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AbstractÐWe have compared the phase-®eld model to the Potts model for two coarsening processes, grain
growth and Ostwald ripening, both in two-dimensions. The Potts model is a discrete, statistical mechanical
numerical simulation technique. In contrast, the phase-®eld model is a continuum, thermodynamic numeri-
cal simulation technique. The similarities and di�erences in microstructures, kinetics, and grain size distri-
butions obtained for grain growth and Ostwald ripening by the phase-®eld model and by the Potts model
were investigated. Both models gave very similar kinetic, topological and grain size distribution results for
grain growth and Ostwald ripening in spite of their di�erent approaches. In this paper, we review each
model and its application to coarsening processes, present the results of grain growth and Ostwald ripening
and ®nally, discuss how the physics of grain growth and Ostwald ripening is incorporated into these two
di�erent models. # 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Microstructural features control the properties and

performance of engineering components to a large
extent. Thus, it is vital that engineers tailor the

microstructures of the components they fabricate to

the components' applications. However, controlling

microstructural evolution during processing is a

challenging problem because of the large number of

variables that must be understood and controlled.

Therefore, predictive modeling techniques are

necessary for tailoring microstructures to their ap-

plications.

Coarsening models are the most numerous and

most mature of the microstructural evolution

models. Many investigators have used a number of

di�erent numerical techniques to simulate coarsen-

ing by processes such as grain growth and Ostwald

ripening. Among the numerical models used are the

Potts model [1, 2], the phase-®eld model [3±5], front

tracking model [6±8], Voronoi tessellation [9], and

vertex model [10]. While each of these models is

vastly di�erent in how it incorporates the physics of
coarsening, they all give similar results. Among

these models, the Potts and phase-®eld [11, 12] are

the arguably the most robust and versatile and cer-

tainly the most highly developed and widely

applied.

The Potts model was ®rst proposed by Potts as a

generalization of the Ising model for simulating the

critical transitions in magnetic materials with more

than two degenerate states [13]. The Potts model

treats the evolution of a nonequilibrium, discrete

ensemble which populates a regular lattice. The

ensemble can represent the composition and struc-

ture of materials. In the early 1980s, when compu-

tational facilities became su�ciently inexpensive to

make it readily accessible, the Potts model was

applied to coarsening phenomena, namely grain

growth [1] and soap froth coarsening [2]. Since

then, it has been modi®ed to study many micro-

structural evolution problems including normal [14]

and abnormal grain growth [15],

recrystallization [16], coarsening in two phase sys-

tems, Ostwald ripening [17], and microstructural

evolution in static [18] and dynamic thermal

gradients [19]. The phase-®eld model [20] is based

on the early ®eld theory models [21] that in turn are

based on the Cahn±Hilliard equation for a di�use

interface [22]. In contrast to the Potts model, the

phase-®eld model employs parameters called ®eld

variables to represent microstructure. These ®eld

variables are continuum functions of spatial coordi-

nates r and time t and are used to characterize a

heterogeneous state consisting of phases with di�er-

ent composition and/or structure. Typical examples

of these ®eld variables can be the continuous ®elds

of composition and long-range order parameters

that characterize structural heterogeneities of a sys-

tem. The evolution of these ®eld variables in space

with time gives the detailed information about the

metastable and unstable microstructural states,

which occur during microstructural evolution. The

combination of developments in the numerical tech-

niques and computation power has allowed many

investigators to develop the phase-®eld model to

study a wide variety of microstructural evolution

Acta mater. Vol. 47, No. 1, pp. 363±371, 1999
# 1998 Acta Metallurgica Inc.

Published by Elsevier Science Ltd. All rights reserved
Printed in Great Britain

1359-6454/99 $19.00+0.00PII: S1359-6454(98)00313-9

{To whom all correspondence should be addressed.

