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Abstract

The morphological evolution and coarsening kinetics of ordered intermetallic precipitates with coherency stress were
studied using a diffuse-interface phase-field model in two dimensions (2D). The emphasis is on the effects of precipitate
volume fraction. The average aspect ratio of the precipitates in the microstructure is found to increase with time and
decrease with volume fraction. Contrary to all the existing coarsening theories but consistent with a number of experi-
mental measurements on the coarsening kinetics of orderedg� precipitates in Ni-base superalloys, we found that the
coarsening rate constant from the cubic growth law decreases as a function of volume fraction for small volume
fractions (�20%) and is constant for intermediate volume fractions (20–50%). From the simulation results, we infer
that the two length scales in a stress-dominated coherent two-phase microstructure, the average precipitate size and
average spacing between arrays of aligned precipitates, follow different growth exponents. It is demonstrated that as
the volume fraction increases, the precipitate size distributions become broader and their skewness become increasingly
positive.  2002 Published by Elsevier Science Ltd on behalf of Acta Materialia Inc.
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1. Introduction

One of the most efficient ways to strengthen
alloys is by introducing coherent precipitates
through a controlled heat treatment process. This
process, used commonly in metallic alloys, is
referred to as the age hardening or aging or precipi-
tation strengthening. The degree of strengthening
depends on the volume fraction, size, morphology
and spatial distribution of the second-phase pre-
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cipitates. At high temperatures, the coherent pre-
cipitates undergo coarsening driven by a reduction
in the total interfacial and elastic energy, resulting
in an increase in their average size and an eventual
loss of coherency, and thus causing a degradation
of the mechanical properties of the alloy. Coarsen-
ing under the influence of coherency stress (stress
arising from the difference in lattice parameters
across the coherent interface) is significantly more
complicated than the stress-free coarsening. First,
the equilibrium compositions of the coherent two-
phase mixture are usually different from those
determined by the incoherent phase diagrams [1].
Secondly, the elastic properties are usually aniso-
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tropic, and hence result in nonspherical precipitate
shapes [2–8]. In the extreme case, some overgrown
precipitates may undergo splitting during aging [9–
12]. Furthermore, the elastic interactions are infi-
nitely long-range, which cause strong spatial corre-
lations between the precipitates leading to their
alignment along certain crystallographic directions
[13–19]. Therefore, there are two distinct length
scales in a coherent two-phase microstructure, the
average precipitate size and average spacing
between the arrays of aligned precipitates. Finally,
the coarsening of ordered intermetallic precipitates
is further complicated by the fact that they can
exist in several types of antiphase domains related
by a lattice translation to the parent disordered
phase, and hence can either coalesce or remain sep-
arated by a disordered matrix layer depending on
the antiphase relations of the neighboring domains.

As a result of the nonspherical precipitate shapes
and strong spatial alignment of the coherent pre-
cipitates, there is ambiguity even in defining the
precipitate size. It is not surprising that the experi-
mental measurements on the coarsening kinetics of
precipitates in the presence of coherency stress
have produced conflicting results with some obey-
ing the conventional t1/3 growth law for the average
precipitate size, while others do not [20–23].
Experimental results on the dependence of coars-
ening kinetics on the precipitate volume fraction,
in the presence of coherency stress, display a very
different behavior compared to the stress-free
coarsening. For example, Ardell et al [24,25]
observed a surprising result: the coarsening rate
constant decreases with increase in volume fraction
for small volume fractions of g� precipitates in Ni-
base alloys. Since this behavior is contrary to all
the existing coarsening theories [26–30] and
experimental observations in stress-free systems,
Ardell referred it as the “anomalous” coarsening
behavior. Chellman and Ardell [31] found that the
coarsening rate constant of g� precipitates is inde-
pendent of the precipitate volume fraction in the
intermediate volume fraction regime (�0.1-0.6), in
Ni-Al binary alloys aged at 1073 K. On the other
hand, Jayanth and Nash [32] showed that the coars-
ening rate constant increases with volume fraction
for the same system at similar aging temperatures.
This disagreement from the results of Jayanth and

Nash were attributed to the size measurements of
precipitates with non-equiaxed and non-cuboidal
shapes resulting from long aging times [33] and
therefore cannot be compared with the coarsening
results of Chellman and Ardell, which are from
equiaxed precipitate shapes.

