacial energy. The

anisotropy in interfacial energy of the precipitate is de-

pendent on the orientational variant, g, of the precipi-

tate (see Fig. 3). Since the phase-field model used in this

study is a dislocation-free model, semi-coherent inter-

faces are treated effectively as coherent interfaces with a

larger interfacial energy.

bijð1Þ ¼
b11ð1Þ 0

0 b22ð1Þ

� �
;

bijð2Þ ¼
b11ð2Þ 0

0 b22ð2Þ

� �
¼

b22ð1Þ 0

0 b11ð1Þ

� �
:

ð5Þ
sc

c

c
sc

(η1=1 or -1,
η2=0)

    (η1= 0,
η2=1 or -1)

Fig. 3. Schematic of the h0 precipitates in 2D showing the two variants

along with their equilibrium order parameters. The interfaces of the

variants are marked as coherent (c) and semi-coherent (sc) to show the

symmetry and the interface orientation dependence on the variants.
The bulk free energy describing the phase-separation

and order-disorder transformation involved during

precipitation of the h0 phase is approximated using the

following polynomial in c and g:

f ðc; g1; g2; g3Þ
¼ A1ðc� C1Þ2 þ A2ðc� C2Þðg21 þ g22 þ g23Þ
þ A41ðg41 þ g42 þ g43Þ þ A42ðg21g22 þ g22g

2
3 þ g21g

2
3Þ

þ A61ðg61 þ g62 þ g63Þ
þ A62fg41ðg22 þ g23Þ þ g42ðg23 þ g21Þ þ g43ðg21 þ g22Þg
þ A63ðg21g22g23Þ; ð6Þ

where C1 and C2 are constants close to the equilibrium

compositions of solid solution matrix and h0 precipitates,
respectively. The coefficients A41 and A61 are constrained

to have negative and positive values, respectively, to

describe a first order phase transition [20].

The elastic energy contribution to the total free en-
ergy of the system is obtained analytically using the

method of Khachaturyan [21,22]. The stress-free misfit

strain, �0ijðrÞ, between precipitates and matrix, is ex-

pressed as a function of the structural order parameters,

�0ijðrÞ ¼
X
p

�0ijðpÞg2pðrÞ; ð7Þ

where �0ijðpÞ represents the stress-free strain of the pth

variant. With the homogeneous modulus approximation

(matrix and precipitates have similar elastic constants),

the elastic energy in terms of order parameters can be

expressed as [23]

Eel ¼
V
2
kijkl��ij��kl � V kijkl��ij

X
p

�0klðpÞg2pðrÞ

þ V
2
kijkl

X
p

X
q

�0ijðpÞ�0klðqÞg2pðrÞg2qðrÞ

� 1

2

X
p

X
q

Z
d3g

ð2pÞ3
BpqðnÞfg2pðrÞg

�
gfg2qðrÞgg; ð8Þ

where kijkl is the elastic stiffness tensor. BpqðnÞ ¼
nirijðpÞXjkðnÞrklðqÞnl and XjkðnÞ is the inverse matrix of

X�1
jk ðnÞ ¼ nikijklnl. n ¼ g=jgj is the unit vector in re-

ciprocal space, fg2qðrÞgg is the Fourier transform of the

square of order parameter [g2qðrÞ] and fg2pðrÞg
�
g is the

complex conjugate of fg2pðrÞgg. ��ij ¼��0ij þ ��aij is the sum of

homogeneous strain caused by transformation and ex-

ternal constraints or applied stress, respectively. In the

absence of applied strain, the fourth term in the elastic

energy (Eq. (8)) is the dominant term controlling the

precipitate morphology.

The temporal evolution of the microstructure in the

phase-field model is obtained by numerically solving the
Cahn–Hilliard and Allen–Cahn equations [24]

ocðr; tÞ
ot

¼ Mr2 dF
dcðr; tÞ ; ð9Þ
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ogiðr; tÞ
ot

¼ �Lð/̂pÞ
dF

dgiðr; tÞ
; i ¼ 1; 2; 3; ð10Þ

whereM is the solute mobility and Lð/̂pÞ ¼ LAð/̂pÞ is the
orientation-dependent interfacial kinetic parameter. L is

the interfacial kinetic coefficient. Interface orientation is
defined by the unit normal to the precipitate interface,

/̂p ð¼ ~rgp=j~rgpjÞ. The anisotropy in interfacial kinetics

can be incorporated as a function of the interface nor-

mal (/̂p).

The temporal equations (Eqs. (9) and (10)) in di-

mensionless form can be reduced to

oc
ot�

¼ M�r2 of �

oc

�
� nr2c

�
; ð11Þ

ogp
ot�

¼ �
Lð/̂pÞ
L

of �

ogp

"
� wiiðpÞr2

i gp þ
dE�

el

dgp

#
; ð12Þ

t� ¼ LjDf jt; r� ¼ r=l; ð13Þ

M� ¼ M
Ll2

; f � ¼ f ðc; gÞ
jDf j ; E�

el ¼
Eel

jDf j ;

n ¼ a
jDf jl2 ; wiiðpÞ ¼

biiðpÞ
jDf jl2 ; ð14Þ

where the quantities with asterisk (�) represent the di-

mensionless equivalent of the corresponding dimensional

values. l represents the grid spacing (Dx) or the charac-

teristic length scale and Df represents the characteristic

free energy (usually the maximum driving force for phase
transformation from the constructed bulk free energy).