363



processes and progressively more complex pro-
blems. Some of these applications have been normal

grain growth [3, 4], Ostwald ripening [23], combined
grain growth and Ostwald ripening [24], microstruc-
tural evolution with coherent strain [25±27], twin

formations [28, 29] and ferroelectric domain
switching [30].
In this investigation, we will compare the Potts

model to the phase-®eld model for two coarsening
processes, grain growth and Ostwald ripening. The
Potts model is a discrete, statistical±mechanical

model; whereas, the phase-®eld model is a conti-
nuum, thermodynamic model. We will model nor-
mal grain growth under conditions as similar as the
two very di�erent models will permit, and compare

kinetics and topological results. We will also model
Ostwald ripening in a fully wetting, isotropic system
under similar conditions using both models and

compare the kinetics and grain size distribution
results.

2. GRAIN GROWTH SIMULATIONS

2.1. Model description

Microstructure is represented in the Potts model
by populating a lattice with a canonical ensemble as
shown in Fig. 1. We use a square lattice and each

lattice site is occupied by a ``spin''.{ Contiguous
sites of the same spin form a grain with a sharp
grain boundary between adjacent grains. The spin

occupying each lattice site maybe conceptualized as
a discrete quantity of matter on the scale of billions
of atoms of the same state. The number of di�erent,

degenerate spins that the lattice sites can assume is
Q. The individual state is designated by the symbol
q and the total number of states in the system is Q,

qgrain=[1, 2, . . . , Q]. The equation of state de®ning
the energy for these simulations is the sum of all
the neighbor interaction energies in the system
given by

E � 1

2

XN
i�1

X8
j�1

Eqiqj �1�

where N is the total number of sites, qi is the state
of the grain at site i, qj is the state of the nearest

neighbor at site j and Eqiqj is the neighbor inter-
action energy between neighbors located at site i
and j. In the grain growth simulations, for qi � qj
the interaction energy Eqiqj � 0 and for qi 6� qj the

interaction energy Eqiqj � 1:0. Thus, the only energy
considered in the simulation is the interfacial energy
and all unlike neighbors contribute one arbitrary

unit of energy to the system. This yields a single-

component, single-phase system with uniform,

isotropic [31] interfacial energies between grains.
Now that the microstructural representation and

system energies are de®ned in the simulation, we
turn to the grain growth mechanism. Grain growth
is simulated using the method developed in previous

works [1, 31]. First, a grain site is chosen at random
from the simulation space. Then a new state q is

chosen at random from the Q possible states in the
system. The grain site is temporarily assigned the
new state and the change in energy is evaluated

using equation (1). Next the standard Metropolis
algorithm is used to perform the grain growth step
based on Boltzmann statistics. A random number,

R, between 0 and 1 is generated. Next, the tran-
sition probability, P, is calculated using

P � exp

�ÿDE
kBT

�
for D > 0

1 for DER0

8><>: �2�

where kB is the Boltzmann constant and T is tem-
perature. If the RRP, then the grain growth step is

accepted, if not, the original state is restored. The
simulation temperature used for grain growth was
kBT = 0 and has been shown to simulate grain

growth well [31]. Time in the Potts model is
measured in units of Monte Carlo step; 1 MCS cor-

responds to N attempted changes where N is the
total number of sites in the system.
The phase-®eld model is a thermodynamic model,

which uses a ®eld representation for microstructure.
A continuum grain and grain boundary structure is

mapped onto a discrete, square, lattice using a set
of order parameters, {Zi(r)} where i = {1, 2, . . . ,
P}, which may be conceptualized as membership of

site r in P di�erent grains. This set of order par-
ameters is allowed to evolve with time at each lat-
tice point r to simulate microstructural evolution.

Figure 2 is a schematic diagram showing how the
order parameters vary continuously from one grain

to its neighbor to form di�use grain boundaries.
For the grain interior site, all order parameters
have values of 0.0 except one; it has a value of 1.0.

Fig. 1. Microstructure representation in the Potts model.
Each integer occupying a lattice site is a spin and contigu-

ous spins of the same value form a grain.

{The term spin originates from the original application
of the Potts model which was to study phase transitions in
magnetic materials.
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This may be interpreted as that site having exclusive

and full membership in the grain represented by

that particular order parameter and in no other

grains. A site at an interface between two grains,

has partial membership in the two grain on either

side of it and no membership in any other grains.