The purpose of this study is to investigate the
morphological evolution and coarsening kinetics of
coherent precipitates with significant lattice misfit
and elastic anisotropy using the phase-field
approach. In this paper, we discuss our two-dimen-
sional coarsening results using a model alloy sys-
tem similar to the g�-Ni3Al precipitates in Ni-base
superalloys. The emphasis is on the effect of vol-
ume fraction on the precipitate morphology and
coarsening rate constant.

2. Model

Phase-field model [34] has been extensively
used for microstructure simulation studies because
of its ability to model complicated microstructures
without any a priori assumptions. Each phase or
domain in a microstructure is characterized by a
set of field variables (for example, composition(s)
and/or order parameter(s)). The interfaces (or
domain boundaries) are regions where these field
variables vary continuously from one phase (or
domain) to another. We consider a model two-
phase system, in which the parent phase has the
disordered face centered cubic (FCC) structure and
the precipitate phase belongs to an ordered L12

(four interpenetrating simple cubes) structure. A
composition field is required to characterize the
composition distribution in a two-phase micro-
structure. Based on the crystallographic relations
between the disordered and ordered phases, we
also require three order parameter fields to describe
the ordering from FCC→L12 [35,36]. The temporal
evolution of the field variables is given by the
Cahn–Hilliard and Allen–Cahn (or Ginzburg–
Landau) equations [37],

∂c(r,t)
∂t

� M�2
dF
dc(r,t)

� y(r,t) (1)

∂hi(r,t)
∂t

� �L
dF
dhi(r,t)

� zi(r,t) ; i � 1,2,3 (2)
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where c is the solute composition and his represent
the long-range order parameters, which vary spati-
ally (r) and temporally (t). F is the total free energy
of the two-phase microstructure, M is the solute
mobility and L is the interfacial kinetic parameter
(both M and L are assumed to be constants). y,
and zis are the random uncorrelated noise terms.

The total free energy of the system consists of
the incoherent bulk free energy, the interfacial
energy (gradient terms), and the elastic energy or
coherency strain energy (Eel). Assuming an iso-
tropic interfacial energy, the chemical energy [Fch,
(incoherent bulk free energy+interfacial energy)],
in the diffuse-interface description can be written
as

Fch � �
V

�f(c,hi) �
a
2

(�c)2 � �3

i � 1

bi

2
(�hi)2�dV (3)

The gradient energy coefficients, a and bis, are
assumed to be independent of the field variables.
The incoherent bulk free energy density f(c, hi) is
given by a polynomial of the field variables. The
form of this coarse-grained free energy polynomial
is based on the symmetry requirements of the
FCC→L12 transformation [35,36,38,39].

f(c,h1,h2,h3) �
1
2
A1(c�C1)2

�
A2

6
(C2�c)(h2

1 � h2
2 � h2

3) �
A3

3
(h1h2h3)
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A4

24
(h4

1 � h4
2 � h4

3) �
A5

24
(h2

1h2
2 � h2

2h2
3 � h2

1h2
3)

(4)

where the coefficients Ais are functions of tempera-
ture and C1, C2 are constants with values close to
equilibrium compositions of the matrix and pre-
cipitates, respectively. The coefficients and con-
stants were chosen such that the free energy curve
provides a qualitative description of the thermo-
dynamics of Ni-Ni3Al at �1000 K, with the con-
straint that A3 is non-zero for the order-disorder
transformation to be first order. The free energy
curve as a function of composition for the ordered
phase, shown in Fig. 1, is obtained by minimizing
Eq. (4) with respect to the order parameter (Fig.

Fig. 1. Free energy curves of the disordered FCC (γ) phase
and the ordered L12 (γ�) phase, expressed in units of
[u]=3.35×107 J/m3 [42]. Common tangent construction provides
the incoherent equilibrium compositions of the two phases.