The temporal equations are solved numerically using the

semi-implicit Fourier-Spectral method [25].
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Fig. 4. (a) Enthalpy, (b) free energy and (c) scaled free energy of the

Al–Cu solid solution as a function of solute composition and tem-

perature, calculated using the first-principles (FLAPW-LDA) MSCE

combined with thermodynamic integration. The scaled free energy is

obtained by adding a linear term in composition ½�3XCu DFh0 ðT Þ�,
such that the rescaled h0 free energy at XCu ¼ 1=3 is zero. This linear

scaling of the free energy does not affect the determination of equi-

librium composition through the common tangent construction, but

merely aids in visualization.
3. Results: first-principles calculations

3.1. Bulk chemical free energy

3.1.1. Solid solution phase

The enthalpy and free energy (in meV/atom) as a

function of composition and temperature, obtained

from the combined first-principles/MSCE/Monte Carlo

approach, are shown in Figs. 4(a) and (b), respectively.

We note that the temperature dependence of enthalpy in

Fig. 4(a) is due to a clustering-type short range order
(SRO) in the Monte Carlo simulations of the Al–Cu

alloy. For a more detailed discussion of the predicted

and experimentally measured SRO in Al–Cu, see [26].

We also note that our calculated free energy for the solid

solution phase includes configurational but not vibra-

tional entropic contributions.

3.1.2. h0 precipitate phase

The MSCE Hamiltonian obtained for the solid so-

lution free energy calculations based on first-principles
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energetics is applicable only for substitutional fcc-based

configurations. It can be used for calculating the free

energy of an fcc-based compound (e.g., a structure that

can be represented by a substitutional decoration of A
and B atoms on the sites of an fcc lattice, such as an
ordered L12 or L10), but cannot be used for calculating

the free energy of h0, which has a (distorted) CaF2

crystal structure. Hence, the h0 energy is obtained from

direct first-principles calculations at T ¼ 0 K, coupled

with the vibrational entropy of h0, which has been found

to be unexpectedly important for this phase [1]. Addi-

tionally, by performing point defect calculations of su-

percells of h0 and inserting the energetics into a low-
temperature expansion, we find that the configurational

entropy of h0 is small, and we do not consider h0 off-
stoichiometry. The h0 formation enthalpy was calculated

from first-principles as )195.8 meV/atom at Al2Cu

stoichiometry (XCu ¼ 1=3). The computed (formation)

vibrational entropy is )0.62kB [1]. Hence, the free energy

of h0 as a function of temperature is given by

DFh0 ðT Þ ¼ �195:8þ 0:62kBT ðin meV=atomÞ: ð15Þ
We note that without the inclusion of the h0 vibrational
entropy term, the calculated equilibrium solubility of Cu
in solid solution is extremely small. For easier visuali-

zation, the free energy is scaled by a linear term in

composition ½�3XCu DFh0 ðT Þ�, such that the rescaled h0

free energy at XCu ¼ 1=3 is zero (Fig. 4(c)). This linear

scaling of the free energy does not affect the determi-

nation of equilibrium composition through the common

tangent construction.
3.2. Interfacial energy

In a system where the precipitate and matrix phases

are substitutional rearrangements of atoms on the same

lattice type, and form perfectly coherent interfaces (e.g.,

GP zone phases), one could calculate the interfacial free

energy from a Monte Carlo simulation coupled with

thermodynamic integration, analogous to the procedure
described for bulk free energies. Alternatively, T ¼ 0 K

values may be obtained from direct first-principles su-

percell calculations (without using a CE). h0 precipitates
are partially coherent with different crystal structures for

precipitate and matrix. Hence, it is not amenable to the

CE method. Therefore, we extract the T ¼ 0 K interfa-

cial energies directly from first-principles supercell cal-

culations. We next describe how the interfacial energies
are extracted from supercell energetics, and separated

from the coherency strain energetics.

We begin by considering an N-atom coherent super-

cell containing an interface between two materials, A
and B (in the case of this work, A¼Al and B¼Al2Cu

h0). For simplicity, we consider the case of cells com-

prising equal amount of A and B. The energy of a such

an AN=2BN=2 supercell can be separated into two com-
ponents [27]: (a) coherency strain (cs): the strain energy

required to maintain coherency between the (lattice

mismatched) materials A and B, and (b) interfacial en-

ergy: the energy associated with the interactions between

materials at the A=B interface(s). To define these terms,
it is useful to first consider the infinite period supercell

limit N ! 1, for a supercell with interface along an

orientation Ĝ with lattice constants ak and a? parallel

and perpendicular to Ĝ, respectively. In this infinite-

period case, A=B interfacial interactions (which scale as

the area of the interface) contribute a negligible amount

to the supercell formation energy dEsup (which scales as

the volume of the superlattice):

dEsupðN ! 1; ĜÞ

� dECSðĜÞ ¼ min
a?