The order parameters are nonconserved parameters,

thus they need not sum to any particular value

locally at any given site or globally at all sites. This

type of representation leads to di�use interfaces as

described by Cahn and Hilliard [22].

The equation of state for the simulation is a free

energy function, F, which is a function of the order

parameters. It de®nes the energy of the system

given any combination of order parameters Zis. The
order parameters, Zis, are locally and globally non-

conserved parameters. Since the free-energy is

de®ned for all possible combination of Zis, the com-

bination of these parameters which gives the lowest

F is the equilibrium state of the system.

The free energy for the system studied here was

de®ned as

F �
� �

f0�Z1�r�, . . . ,Zp�r��

�
Xp
i�1

ki
2
�rZi � �r��2

�
d3r �3�

where f0 is the bulk chemical free energy,

f0 �ÿ a
2

Xp
i�1

Z2i �
b
4

�Xp
i�1

Z2i

�2

�
�
gÿ b

2

�Xp
i�1

Xp
j 6�i

Z2i Z
2
j �4�

with a= 1, b = 1 and g= 1.

In this model, the interfacial energies are intro-

duced by the excess free energy in the interface and

by gradients in the order parameters, 2ki(HZi)
2,

where ki are the gradient coe�cients of the order

parameters. Thus, at grain boundaries and triple

junctions where order parameters change spatially,

the free energy of the system is increased.

The driving force for microstructural evolution is

the reduction of total free energy of a system. In

this case, the total interfacial energy is decreased as

the microstructure evolves. Kinetics for microstruc-

tural evolution is introduced by the time-dependent

Ginzburg±Landau equations.

dZi�r,t�
dt

� ÿLi
dF�r,t�
dZi

� ÿLi
@ f0�r,t�
@Zi

� Likir2Zi�r,t� �5�

where Li is the kinetic rate coe�cient related to

interface mobility and di�usivity. Equation (6)

determines the evolution of the order parameters

and hence the grain structure.

The starting microstructures for this study was

initialized by assigning small random numbers

between ÿ0.001 and 0.001 for each order parameter

at each site at time t= 0.0. This microstructure is

analogous to a supercooled liquid. Once the micro-

structure is initialized, grain growth is simulated by

repetitive calculation of order parameters at each

site for the next time increment t= t+ Dt or

Zi(r,t+ Dt) which is calculated using the forward

Euler technique,

Zi�r,t� Dt� � Zi�r,t� �
@Zi�r,t�
@ t

Dt �6�

where the quantity @Zi/@t is determined using

Fig. 2. Microstructural representation of the phase-®eld model.

TIKARE et al.: PHASE-FIELD AND POTTS MODELS 365



equation (5). The Laplacians used in equation (5)
were calculated for a discretized system as

r2Z � 1

�Dx�2
�
1

2

X
i

�Zi ÿ Zr� �
1

4

X
j

�Zj ÿ Zr�
�
�7�

where Dx is the grid size, i is the set of ®rst nearest
neighbors of site r, and j is the set of second nearest
neighbors of site r.

2.2. Comparison of results

The resulting grain growth microstructures from
the Potts model and phase-®eld model simulations

are shown in Fig. 3(a) and (b). The microstructures
for the two simulations look very similar. Both
simulations were run on a square lattice with ®rst

and second nearest neighbor interactions and with
the same degeneracy of Q= 72 in the Potts model
and PZ=36 with each Z assuming positive and

negative values for a total of 72 states in the phase-
®eld model. While, the microstructures shown in
Fig. 3(a) and (b) look very similar, the Potts model
grains have sharp grain boundaries between adja-

cent lattice sites, in contrast to the phase-®eld
model grains which have di�use grain boundaries
which extend on average over 7 lattice sites.

Previous work has shown that the grain growth kin-
etics in both models is in agreement with the predic-
tions of grain growth theory, giving a grain growth

exponent of n= 2 in the following relationship:

Rn � Kt �8�
where R is the average grain radius, t is time and K

is a proportionality constant.
The grain size distributions obtained from the

two models is plotted Fig. 4. The two distributions

are in good agreement with each other, well within

Fig. 3. Grain growth microstructures resulting from the
(a) Potts model and (b) the phase-®eld model at various

times.