1) ( i.e. assuming the long-range order parameters
are always at equilibrium for a given composition).

Khachaturyan’s model [13] is used for the
description of elastic energy arising from the lattice
misfit, with a homogeneous modulus approxi-
mation. Assuming that the lattice parameter has a
linear dependence on the solute composition
(Vegard’s law), the elastic energy functional can
be written as

Eel �
1
2�

k

B[n]|c̃(k)|2
d3k

(2p)3 (5)

where the integral is over the reciprocal or Fourier
space, n( � k / |k|) is a unit vector in the k direction
and c̃(k) is the Fourier transform of composition
field c(r). The function B(n) has all the information
on the elastic properties of the system. It can be
approximated in 2D [40] as

B(n)�Beln2
xn2

ye20 (6)

Bel � �
4(C11 � 2C12)2

C11(C11 � C12 � 2C44)
� (7)

where C11, C12 and C44 are the independent coef-
ficients in the elastic constant matrix, �(=C11–C12–
2C44) is the elastic anisotropy factor and
e0[=(da/a)(1/dc)] is the coefficient of lattice expan-
sion caused by the changes in composition. Bel is
a material constant and positive in our case, since
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the system is chosen to have a negative elastic ani-
sotropy, similar to Ni-base superalloys.

3. Results

Simulations were performed by numerically
solving the four nonlinear equations [Eqs. (1) and
(2)], one for each field variable, using the semi-
implicit Fourier-Spectral method [41]). The coef-
ficients of the free energy polynomial in Eq. (4)
are obtained by a qualitative fit to the Ni-Ni3Al
part of phase diagram at 1000 K along with the
constraint that the equilibrium order parameter of
g� is ±1. The coefficients A1, A2, A3, A4 and A5,
expressed in units of 3.35×107 J/m3 [42], are
277.78, 66.67, �21.21, 22.14 and 22.14, respect-
ively [since A3 is negative, the four translational
domains of g� are defined by (h1, h2, h3)=(1,1,1),
(�1,�1,1), (�1,1,�1) and (1,�1,�1)]. The con-
stants C1 and C2 in the free energy polynomial are
0.1123 and 0.2211, respectively. These values have
been chosen to produce a driving force for
decomposition from a disordered FCC single-phase
to a two-phase mixture of ordered and disordered
phases similar to that obtained in the CALPHAD
database for Ni-alloys. The gradient energy coef-
ficient b (assuming a to be zero) is chosen to be
4×10�11 J/m, which gives rise to an interfacial
energy of �25 mJ/m2 based on Cahn’s theory [43].
The assumption that the concentration gradient
coefficient (a) is zero is a simplification which
does not affect the main results on the volume frac-
tion dependence of coarsening rate constants. The
interfacial energy value of 25 mJ/m2 used in the
simulation is reasonable, because the experimen-
tally estimated values show a wide range from 8
mJ/m2–80mJ/m2. The coefficient Bel in the elastic
energy equation [Eq. (7)] is estimated as 120×1010

J/m3, based on the elastic constants of Ni solid sol-
ution (C11=209 GPa, C12=149 GPa and C44=96
GPa at 1000 K) from the work of Prikhodko et al
[44]. The misfit strain used in the simulation is
~1%, similar in magnitude to the strain values
observed in Ni-base superalloys (Ni-Ni3Al�0.5%
and Ni-Ni3Ti�1%). With these parameters, the
interface width was estimated as �3.5 nm, compa-
rable to the diffuse-interface width estimated from

cluster variation method for Al-Al3Li interface
[45].

The size of the simulation cell used in this study
is �1.3–1.9 mm2 depending on the precipitate vol-
ume fraction. It should be emphasized that the
biggest difficulty associated with studying coarsen-
ing using computer simulations is the need for
large systems, which can accommodate a few thou-
sand precipitates to ensure good statistics. This
enforces a severe restriction on studying small vol-
ume fractions (�10%), as the computational time
and memory required for the simulation scales with
system size. All the coarsening simulations
reported here begin with a few thousand precipi-
tates in the initial stages and were allowed to
coarsen to a few hundred precipitates.