1

2
dEepi

A ða?; aAk ; ĜÞ
�

þ 1

2
dEepi

B ða?; aBk ; ĜÞ
�
;

ð16Þ

where dEsup is the energy of the supercell relative to

equilvalent amounts of A and B in their equilibrium bulk

geometries. In Eq. (16), the materials A and B are de-
formed in an ‘‘epitaxial’’ geometry: Both materials are

brought to a common lattice constant a? perpendicular

to Ĝ, and the energy of each material is individually

minimized with respect to the lattice constant ak parallel
to Ĝ. The epitaxial energies dEepi are the energies of A
and B in these epitaxial geometries relative to their

equilibrium bulk energy. For finite-period supercells, the

energy is determined not only by the coherency stain
energy, but also by the interfacial energy r times the

number (2) and area (A) of these interfaces. Since we are
using energetics per atom, we must divide by the number

of atoms in the cell, N . The interfacial energy is then

defined as

dEsupðN ; ĜÞ � dEsupðN ! 1; bGÞ � 2rðĜÞA
N

: ð17Þ

Combining Eqs. (16) and (17), we see the decomposition

of the supercell energy (for any period) into strain and

interfacial components

dESLðN ; ĜÞ ¼ 2rðĜÞA
N

þ dECSðĜÞ: ð18Þ

From Eq. (18), we see that if the supercell formation

energies (per atom) are plotted as a function of 1=N , the

slope is just 2rA, and the y-intercept is dECSðĜÞ. We
have extracted the interfacial energies from first-princi-

ples supercell calculations using the construction of Eq.

(18). The results are shown in Fig. 6. We note that ex-

tracting the coherency strain energy from these calcu-

lations is not numerically stable; a more robust

approach is the direct calculation of Eq. (16) described

below.

The tetragonal structure of h0 precipitate embedded in
an fcc matrix results in partially coherent plate-shaped

precipitates. The h0 plates possess a broad coherent face



Fig. 5. Relaxed supercells from the first-principles interfacial energy

calculations of coherent (1 0 0) and semi-coherent (0 0 1) interfaces of

h0-Al2Cu in fcc Al solid solution [10]. Dashed lines indicate the

1ah0 ¼ 1aAl and 2ch0 ¼ 3aAl relationships of the coherent and semi-

coherent interfaces, respectively.
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Fig. 6. First-principles (VASP) formation energies of Al/h0 N-atom

supercells as a function of 1=N for both interfaces shown in Fig. 5.

Energetics are shown for both LDA (filled symbols) and GGA (empty

symbols) calculations. The energies of the large-cell calculations are fit

to straight lines, and the interfacial energies (r) are extracted from the

slopes, 2rA, of these lines [see Eq. (18)].
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and a semi-coherent rim. We construct supercells con-

sistent with the observed orientation relations between
h0 and the Al matrix: ð001Þh0 kf001gAl and ½010�h0
k½010�Al [4]. Representative cells showing the interfacial

structures are given in Fig. 5. Although the present

phase-field model is 2D, we note that the first-principles

calculations used to generate the various energetics of

the h0/Al system are fully three-dimensional. The co-

herent and semi-coherent interfaces possess very differ-

ent interfacial structures. Due to lattice-misfit arguments
(see below), the semi-coherent interface structure is

found to have a 2 h0 to 3 AlSS unit cell arrangement. This

configuration was proposed by Stobbs and Purdy [8]

and confirmed by their TEM strain field observations

around the interface.

From Fig. 6, we see that the calculated T ¼ 0 K in-

terfacial energies from first-principles LDA calculations

of the coherent and semi-coherent interfaces are 190 and
600 mJ/m2, respectively. GGA calculations, give slightly

lower values of 170 and 520 mJ/m2, respectively. (The

LDA numbers given here are slightly smaller than pre-

vious values published in [10] due to a more careful

consideration of k-point convergence.) From our con-

vergence studies, we estimate an uncertainty in these

calculated interfacial energies on the order of 5–10% due

to supercell size. Interestingly, for both LDA and GGA,
the interfacial anisotropy between semi-coherent and

coherent interfaces is consistently around 3. In addition

to the isolated interface energies, one can obtain some

indication of the interface-interface interactions from

the energies in Fig. 6 for relatively small supercells. For

the coherent interface, the small-cell energies fall above

the line extracted from large cells, thus indicating a re-

pulsion between these interfaces at short distances. For
the semi-coherent interface, the opposite is true, i.e.,

these interfaces tend to attract one another at short

separations.

We can contrast our first-principles calculated inter-

facial anisotropy of �3 with a previous estimate by

Aaronson and Laird [28] of �12. Our first-principles
calculations include more physical contributions, and

hence, are more predictive and certainly more accurate

than the previous highly simplified estimate [28].