Fig. 4. Grain size distributions obtained from the phase-®eld model and Potts model grain growth
simulations.

TIKARE et al.: PHASE-FIELD AND POTTS MODELS366



statistical error. The range of grain sizes agrees

well. The peak in grain size distribution from the
phase-®eld model is shifted slightly to the smaller
grain sizes. This may be because the grain area is

slightly under estimated as the grain boundary
regions have a ®nite thickness in the phase-®eld
model. The topological results, distribution of the
number of neighboring grains of all grains, are

compared in Fig. 5. Again, there is good agreement,
well within the statistical error. The peak of the
neighbor distribution curve obtained from the

phase-®eld model is shifted to fewer neighbors with
respect to the Potts model neighbor distribution
curve. This is attributed to the fact that as the small

grains in the phase-®eld representation shrink, they
approach the resolution of the grain boundary
region and ``disappear'' prematurely. Overall, there
is excellent agreement between the grain growth

results of the two models.

3. OSTWALD RIPENING SIMULATIONS

3.1. Model description

The Potts model described in the previous section
on grain growth was modi®ed to represent a two-

component, two-phase system necessary to simulate
Ostwald ripening. Two types of spins were used;
one type was a set of spins, qA={1, 2, . . . , 100}
used for the solid grain phase and the other type

was just one spin qB=ÿ 1 for the liquid matrix.
The equation of state used for Ostwald ripening is
given by equation (1) with neighbor interaction

energies de®ned as EqAqA � 2:5 for dissimilar qAs,
and EqAqB � 1:0 resulting in two di�erent interfacial
energies, solid±liquid interfacial energy de®ned by

EqAqA and solid±solid grain boundary energy
de®ned by EqAqA . The use of two types of spins and
the two energies resulted in a two-component, two-

phase system necessary for the simulation of
Ostwald ripening [32]. The mechanism for micro-
structural evolution by Ostwald ripening was simu-
lated by choosing a site i at random and then

choosing a neighboring site j also at random. If one

site is an A-site and the other a B-site, then the two

are temporarily exchanged with the A-site assuming

one of the 100 possible states at random. The

change in energy for this exchange is evaluated and

the standard Metropolis algorithm with the tran-

sition probability given in equation (2) was used to

determine if the exchange is accepted or rejected.

The phase-®eld model described previously was

also modi®ed to describe a two-phase, two-com-

ponent system. This was done by using a set of

order parameters, Zi(r,t), which distinguish the

di�erent orientations of solid grains, and by intro-

ducing a concentration ®eld variable, C(r,t), which

takes the value of Ca within the liquid phase and

Cb within a solid phase grain. All order parameters

(orientation ®eld variables) are zero in the liquid

phase. At the solid±liquid interface the order par-

ameters would transition from 1.0 to 0.0 and the

composition from Cb to Ca. The total free energy of

the two phase system would be the function of

Zi(r,t) and C(r,t):

F �
� �

f0�C�r�;Z1�r�,Z2�r�, . . . ,Zp�r��

� kC
2
�rC�r��2 �

Xp
i�1

ki
2
�rZi�r��2

�
d3r �9�

with the following chemical free energy:

f0 � f1�C � �
Xp
i�1

f2�C,Zi � �
Xp
i�1

Xp
j 6�i

f3�Zi,Zj � �10�

in which

f1�C � � ÿ�A=2��Cÿ Cm�2 � �B=4��Cÿ Cm�4

� �Da=4��Cÿ Cb�4

f2�C,Zi � � ÿ�g=2��Cÿ Ca�2�Zi �2 � �d=4��Zi �4

f3�Zi,Zj � � �Eij=2��Zi �2�Zj �2

Fig. 5. Topological results obtained from the phase-®eld and Potts model grain growth simulations.
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with Ca=0.05, Cb=0.95, Cm=(Ca+Cb)/2 = 0.5,