�x (or the grid spacing) is chosen such that the
interface contains enough grid points to remove the
artifacts from the underlying discretizing lattice. �t
(or the time step) is chosen to ensure a stable sol-
ution. Six precipitate volume fractions, 0.1, 0.2,
0.35, 0.5, 0.7 and 0.9, were studied with the same
kinetic parameters to determine the effect of vol-
ume fraction on the morphology and coarsening
kinetics. In all cases, the initial configuration is a
disordered supersaturated solid solution. Since our
focus is only on the coarsening kinetics and not
the sequence of transformation, this assumption
does not affect our results. The noise terms aid the
nucleation by overcoming the nucleation barrier
and are removed after nucleation. The precipitate
microstructure and coarsening kinetics are then
extracted from the simulation results, which are
averaged over two simulation runs with different
but statistically similar initial conditions.

3.1. Morphology evolution

Fig. 2 shows the morphology evolution of
model g� precipitates for 20% precipitate volume
fraction. The coherent precipitates are shown in
white in a dark matrix. We observe the anisotropic
elastic energy induced cuboidal shape change of
precipitates and the anisotropic elastic interaction
induced alignment along elastically soft [10] or
[01] directions, known from previous experiments
and simulations. The aspect ratio of precipitates
were calculated to quantify the morphological
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Fig. 2. Microstructure evolution of the model γ� precipitates for 20% precipitate volume fraction. With �3500 precipitates after
nucleation (t=100), precipitate coarsening was followed until the late stages (t=7500) with ~400 precipitates remaining. All time
values expressed in the results are dimensionless time.

evolution. Following Qiu [22], the fraction of pre-
cipitates with different aspect ratios (volume of
precipitates with different aspect ratios, normalized
by the total precipitate volume in the
microstructure) is expressed as a function of time.
Such a morphology evolution plot for 20% equilib-
rium precipitate volume fraction is shown in Fig. 3.
The precipitate shapes are represented by different
aspect ratio (AR): AR=1 (AR�1.5) implies precipi-
tates with circular or square shapes, AR=2
(1.5�AR�2.5) represents rectangular-shaped pre-
cipitates, and AR=3 (2.5�AR�3.5) and 4

Fig. 3. Morphology evolution plot showing the fraction of
precipitates with different aspect ratios as a function of time for
20% precipitate volume fraction (AR-aspect ratio). It exhibits
excellent qualitative agreement with the experimental result of
Qiu [22], based on SEM observations of γ� precipitates in Ni-
Al alloys.

(AR	3.5) represent plate-shaped precipitates.
From the morphology evolution plot, it is clear that
the fraction of precipitates with square shape
decreases with time and the fraction of precipitates
with larger aspect ratios increases with time,
resulting in an overall increase in the average
aspect ratio of precipitates with time. The simu-
lated morphology evolution plot (Fig. 3) shows
excellent qualitative agreement with the experi-
mental result of Qiu [22], based on scanning elec-
tron microscopy (SEM) measurements from Ni-
Al alloy.

The precipitate morphology dependence on their
volume fraction is shown in Fig. 4, with individual
microstructures from six different volume fractions
from the late stages of coarsening. The most
notable feature from the microstructures is the
breakdown of precipitate array structure at large
volume fractions (	50%). Fig. 5 provides a quanti-
tative comparison of the precipitate morphology
from the late stages of coarsening as a function of
their volume fraction. This morphology charac-
terization plot (calculated similar to Fig. 3) is a
quantitative substitute for the precipitate morpho-
logies shown in Fig. 4. As the precipitate volume
fraction increases, the fraction of plate-shaped pre-
cipitates decreases and the fraction of square-
shaped (equiaxed) precipitates increases dramati-
cally. The presence of four types of antiphase
domains with unstable antiphase domain bound-
aries and the spatial constraints to growth at large
precipitate volume fractions can explain this obser-
vation. Fraction of rectangular precipitates (AR=2)
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Fig. 4. Morphology of γ� precipitates from the late stages of coarsening are compared for six precipitate volume fractions. (a) 0.1,
(b) 0.2, (c) 0.35, (d) 0.5, (e) 0.7 and (f) 0.9.