Therefore, we assert that the currently most reliable

value of the interfacial anisotropy for the h0/Al system is

�3. This is noteworthy, since the anisotropy estimate of

12 has been widely used in the literature as a prediction

of the equilibrium aspect ratio of h0. These estimates of
the equilibrium aspect ratio are flawed not only because

we have shown the more accurate interfacial anisotropy

is �3, but also there exists a strong strain anisotropy

contribution in this system (discussed in the next sec-

tion), which can significantly alter the equilibrium aspect

ratio of h0 precipitates.
We note that the interfacial energy anisotropy ob-

tained from first-principles is obtained at T ¼ 0 K and
for a completely sharp interface (Fig. 5). It would be of

considerable interest to know how this anisotropy

changes with temperature. At finite temperature, the

interfaces will naturally be diffuse to some extent and

hence, configurational degrees of freedom will alter the

individual interfacial energy values. Also the vibrational

entropy at the interface should be considered in a

complete description of the temperature-dependence of
the interfacial free energies. Future work along these

lines would be most interesting.
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3.3. Elastic properties

In addition to bulk and interfacial energies, there is a

significant elastic energetic contribution to the h0/Al

system, due to the fact that the h0 precipitates are co-
herently strained by the Al matrix. The h0 plates are

generally acknowledged to be coherent with the matrix

along their broad faces. In addition, Doherty [7] has

shown that the interfacial rim of plate-shaped precipi-

tates are not necessarily incoherent, but could also be

coherent or semi-coherent. Observations of the presence

of facets on the rims of h0 precipitates (when viewed

perpendicular to the coherent face of the plate) from
TEM micrographs [4,29] prove that this interface is not

completely incoherent. Thus, equilibrium morphology

calculations, such as in the present work, should include

the contributions from the elastic energy anisotropy in

addition to the interfacial energy anisotropy.

To include the elastic energy contribution in the phase-

field model, we require the following: the stress-free misfit

strains along the coherent and semi-coherent interfaces
and the resulting elastic strain energy contributions from

the coherency constraints. These quantities are all readily

calculated from our first-principles methods.

3.3.1. Stress-free misfit strains

The equilibrium or stress-free T ¼ 0 K lattice pa-

rameters of pure, bulk fcc Al and h0-Al2Cu (CaF2

structure) calculated using first-principles (FLAPW-

LDA) are

aAl ¼ 0:3989 nm; ah0 ¼ 0:4016 nm;

ch0 ¼
ffiffiffi
2

p
ah0 ¼ 0:5679 nm:

We note that very large k-point sets have been used to

ensure the convergence of these structural parameters to

several significant digits. From these lattice parameters,

the calculated misfit dc along the coherent, broad face of
h0 plates is

dc ¼
ah0 � aAl

aAl

¼ þ0:7%: ð19Þ

Although the h0 plates are completely coherent across

the broad face for lower aging temperatures, they may

contain widely spaced misfit dislocations at higher aging
temperatures [30]. By measuring the dislocation spacing

across h0 broad faces, Weatherly and Nicholson [30]

have inferred a misfit value of jdcj ¼ 0:57%, which

agrees well with our first-principles calculated misfit. We

also note that Weatherly and Nicholson could not as-

certain the sign of the misfit from their observations, as

they could not unambiguously determine the nature of

the Burgers vectors of the dislocations; our calculations
clearly show that the h0 plates are under a compressive

strain along the broad faces.

Around the precipitate rim, the simple configuration

of ch0 : aAl has an extremely large misfit strain of 42%.
Therefore, we have considered the misfit for a few in-

teger combinations of ch0 and aAl unit cells. For a

configuration of m h0 to n Al unit cells, respectively,

where m and n are positive integers, the misfit along the

semi-coherent interface (dsc) defined as

dsc ¼
mðch0 Þ � nðaAlÞ

nðaAlÞ
ð20Þ

is as follows for m6 4: (i) 1ch0 : 1aAl – +42.4%, (ii)
1ch0 : 2aAl – )28.8%, (iii) 2ch0 : 3aAl – )5.1%, (iv)

3ch0 : 4aAl – +6.8%, (v) 3ch0 : 5aAl – )14.6%, and (vi)

4ch0 : 5aAl – +13.9%.

We verify that the 2ch0 : 3aAl configuration for the

semi-coherent interface, observed by Stobbs and Purdy

[8], is the most favorable low-integer combination in

terms of lattice misfit with dsc ¼ �5:1%. Lattice param-

eter measurements of h0 give a value of dsc ¼ �4:3% for
this misfit [8,31]. Again, our calculations are in reason-

able agreement with observations. We note that for

larger-unit cell combinations (i.e., thicker h0 plates), one
can obtain even smaller misfit strains: For example, the

5ch0 : 7aAl and 7ch0 : 10aAl combinations have dsc ¼ þ
1:7% and �0:3%, respectively. However, we confine our

attention in this work to the 2ch0 : 3aAl configuration. For

a more complete discussion of the interfacial structure,
and mechanisms for h0 precipiate growth, we refer the

reader to [4,8,31] and references therein.

3.3.2. Coherency strain energies:

For the phase-field model, we also need to know the

strain energy penalty associated with the misfit strains

calculated above. We have calculated the coherency

strain energy for a h0/Al system in an analogous manner
to that used to construct the Al/Cu coherency strain

entering the mixed-space cluster expansion [17,19]. This

calculation involves a direct computation of Eq. (16)

whereby Al and h0-Al2Cu are each deformed in an

‘‘epitaxial’’ geometry, strained to a common lattice

constant in a plane perpendicular to an orientation, Ĝ.
Summing together these ‘‘epitaxial’’ energies and sub-

sequently minimizing with respect to the common lattice
constant gives the coherency strain energy of Eq. (16).