A= 2.0, B = 1.0, Da=Db=1.2, g= 2.0, d= 1.0,

and E= 3.0. The gradient coe�cients were chosen

as: ki=kj=kC=2.0. Microstructural evolution was

driven by the minimization of free energy given in

equation (9) and the kinetics are calculated using

equation (6) where @Z/@t is given by the Ginzburg±

Landau relationship of equation (5). The change in

composition at each site is also given by the

Ginzburg±Landau relationship for conserved par-

ameters

@C

@ t
� r

�
LCr dF

dC�r,t�
�

� LC

�
r2

�
@ f

@C
ÿ kcr2C

��
: �11�

The forward Euler technique is used to calculate

the composition C at the next time step.

3.2. Results

The microstructures resulting from the Ostwald

ripening simulation of the Potts model and phase-

®eld model are shown in Fig. 6(a) and (b), respect-

ively. Both models show equi-axed grains dispersed

in a matrix. The phase-®eld model has grains which

are regular and smooth where as the Potts model

has irregular, but equi-axed grains. These features

are due to the nature of the two models. The phase-

®eld model maps continuum ®elds on to a lattice

giving smooth regular features. The Potts model is

a statistical±mechanical model which samples a

number of con®gurations favoring the lower energy

ones, thus the irregular appearance. A few of the

grains in the phase-®eld microstructure have slightly

elongated appearance due to coalescence.

Coalescence is two or more neighboring grains fus-

ing together to form one grain. Coalescence is expli-

Fig. 6. Microstructures obtained from (a) Potts and (b) phase-®eld model simulations of Ostwald
ripening.
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citly prohibited in the Potts model simulations, so

all the grains are equi-axed.

Ostwald ripening theories predict a grain growth

exponent of n = 3 for di�usion limited kinetics as

formalized by

Rn � Kt �12�
where R is the average grain radius, K is a rate con-

stant and t is time. Both the Potts and the phase-

®eld model gave grain growth kinetics with grain

growth exponents of n= 3 and is described in

detail elsewhere [17, 23, 33].

Self-scaling of the microstructure was achieved in

both sets of simulations as predicted by Ostwald

ripening theories. The grain size distributions in the

self-scaling region from the two models, shown in

Figs 7 and 8, at di�erent volume fraction of solids

are in good agreement. The skewness of both grain

size distributions at the high grain fractions is to

the larger grain sizes. As grain fraction decreases,

the skewness in both sets of grain size distributions

changes to smaller sizes. While the trends are simi-

lar, direct comparison of the two models is inap-

propriate because of the few coalescence events seen
in the phase-®eld simulations which change the

grain size distributions slightly. Again, very similar
results were obtained from the two models for
Ostwald ripening.

4. DISCUSSION

Grain growth is a capillarity driven phenomenon
with short range di�usion across grain boundaries.

The two models, Potts and phase-®eld, simulate
capillarity and grain boundary migration by short
range di�usion using very di�erent approaches.

Capillary forces require an interface with an associ-
ated energy and curvature of the interface. The
Potts model, at any given instant, has a sharp inter-
face between neighboring sites. The broken bonds

between neighboring sites contribute to the inter-
facial energy. Furthermore, the interface is discre-
tized around the lattice site with curvature also

being discretized in line segments of length equal to
the lattice site dimension. The phase-®eld model has
di�use grain boundaries which are several lattice

Fig. 7. Grain size distributions obtained from the Potts model for Ostwald ripening at grain fraction
(a) 0.89 and (b) 0.41.