Fig. 5. Fraction of precipitates with different aspect ratios as
a function of the equilibrium precipitate volume fraction from
the microstructures shown in Fig. 4 (AR-aspect ratio).

remains fairly constant in the intermediate volume
fraction range. These morphological features of
g� precipitates as a function of volume fraction
observed from the simulation results, were also
evident from the dark-field micrographs of Chell-
man and Ardell [31].

The volume fraction dependence of precipitate
morphology can also be compared using the pre-
cipitate size distributions. The scaled precipitate
size distribution, also referred to as the discrete
probability density function, is constructed from
the probability of occurrence of precipitates in
small discrete intervals of normalized radius
(radius normalized by average radius). Since the
precipitate size distributions exhibit a good scaling
behavior, they are represented by an averaged pre-
cipitate size distribution for each volume fraction
(in Fig. 6), the average performed over data col-
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Fig. 6. Comparison of scaled precipitate size distributions averaged from the late stages of coarsening for six precipitate volume
fractions (the guiding curves for the distribution are just hand drawn).

lected from the late stages. The position of
maximum and breadth of the distribution remains
fairly constant for the small and intermediate vol-
ume fractions (�50%). For large volume fractions,
increase in volume fraction shifts the position of
maximum to smaller normalized precipitate size
and also results in an increase in the breadth of the
distribution. The statistics obtained from the pre-
cipitate size distributions as a function of volume
fraction are shown in Table 1. The standard devi-
ation is a measure of the breadth of the curve, the
skewness provides a measure of its shape and kur-
tosis is a measure of its deviation from a normal
distribution. The breadth of the distribution
increases with precipitate volume fraction (though
the variation is small for intermediate volume
fractions), a result also unique to all the conven-

Table 1
Statistical parameters from the scaled and averaged precipitate size distributions for the six volume fractions shown in Fig. 6. Statistics
for the 2D-LSW distribution was obtained based on the distribution from Rogers and Desai [48]

Equilibrium volume fraction Standard deviation Coefficient of skewness Coefficient of kurtosis

0.10 0.302 0.176 0.044
0.20 0.358 0.462 0.430
0.35 0.374 0.497 0.304
0.50 0.378 0.776 0.828
0.70 0.537 0.930 0.477
0.90 0.599 0.983 0.571
LSW (2D,f→0) 0.2 -1.085 1.132

tional coarsening theories [26–30]. Skewness
becomes more positive with increase in volume
fraction, while kurtosis values exhibit no volume
fraction dependence (arbitrary). The precipitate
size distributions for the six different volume frac-
tions were very different from the 2D-LSW
(Lifshitz, Slyozov and Wagner) distribution [46–
48], which represents the distribution in the zero
volume fraction limit.

3.2. Growth law

The most commonly investigated aspect of
coarsening kinetics is the Ostwald Ripening or
growth law, which is a power law expressing the
average length scale evolution as a function of
time.
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Ravg(t)n � Rn
0 � K t (8)

where Ravg(t) is the time-dependent average pre-
cipitate size or length scale, R0 is the average pre-
cipitate size or length scale at the start of coarsen-
ing, K is the coarsening rate constant, which is a
function of the equilibrium precipitate volume
fraction, and n is the growth law or coarsening
exponent. Conventional theories showed that the
exponent, n, is 3 for diffusion-controlled coarsen-
ing and 2 for interface reaction-controlled coarsen-
ing, in the absence of coherency stress. For the
particular case of g� precipitates, because of their
nonspherical shapes, a few different length scale
measures are used to follow the temporal micro-
structure evolution. Most commonly used direct
measures of the precipitate size are the half-edge
length of cuboids, and the equivalent radius of a
precipitate with same area. The inverse of first
moment of the (circularly averaged) structure func-
tion [49] or its real-space analog [18,50] is also
used as an indirect measure of the microstructure
length scale. We examined all three of these length
scale measures, namely, half-edge length, equival-
ent radius and inverse of first moment. The time-
dependent length scales obtained from the simul-
ation are used to extract the exponent and rate con-
stant for each measure, based on a nonlinear least
squares fitting of the growth law [Eq. (8)] and the
results are shown in Table 2. The half-edge length
and equivalent radius measures exhibit similar
trend in the exponents and coarsening rate con-
stants, but the inverse of first moment shows a