Fig. 7 shows the calculated coherency strain for the h0/Al

system for hydrostatic strain, as well as epitaxial strain

along [1 0 0] and [1 1 1] orientations.

We note that due to the homogeneous modulus ap-

proximation used in the phase-field model, it is neces-

sary that we extract a single, averaged set of harmonic

elastic constants from these calculations. We note that
first-principles total energy calculations are not con-

strained by the homogeneous modulus approximation,

nor by harmonic elasticity theory, and include both

harmonic and anharmonic elastic effects. However, we

analyze our results within the context of harmonic

elasticity, and use this theory to extract the average

elastic modulii of the h0/Al system from the results of
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Fig. 7. The epitaxial softening function [19] is given by

the ratio of the epitaxial strain energy along an orien-

tation Ĝ and the strain energy for hydrostatic defor-

mation, each deformed to a lattice parameter aS :

qðĜ; aSÞ ¼
dEepiðĜ; aSÞ
dEhydroðaSÞ

: ð21Þ

In harmonic elasticity theory, this softening function

is given by

qharmðĜÞ ¼ 1� B
C11 þ Dcharm

; ð22Þ

where B is the bulk modulus, Cij are the elastic con-

stants, D ¼ C44 � 1
2
ðC11 � C12Þ is the elastic anisotropy

parameter, and charm is a geometric function of the

spherical angles formed by Ĝ [19]. Specifically, for the
principle high-symmetry directions,

charmð½001�Þ ¼ 0; charmð½110�Þ ¼ 1; charmð½001�Þ ¼ 4=3:

ð23Þ
From Fig. 7, we extract the values of qð½111�Þ and

qð½001�Þ for a 5% phase fraction of h0. Using these val-

ues and Eq. (22), we extract average modulii of

C12=C11 ¼ 0:442 and C44=C11 ¼ 0:428. We note that

these averaged modulii therefore contain information
about the energetic penalty required to strain both the h0

precipitates and the Al matrix.

From the epitaxial deformation calculations de-

scribed above, we have also extracted elastic constants

of the cubic (CaF2) h
0 phase, as these constants are not

available experimentally: C11 ¼ 1:9 Mbar, C12 ¼ 0:8
Mbar and C44 ¼ 0:9 Mbar. The elastic anisotropy
D ¼ þ0:35 Mbar> 0 indicates that h0 precipitate has an

elastically soft direction along h100i, as can also be seen

from the results of Fig. 7.
4. Constructing the phase-field model

We have described how all the energetic inputs re-

quired for the phase-field microstructure modeling of

Al-h0 system have been obtained from first-principles

atomistic calculations. Next, we describe how the phase-

field model is assembled from these energetics.

4.1. Coarse-grained free energy

The solid solution free energy from first-principles

can be directly related to the first term in the coarse-

grained free energy in the phase field model (Eq. (6)), i.e.

f ðc; g1 ¼ 0; g2 ¼ 0; g3 ¼ 0Þ ¼ A1ðc� C1Þ2: ð24Þ
The free energy of of the h0 phase in the phase-field

model is given by f ðc; geqðcÞÞ, where the equilibrium

order parameter as a function of composition [geqðcÞ] is
obtained by minimizing the bulk free energy

geqðcÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A41 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
41 � 4A61A2ðc� C2Þ

p
2A61

s
: ð25Þ

The coefficients A2, A41 and A61 are obtained using the
first-principles calculated equilibrium free energy and

equilibrium composition of h0. The resulting coefficients

(in meV/atom) of the coarse-grained free energy at 723

K in Eq. (6) from the fit are as follows:

A1 ¼ 1622:6; A2 ¼ 1075:1; A41 ¼ �536:6;

A61 ¼ 536:6; C1 ¼ 0:002; C2 ¼ 0:3333:

The coarse-grained free energy curves in Fig. 8 represent

the two-phase equilibrium of Al solid solution and h0,
described in the multiscale model based on coefficients
obtained from first-principles. The maximum driving

force for the transformation (at 723 K) from Fig. 8 is

�34 meV/atom, while the equilibrium compositions

based on common tangent construction to the free en-

ergy curves are ca ¼ 0:0013 (a represents the Al solid

solution) and ch0 ¼ 0:3322. The h0 free energy in Fig. 8 is

admittedly an approximation to the first-principles cal-

culated line compound free energy, introduced to avoid
numerical instabilities. However, the approximated free

energy reflects the proper equilibrium compositions of

the two phases.
4.2. Gradient energy coefficients / interfacial energies

In the phase-field description, the interfacial energy

�r� for a system described by both the composition and
an order parameter is given by [32]



Fig. 8. Coarse-grained free energies of the matrix (a) and precipitates

(h0) based on a polynomial fit to the energetics obtained by first-

principles calculations at 723 K. Although h0 was determined to be a

line compound from first-principles calculations, it is approximated by

a polynomial with a smooth compositional dependence to avoid nu-

merical instabilities.
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� �2
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2

dc; ð26Þ

where Df ðcÞ ¼ f ðcÞ � feqðcÞ represents the excess free

energy associated with the material in the interface, and

a and bijðpÞ represent the gradient energy coefficients of
composition and order parameters (p-variants), respec-
tively. Using the free energy described in Fig. 8 at 723 K

and the first-principles calculated interfacial energy of

Fig. 6, along with Eq. (26), we have obtained the gra-

dient coefficients

a ¼ 6:13� 10�10; b11ð1Þ ¼ 3:75� 10�10;

b22ð1Þ ¼ 1:77� 10�9 ðin J=mÞ:

The coefficient a, which is the composition contribution

to interfacial energy is fixed arbitrarily, in order to

evaluate the coefficients bij. The calculated gradient en-

ergy values correspond to the first-principles calculated
interfacial energy values of �200 and �600 mJ/m2 for

coherent and semi-coherent interfaces, respectively. The

tetragonal symmetry of the variants are reflected in the

bijð1Þ values and the gradient coefficients for the second

h0 variant [bijð2Þ] are obtained from Eq. (5).
4.3. Elastic contributions

The elastic energy expression in Eq. (8) requires the

stiffness tensor (kijkl) and stress-free strain tensor (�0ij) as
inputs, and we have demonstrated above how to obtain

these quantities from first-principles. For cubic sym-

metry, C11, C12 and C44 are the only independent coef-

ficients in the matrix equivalent (Cij) of the stiffness

tensor (kijkl). The strain tensor reflects the tetragonal

symmetry in strain via the difference in misfit strain of
the semi-coherent and coherent interfaces for the two

precipitate variants

�0ijð1Þ ¼
�11ð1Þ 0

0 �22ð1Þ

� �
¼

dsc 0

0 dc

� �
;

�0ijð2Þ ¼
�11ð2Þ 0

0 �22ð2Þ

� �
¼

dc 0

0 dsc

� �
;

ð27Þ

where dc and dsc are the misfit strains along the coherent

and semi-coherent interfaces, respectively. The orienta-

tional variants (p ¼ 1; 2) in the strain tensor are ar-

ranged to be consistent with the gradient energy

coefficient tensor (Eq. (5)) representing the interfacial
energy anisotropy.

Based on the bulk free energy (coarse-grained Lan-

dau polynomial) constructed from first-principles data,

and the first-principles calculated interfacial energy, we

estimate the interfacial width of the coherent interface

[rcal=jDf j] to be �1.2 nm. The grid spacing (Dx) is

chosen to be 0.5 nm. We discuss below the implications

of this choice of grid spacing. While the simulation can
be easily extended to 3D, the present study is restricted

to 2D because of the computational limitations involved

in modeling a realistic system size in 3D. In 2D, the

plate-shaped h0 precipitates will be modeled as if viewed

edge-on and the number of orientational variants will be

2, instead of 3 (as in the schematic shown in Fig. 3). The

2D simulation grids were �500� 500–750� 750 nm2

depending on the volume fraction, the size restricted
mainly by the availability of computational resources.

The phase-field model was constructed from first-

principles data at �450 �C. However, the exclusion of

the vibrational entropy contribution in free energy cal-

culations has been shown to cause an overestimation of

the solvus temperature in Al–Sc alloys [33], and we ex-

pect a similar temperature overestimation for Al–Cu

alloys here of �200–250 �C. Therefore, in all the cal-
culated results below, we apply this ad hoc temperature

correction, and compare our calculated results to ex-

perimental data at precipitation temperatures of interest

of �200–250 �C.
In a phase-field model, homogeneous nucleation can

be modeled by either adding random thermal noises in

the Cahn–Hilliard and Allen–Cahn equations [24,34] or

by explicitly introducing nuclei according to the clas-
sical nucleation theory applied locally in a system

[35,36]. Since the main focus of this paper is on the

growth and coarsening process of precipitates rather

than the nucleation, the precipitates were simply in-

troduced at random locations. As smaller particles are

more strongly controlled by interfacial energies (rela-

tive to strain energies) than large ones, the initial

conditions in all our simulations correspond to ran-
domly distributed nuclei of h0 with an aspect ratio

�3:1, based on first-principles calculated interfacial

energy anisotropy.
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5. Results: phase-field modeling

5.1. Equilibrium morphology of h0

In an effort to understand the physics controlling the
equilibrium morphology of h0, we have calculated mor-

phologies from our multiscale approach, including var-

ious physical factors which affect the precipitate

morphology, both individually and in combination.

Fig. 9 is a collection of the late stage precipitate mi-

crostructures obtained from phase-field simulations with

different combinations of energetic contributions: (i)

isotropic interfacial energy alone, (ii) anisotropic inter-
facial energy alone, (iii) anisotropic strain (or elastic

energy) alone, and (iv) the ‘‘full’’ calculations using both

anisotropic interfacial and elastic energy in combina-

tion. The simulation results for these four cases are

compared with an experimental TEM micrograph of a

319-type Al–Si–Cu alloy aged at �230 �C for 3 h [37].