Fig. 8. Grain size distributions obtained from the phase-®eld model for Ostwald ripening simulations at
grain fraction (a) 0.25, (b) 0.50 and (c) 0.90.
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sites wide. The interfacial energy is due to the

excess free energy of the grain boundary and the
gradient energy as de®ned in equation (5). In the
phase-®eld model, the interface itself is a smooth

continuously curving grain boundary rather than a
discretized one seen in the Potts model.
These interfaces move in response to di�usion

across the grain boundary driven by curvature.
Di�usion is also simulated very di�erently by the

two simulation methods. The Potts model simulates
di�usion across the grain boundaries by the ``spin
¯ip'' method which may be visualized as discrete

quanta of material at the grain boundary changing
to the neighboring grain. Thus, as a result of a spin
¯ip event the grain boundary jumps by a lattice

dimension. In contrast, the phase-®eld model simu-
lates grain boundary migration as a smoothly

moving interface driven by curvature. The order
parameters, Zi(r,t), vary continuously across the
grain boundary both in space and time to simulate

a continuously moving, di�use grain boundary.
To simulate Ostwald ripening, two additional

phenomena must be simulated, the Gibbs±Thomson

e�ect and di�usion in the matrix phase. Again the
two models simulated these di�erently. The Gibbs±

Thomson e�ect was simulated automatically in the
Potts model because the probability of sites detach-
ing at the grain±matrix interface was greater for

smaller grains than for larger grains. Di�usion
through the matrix phase in the Potts model is
simulated by random walk of single A-sites in the

matrix. A net ¯ux from smaller grains to larger
grains is achieved due to the Gibbs±Thomson e�ect.

In the phase-®eld model, the Gibbs±Thomson e�ect
was implicitly included in the free energy formu-
lations. The chemical potential outside a small

grain is higher than that outside a large grain, thus
making the solution concentration in the matrix
surrounding the smaller grains higher than that in

the matrix surrounding the larger ones. Di�usion in
the matrix results due to the di�erence in solution
concentration between small and large grains. In

the phase-®eld model, di�usion is governed by
equation (11) which reduces to Fick's ®rst law of

di�usion when chemical potential within solid
grains and liquid far from interfaces are in equili-
brium.

Another di�erence between these two models is
that the phase-®eld model is a deterministic model.

Once the initial starting microstructure is de®ned,
the microstructural evolution is completely determi-
nistic if thermal noise is not considered in the simu-

lations. The Potts model on the other hand, is a
stochastic model, it gives statistically similar results,
but not duplicate microstructures.

The Potts model is a discrete model which utilizes
a statistical±mechanical ensemble which evolves

with given mechanisms to simulate microstructural
evolution. When the ensemble is large, a large num-
ber of ensemble con®gurations can be sampled with

probabilities corresponding to their con®gurational
energy to simulate microstructural evolution accu-

rately. The ensemble con®gurations include ones
discussed in this paper for coarsening processes
such as grain boundary curvature and mobility, sol-

ution, precipitation, and di�usion by random walk.
In contrast, the phase-®eld model maps a conti-
nuum ®eld on to a discrete lattice with the conti-

nuum quantities which are explicitly incorporated
into the model. The energies and kinetics of micro-
structural evolution in the phase-®eld model are the

integral values of the discrete events in the Potts
model. Consider the grain boundary; its energy is
explicitly de®ned by equation (3) for a given set of
order parameters and curvature of the boundary

will increase the grain boundary energy. The mobi-
lity of the grain boundary is again explicitly incor-
porated into the phase-®eld model by equation (5).

Likewise, solution characteristics are given by
equation (10) and the di�usion of the components
making up the solution phase by equation (11).

When the Potts model is properly applied by
sampling a large ensemble with the appropriate
con®gurations, it will in the limit of large ensemble

size and sampling frequency approximate the conti-
nuum behavior of the phase-®eld model.

5. CONCLUSIONS

We have shown that despite their fundamentally
di�erent approaches, the Potts and phase-®eld

model give similar results for two coarsening pro-
cesses, grain growth and Ostwald ripening. The
Potts model simulates coarsening by the evolution

of a mesoscale ensemble with speci®c statistical±me-
chanical characteristics and mechanisms for evol-
ution. When these are applied over a su�ciently
large ensemble and many computation steps, the

Potts model simulated the continuum thermodyn-
amic and kinetic characteristic which are explicitly
incorporated into the phase-®eld model. This is

shown by the fact that microstructures, kinetics,
grain growth topology and grain size distribution
obtained from both models were very similar for

two coarsening processes.
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