Table 2
Coarsening rate constant and the growth law exponent obtained from a nonlinear fit of the growth law, for six precipitate volume
fractions. The exponents and coarsening rate constant obtained from three different length scale measures (HE-half-edge length, ER-
equivalent radius, and IFM-inverse of first moment) are compared

Equilibrium volume fraction Exponent ‘n’ Coarsening rate ‘K’
HE ER IFM HE ER IFM

0.1 3.0 3.4 4.4 0.49 0.78 1.76
0.2 3.2 3.3 4.3 0.38 0.38 0.71
0.35 3.5 4.0 4.2 1.24 3.86 0.28
0.5 3.0a 3.0a 4.2 0.34 2.19 0.17
0.7 2.9 2.8 4.3 0.76 0.56 0.31
0.9 2.9 3.0 4.7 3.85 5.42 0.12

a Uncertainty from fit is large

markedly different behavior (possible reasons will
be discussed later). Although there is a high degree
of uncertainty in the growth exponent in the pres-
ence of coherency stress, both the half-edge length
and equivalent radius measures from this simul-
ation study yield exponent values close to 3 for all
the precipitate volume fractions. Based on a recent
work by Thornton et al [51] and to be consistent
with the analysis of experimental data
[24,25,31,32], the growth exponent is fixed as 3
for examining the dependence of coarsening rate
constant on precipitate volume fraction. Coarsen-
ing rate constant is the slope of the linear fit to
cube of average size measure vs time (fit is restric-
ted only to the linear portion of the data). The cube
of half-edge length and inverse of first moment as
a function of time and volume fraction are shown
in Figs. 7 and 9, respectively.

The rate constant as a function of precipitate vol-
ume fraction obtained from the half-edge length
measure (see Fig. 7) is displayed in Fig. 8. The
rate constant exhibits an anomalous dependence on
the precipitate volume fraction for small volume
fractions (i.e., it decreases with volume fraction,
contrary to the expected increase), remains nearly
constant for intermediate volume fractions and
increases with precipitate volume fraction for large
volume fractions. A similar anomalous behavior
for small volume fractions (�10–15%) was
observed by Ardell and coworkers [24,25] during
the growth and coarsening of g� precipitates in Ni-
X (X-Al,Ti) alloys. The constant (or volume frac-
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Fig. 7. Cube of half-edge length [(a/2)3] vs time as a function of precipitate volume fraction. Slope of the linear fit (or the coarsening
rate constant) is displayed next to the fit

Fig. 9. Growth law behavior for the different precipitate volume fractions with inverse of first moment (1/k1) as the length scale
measure. Coarsening rate constant is extracted from the cube of inverse of first moment vs time. An exponent of 3.0 was used for
easier comparison with the behavior in Fig. 7, though an exponent of 4.0 provided a more accurate fit.

tion independent) behavior of rate constants in the
intermediate precipitate volume fraction range
(�20–50%) from the simulation results is also in
good agreement with the experimental obser-
vations of Chellman and Ardell [31] in Ni-Al alloy.
This volume fraction independent behavior for
intermediate volume fractions and anomalous
behavior for small volume fractions were also
observed in the case of low misfit Ni3Si precipi-
tates in Ni-Si alloy [52]. The rate constant depen-
dence on precipitate volume fraction obtained from

the inverse of first moment measure displays no
similarity with the direct real-space measures (half-
edge length and equivalent radius); they instead
exhibit a continuous decreasing trend as a function
of precipitate volume fraction (see Fig. 9).