Though all the simulations started with similar initial

conditions, the number of precipitates in the micro-
structure in the late stages is dependent on the anisot-

ropy contribution(s) included. In general, the presence

of strain increases the critical nuclei size and hence, re-

duces the number of precipitates which attain the

growth stage. Also, some coalescence effects are ob-

served (in the case of elastic energy anisotropy) from

closely spaced identical precipitate variants which sur-

vived to the growth stage.
(i) Isotropic interfacial energy alone: As expected, the

resulting precipitate shapes are spherical with increase in

average precipitate size caused by growth and coarsen-

ing. (ii) Anisotropic interfacial energy alone: The pre-
Fig. 9. Phase-field simulation using thermodynamic parameters from first-p

contributions for an aging temperature of 200–250 �C. The experimental micr

label on the top of each frame indicates the anisotropy(ies) included (expresse
cipitates are plate-shaped with an aspect ratio close to

the interfacial energy anisotropy value of 3. We note

that there exists a small effect from spatial discretization

of our phase-field model on the morphology. The dif-

ference in interfacial widths along the semi-coherent and
coherent interfaces, introduced by the anisotropy in in-

terfacial energy, requires a very fine grid spacing to

eliminate this spatial discretization artifact completely.

The finer grid spacing implies more computational effort

in evaluating the model. Hence, we strike a balance

between the discretization artifact and the computa-

tional effort, and choose a grid spacing such that the

precipitate aspect ratio is close to the expected value
from interfacial energy anisotropy. Use of an adaptive

grid spacing could also be beneficial in eliminating this

discretization artifact, and future work in that area

would be of interest. (iii) Anisotropic elastic energy

alone: The elastic energy anisotropy arises from the te-

tragonality in strain and should result in lens-shaped

precipitates [22]. The deviation from the expected lens-

shape of precipitates (in Fig. 9(c)) is caused by the
coalescence events from neighboring precipitates. (iv)

Anisotropic interfacial and elastic energy in combination:

Only in this case, (Fig. 9(d)), does the model result in h0

precipitates with aspect ratios that are in reasonable

agreement with those observed experimentally after long

aging times [38]. The experimental TEM micrograph in

Fig. 9(e) obtained from a 319-type Al–Si–Cu cast alloy

after aging at 230 �C for 3 h is shown for comparison
[37]. By determining the effect of different anisotropy

contributions on the morphology of h0 precipitates using
the multiscale tool, and by comparing with the existing

experimental results on equilibrium aspect ratio, we
rinciples, showing h0 morphologies obtained with different anisotropic

ograph is from an Al–Si–Cu cast alloy aged at 230 �C for 3 h [37]. The

d as semi-coherent:coherent; interface – �3:1, strain – )0.051: +0.007).



Fig. 10. Microstructure evolution as a function of dimensionless time (t�) for Al–2%Cu alloy. The simulation size is �750� 750 nm2.
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arrive at the conclusion that the equilibrium precipitate

morphology is governed not solely by the interfacial

energy anisotropy (as it has been widely believed), nor

by the strain energy anisotropy, but rather by a com-

bination of the anisotropies.

5.2. Evolution of multi-precipitate systems

We next turn to applications of our multiscale model

to the 2D simulation of microstructural evolution in

systems with multiple precipitates. Both interfacial and

elastic energy anisotropies are incorporated in all re-

sults. The values of dimensionless quantities M� and t�

used in the simulation, along with the knowledge of

diffusion coefficient at the aging temperature (D), char-
acteristic length scale (l) and characteristic free energy

(Df ) used in the simulation, provide a simple relation to

calculate the real time (t) from the simulation time (t�).
Based on the diffusion coefficient D at the aging tem-

perature and the alloy composition (�c), mobility M is

evaluated using an averaged mobility expression

[M ¼D�cð1� �cÞ]. With a knowledge of the estimated

mobility M , M� and l, the kinetic parameter L is deter-
mined using Eq. (14). The real time is related to t�, L and

Df through a simple relationship (from Eq. (13))

t ¼ t�

LDf
: ð28Þ

As an example, the simulation time of t� ¼ 900 for the

result shown in Fig. 9(d), corresponds to a real time of

�10 h, based on estimated diffusion coefficient of 10�18

m2/s [39] at 200 �C.
The results discussed in this section are for an alloy

with 2% Cu (all compositions expressed in atomic %,
unless explicitly stated). The precipitate growth and

coarsening of this alloy as a function of time is shown in

Fig. 10. A simulation time of 1800 for this alloy corre-

sponds to �60 h of aging, at 200 �C. The size of the

simulated microstructure in Fig. 10 is �750� 750 nm2.

The number of precipitates that survive the growth

stage is only a small percent of the initial number of

heterogeneous nuclei, because of the small supersatu-
ration of the alloy. The thickness and length of the plate-

shaped precipitates during the evolution vary depending

on whether they are growing or shrinking, and on the
interaction with the diffusion fields from neighboring

precipitates. When the diffusion fields of the two adja-

cent precipitates which belong to the same crystallo-

graphic variant (same gp, sign and magnitude) interact,

reduction in the interfacial energy favors their coales-
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Fig. 13. Average aspect ratio of h0 precipitates from the Al–2%Cu alloy

is compared with the experimental results of Merle and Fouquet [38].

The individual aspect ratios from the simulation (FP/PFM) are dis-

played along with the average aspect ratio in solid line. The equilib-

rium aspect ratio from the simulation results is in good agreement with

the late stage equilibrium value from the experiments.
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cence. Also, the same interaction resists coalescence

between unlike variants (which would result in an anti-

phase domain boundary or twin boundary formation)

and inhibits their growth, similar to the experimental

observations [6,30].

From our simulations of microstructural evolution

(Fig. 10), we have extracted quantitative precipitate fea-

tures like the thickness, length and aspect ratio as a
function of time. The thickening and lengthening kinetics

obtained from an Al–2%Cu alloy are shown in Figs. 11

and 12. These multiscale modeling (FP/PFM – first-

principles phase-field model) kinetics are compared with

experimental results available from the literature for

precipitation temperatures between 200 and 250 �C. The
average (solid line) and maximum (dotted line) values of
Fig. 14. Precipitate evolution as a function of dimensionless time for (a) Al–3%

and �7.5 h for a 3% and 4% alloy, respectively, while for the 2% alloy in F
length and thickness from the simulation are compared

with average values from experiments. It should be

pointed out that the experimental measurements selec-

tively measure a few hundred precipitates from the large

number of available precipitates. Also, experimental
images (in TEM) can include precipitate overlap, which

can result both in an overestimation of the average length

and also in difficulties in resolving thicknesses at the

nanometer-scale, leading to large uncertainties in these

measurements. From Figs. 11 and 12, it is clear that the

thickness values from our simulations are in closer

agreement with experimental results than are the values

of precipitate length. We assert that the source of the
discrepancy in the case of precipitate length is due to the

pronounced interfacial mobility anisotropy and there-

fore, the much longer non-equilibrium lengths in exper-

imental measurements as compared to the equilibrium

values predicted by the simulation. The average aspect

ratio of h0 precipitates in the 2%Cu alloy predicted from

our simulation (see Fig. 13) agrees well with the mea-

surements of Merle and Fouquet [38], who obtained data
after long aging times (a few hundred to a thousand

hours). The maximum value of equilibrium aspect ratio

from the model predictions does not exceed 30, whereas

large non-equilibrium values are observed during aging

experiments, presumably induced by the interfacial mo-

bility anisotropy.

The multiscale model can also be used to study and

compare the precipitation kinetics of alloys with differ-
ent precipitate volume fractions. As an example, the

precipitate morphology and aspect ratios are compared

for three different alloy compositions, 2%, 3% and 4%

Cu. The smallest composition studied (2%) is the closest

to the Cu compositions in many binary and multicom-

ponent Al–Cu-based alloys of practical interest.

Although the higher volume fractions might be some-

what unrealistic, they are important, as they provide
Cu and (b) Al–4%Cu alloy. t� ¼ 900 corresponds to a real time of �10

ig. 10, it corresponds to 30 h.
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for the Al–Cu alloys of three different compositions. The aspect ratio

seems to decrease slightly with increase in composition, similar to the

experimental results of Merle and Fouquet [38].
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information necessary to compare the effect of volume
fraction on growth/coarsening kinetics.

From the precipitate microstructure evolution in

Figs. 10, 14(a) and (b) (corresponding to 2%, 3% and 4%

Cu compositions, respectively), it is obvious that the

number of precipitates which reach the growth stage

from the nuclei stage increases with supersaturation and

therefore, results in a larger precipitate density in the

late stages of simulation. The real times for the evolu-
tion study corresponding to t� ¼ 900 are �10 and 7.5 h

for the 3% and 4% Cu compositions (due to difference in

mobility M as a function of alloy composition), re-

spectively, and the simulation size is �500� 500 nm2.

The average aspect ratio of h0 precipitates decrease with
increase in alloy composition (2–4% Cu) (see Fig. 15).

This type of behavior is also observed in experiments

[38], in which the reduction in aspect ratio with increase
in alloy composition or supersaturation is caused by

enhanced thickening.

The multiscale model helps in understanding the

physics behind the equilibrium h0 precipitate morphol-

ogy. The quantitative predictions of equilibrium aspect

ratio of h0 precipitates are in good agreement with ex-

periments. In order to obtain a complete understanding

of the non-equilibrium precipitate morphologies in ex-
periments arising from interfacial kinetic anisotropy, a

more sophisticated phase-field model that includes misfit

defects and accounts for the ledge growth nature of the

coherent interface of h0 precipitates, is required.
6. Summary

A multiscale approach is presented to study the pre-

cipitate morphology of h0 precipitates in Al–Cu alloys.

All of the energetic contributions required by the me-

soscale phase-field (bulk, interfacial, and strain) are

provided by atomic-scale first-principles calculations
combined with cluster expansion and MC techniques.

First-principles calculations provide the first reliable

interfacial energy and misfit strain values for the co-

herent and semi-coherent interfaces of h0. From the

multiscale simulation results, we demonstrate that the
equilibrium plate-shaped morphology of h0 is not solely
governed by interfacial energy anisotropy as believed

prevalently, but by the combination of interfacial and

elastic energy anisotropies. The time evolution of the

equilibrium precipitate features such as the length,

thickness, and aspect ratio predicted by the simulation

agrees qualitatively with the experimental observations,

despite the fact that the model does not account for the
non-equilibrium interfacial mobility anisotropy effects.

We note that the first-principles/phase-field method

proposed here is completely general and is not confined

to the h0/Al case. It should be applicable to a wide va-

riety of problems in microstructural evolution.
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