Since our focus was on the rate constant depen-
dence on volume fraction, other dynamical aspects
of the system are not discussed in detail. It has
been verified that both the matrix composition and
precipitate volume fraction are not constants dur-
ing coarsening, but exhibit a linear behavior with
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Fig. 8. Coarsening rate constant as a function of volume frac-
tion obtained from the cube of half-edge length vs time (see
Fig. 7). The rate constant for 90% volume fraction is not
included because of the large scatter in the length scale data.

t�1/3 in the late stages [53]. Initial results also
reveal that the coherent equilibrium composition of
the matrix (matrix composition as t→
) increases
with the average composition of the alloy, in agree-
ment with the results of Ardell and coworkers
[31,54].

3.3. Discussion

The results from our 2D simulation study estab-
lishes the ability of phase-field model to realisti-
cally describe all the complexities involved in the
coarsening of g� precipitates in Ni-alloys. For
example, both the precipitates in our model system
and g�-Ni3(Al,Ti) precipitates in Ni-alloys have
four types of translational domains which strongly
influence the coarsening process. The coalescence
of any two of these domains will lead to the forma-
tion of an antiphase domain boundary (APDB), and
is energetically favored only when the APDB
energy is less than twice the interfacial energy. The
model parameters are chosen such that the struc-
tural APDBs are unstable (sAPDB	2sint), similar to
Ni-base superalloys. It should be noted that the
elastic inhomogeneity between the matrix and pre-
cipitates, even without the presence of antiphase
domains, can give rise to similar microstructures;
hard precipitates tend to be surrounded by soft
matrix to minimize elastic energy [16,18,55]. How-

ever, experimental measurements in Ni-Al alloys
indicate that the elastic inhomogeneity is small,
leading to the conclusion that the aligned arrays of
precipitates are a result of the combination of elas-
tic interactions and the existence of antiphase
relations among the precipitates in Ni-alloys.

The morphological evolution and its dependence
on the volume fraction obtained from the simul-
ation, including the aspect ratio and precipitate size
distributions, show excellent qualitative agreement
with the existing experimental observations in Ni-
alloys. The precipitate morphology changes from
cuboidal to complex faceted shapes with increase
in volume fraction. The array structure of precipi-
tates present for small and intermediate volume
fractions (�50%) breaks down for large volume
fractions (see Fig. 4). This breakdown of array
structure due to inter-array coalescence leads to
complex faceted precipitate shapes for large vol-
ume fractions.

The most interesting result, however, is the pre-
diction of decreasing coarsening rate constant with
volume fraction for small volume fractions
(�20%). As far as we are aware, this is the first
simulation result showing decreasing rate constant
with volume fraction (anomalous behavior),
although it has been experimentally observed in a
number of Ni-base alloys [24,25,52]. In a prior
simulation of the coarsening kinetics of d� (L12-
Al3Li) precipitates in an FCC matrix in Al-Li
alloys [56] with a negligible lattice misfit
(�0.08%), the rate constant is found to increase
with volume fraction throughout the entire volume
fraction range. Since the crystallographic relations
between the precipitates and matrix are the same
in Ni-alloys and Al-Li alloys, the anomalous and
constant coarsening rate constant behavior as a
function of precipitate volume fraction in systems
with lattice mismatch (Ni-alloys) must be due to
the elastic interactions. Recent coarsening experi-
ments on Ni-alloys revealed that the anomalous
behavior extends to larger volume fractions as the
lattice misfit increases [25]. The elastic interactions
not only affect the rate constants, but also affect the
shape of the precipitate size distributions. There is
no change in the sign of skewness of size distri-
butions with volume fraction for the model g� pre-
cipitates, as observed for the misfit-free d� precipi-
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tates in Al-Li alloys both from the simulations and
experiments [56,57]. The skewness of the g� pre-
cipitate size distributions from the simulation
remains positive and increases with volume frac-
tion in the entire volume fraction range.

It should be emphasized that the coarsening
exponent in systems with strong elastic interactions
remains to be controversial. Experimental results
on Ni-Al alloys can be divided into two categories:
one set of results claim that the coarsening
exponent remains unchanged and change in kin-
etics due to coherency stress is reflected by the
coarsening rate constant [24,31,32], while the other
set of results show a change in kinetics reflected
by a change in the coarsening exponent [22,23].
Based on numerical simulations, Leo et al [58]
show that if scaling holds, the coarsening exponent
in the stress dominated regime is 2. Nishimori and
Onuki [16] have shown that the exponent in the
late stages of coarsening is �5. In this work, we
use three different measures of length scale,
namely, half-edge length, equivalent radius and
inverse of first moment of structure function. Both
the half-edge length and equivalent radius meas-
ures yield exponents close to 3.0 while the inverse
of first moment yields exponents close to 4.0
(Table 2). While the half-edge length and equival-
ent radius measures correspond to the precipitate
size, the inverse of first moment measure is related
to the spacing between the arrays of precipitates
rather than the precipitate size [13]. Coarsening of
arrays of precipitates is quite different from con-
ventional coarsening in which the precipitates are
randomly distributed. Arrays of aligned precipi-
tates disappear by a mechanism similar to the dis-
location climb. Although further work is necessary
to reach a firm conclusion, our results clearly indi-
cate different growth exponents for the precipitate
size (half-edge length and equivalent radius) meas-
ures and the spacing between the arrays of precipi-
tates (inverse of first moment).

The growth exponent and coarsening rate con-
stant dependence on volume fraction from the
inverse of first moment measure are markedly dif-
ferent from the values and trend displayed by the
real-space measures (see Table 2, Figs. 7 and 9).
An exponent of 3 is used to obtain the coarsening
rate constant from the inverse of first moment mea-

sure (in Fig. 9) to enable direct comparison with
the growth law behavior from the half-edge length
measure; an exponent of 4 provides a better fit and
the rate constants display an identical volume frac-
tion dependence as in Fig. 9. The inverse of first
moment, as mentioned before, represents the inter-
precipitate spacing in a general microstructure and
in the case of Ni-alloys with aligned precipitates,
it represents the spacing between the precipitate
arrays. The decrease in coarsening rate constant
from the array spacing as a function of volume
fraction over the entire volume fraction range can
be understood based on the following argument:
the space constraints increasing with volume frac-
tion lead to a reduction in the number of shrinking
arrays by the climb-like mechanism, and results in
precipitate growth within the array. This argument
may not be extendable to large volume fractions
(	50%) where the array structure of precipitates
breaks down. It might be fortuitous that we observe
a break in the decreasing rate constant trend on
moving from 50 to 70% precipitate volume frac-
tion (Fig. 9), where the array structure breaks
down.

We would like to add a note of caution about the
large volume fraction data. The complex faceted
precipitate shapes caused by the breakdown of
aligned array structures, due to excessive inter-
array coalescence and the lack of experimental data
for comparison at large volume fractions, increase
the uncertainty in the quantitative nature of the rate
constant and morphology evolution data for vol-
ume fractions 	50%. It is unclear if any of the
available length scale measures are capable of cap-
turing the coarsening of such complex shaped pre-
cipitates.

4. Summary

The morphological evolution and coarsening
kinetics of coherent precipitates in the presence of
significant lattice mismatch is studied using a
phase-field model. The emphasis is on the effects
of precipitate volume fraction. It is shown that with
increase in precipitate volume fraction, a larger
fraction of precipitates have smaller aspect ratios
due to space constraints and the presence of anti-
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phase domains. The results are in excellent quali-
tative agreement with existing experimental
measurements on Ni-base superalloys. Precipitate
size distributions become broader and positively
skewed with increase in volume fraction. The dis-
tributions are very different from the 2D-LSW pre-
diction, and unlike all theoretical predictions, they
exhibit positive skewness over the entire volume
fraction range. Assuming a coarsening exponent of
3, the coarsening rate constant behavior from the
average precipitate size measure as a function of
volume fraction exhibits 3 distinct regimes: anom-
alous behavior (decreasing rate constant) for small
volume fractions, no volume fraction dependence
(constant) for intermediate volume fractions, and
increasing rate constant with volume fraction for
large volume fractions. Similar rate constant
dependence on volume fraction has been exper-
imentally observed for the g� precipitates in Ni-
base alloys.
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