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Abstract. A phase-field model is described for predicting the diffusional phase transformation 

process in elastically inhomogeneous polycrystals. The elastic interactions are incorporated by 

solving the mechanical equilibrium equation using the Fourier-spectral iterative-perturbation scheme 

taking into account elastic modulus inhomogeneity. A number of examples are presented, including 

grain boundary segregation, precipitation of second-phase particles in a polycrystal, and interaction 

between segregation at a grain boundary and coherent precipitates inside grains. It is shown that the 

local pressure distribution due to coherent precipitates leads to highly inhomogeneous solute 

distribution along grain boundaries.  

Introduction 

     Most materials in engineering applications are polycrystalline, containing grains of different 

crystallographic orientations separated by grain boundaries. During heat treatment, grain growth 

through grain boundary migration and phase transformations and microstructure evolution within the 

grain structure take place simultaneously. On one hand, the presence of grain boundaries results in 

inhomogeneous distribution of solute atoms and/or new phase particles, which has important 

implications to the materials’ mechanical properties [1-4]. On the other hand, the existence of phase 

microstructures such as precipitate particles may inhibit grain boundary migration and thus reduce the 

rate of grain growth. Therefore, the evolutions of grain and phase microstructures are inherently 

coupled. The main objective of this article is to report a phase-field model for predicting the 

thermodynamics and kinetics of solute segregation, phase transformations, and microstructure 

evolution in polycrystals containing elastically anisotropic grains. 

Model Description 

Free Energy Model & Kinetic Equations. Phase-field method has been employed to model 

microstructure evolution for many different materials processes [5-10]. In a phase-field model, the 

total free energy F of an inhomogeneous microstructure is described as a function of a set of field 

variables which are continuous across the interface. In the model, we use conserved field variables 

)(rX
r

and non-conserved field )(rp

r
η to describe the compositional and structural distributions of a 

solid solution. The total free energy F of the system is given by the following volume integral [5] 
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where f is the local free energy density, κc and κo are gradient energy coefficients, and Eel is the local 

elastic energy density. 
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     The temporal evolution of the compositional fields and non-conserved order parameters are 

governed by the Cahn-Hilliard equation (Eq. 2) [11] and Allen-Cahn relaxation equation (Eq. 3) [12], 

respectively, 
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where M is the interdiffusion mobility, L is the kinetic coefficient related to interfacial mobility, t is 

time, 







X

F

δ
δ  is the variation of the free energy function with respect to composition, and 
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δ  is the 

variation of the free energy function with respect to the order parameter fields. 

 

Inhomogeneous Elasticity Model. There are generally two types of elastic inhomogeneity 

contributions in polycrystals. Firstly, the elastic constants at the grain boundaries are expected to be 

different from those within the grains. Secondly, each grain with different orientation will have 

different elastic constants with respect to a reference orientation on a global coordinate system since a 

crystalline grain is always elastically anisotropic. To take into account both inhomogeneity, we 

describe the elastic modulus of a polycrystal in the global reference coordinate system in terms of the 

field variables describing a grain structure [13]:  
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where the non-conserved field variable )(rg

r
η  represents the orientation of the grains in a 

polycrystalline system, g

ija  are the components of an axis transformation matrix representing the 

rotation from the coordinate system defined on a given grain g to the global reference coordinate 

system, and Cmnop on the right-hand side is the elastic modulus in the coordinate system defined on a 

given grain.  

     Since the mechanical equilibrium is generally established much faster than the phase 

transformation processes, we solve the mechanical equilibrium equation to obtain the local elastic 

field in solids, 
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where  ijσ  is the local elastic stress, )(rCijkl

r
 is the position-dependent elastic modulus tensor, 

)(rij

r
ε is the local total elastic strain, and )(ro

ij

r
ε  is the local stress-free strain (or eigenstrain) due to 

phase transformation, thermal mismatch, etc. For example, the stress-free strain due to compositional 

inhomogeneity, )(ro

ij

r
ε , is given by  
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where δij is the Kronecker delta function, Km is the composition expansion coefficient of lattice 

parameter, ( )rX
r

 is the composition field,  and Xo is the overall composition of the parent phase. 
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     We employed the iterative-perturbation scheme to solve the elasticity equations in systems with 

inhomogeneous elastic moduli [14-15]. The elastic modulus can be separated into two parts. One is a 

constant isotropic part, and the other is a position-dependent perturbation, i.e. 
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where iso

ijklC  is the isotropic elastic stiffness tensor, and remaining part within the square bracket is 

considered as perturbation. The total strain )(rij

r
ε  can be separated into a sum of homogeneous strain 

( klε ) and heterogeneous strain ( )(rkl

r
δε ). The homogeneous strain can be calculated by minizing the 

elastic energy with respect to the homogeneous strain [16] while the heterogeneous strain can be 

expressed by the elastic displacement ( )(rui

r
) as the following equation [17]:  
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Plugging Eq. 7 and Eq. 8 into Eq. 5, we have  
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By iteratively solving this equation in the Fourier space, we can obtain the elastic displacement 

( )(rui

r
), and calculate the heterogeneous strain field. 

Simulation Results & Discussion 

Generation of Static Grain Structures. Our present simulations on diffusional phase 

transformations were conducted on a static grain structure for simplicity. To investigate the diffusion 

phenomena near the grain boundary, we generated a simple two-dimensional grain structure 

containing two or four grains separated by grain boundaries on  256×256 square lattices through the 

phase-field grain growth model [18] under the periodic boundary condition using non-conserved field 

variables )(rg

r
η  as shown in Fig.1 (a) and (b). In addition, each grain is assigned by an angle that 

represents the orientation of the grain. For example, the left-hand side grain (Grain I) is ascribed a 

misorientation angle = °0  with respect to a fixed reference, while an angle = θ ( 0°≠ ) is ascribed for 

the right-hand side grain (Grain II) in Fig. 1 (a). 

 
 

Fig. 1 Grain structures generated by phase-field simulations for (a) bi-crystal and (b) 4 grain system 

(4 order arameters). 
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Coherent precipitates inside grains and grain boundary segregation. We considered diffusion of 

species at or near the grain boundaries and within the bulk. In order to describe the grain 

structure-dependence of the local free energy density on the static grain structure, we propose a local 

free energy density (f) based on the regular solution free energy model: 
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where )(r
r

µ is the position-dependent chemical potential of solute, hµ  is the chemical potential of the 

host crystal, and )(rA
r

 is the position-dependent regular solution parameter. The position-dependent 

chemical potential is defined as 
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where bulkµ  is the chemical potential of solutes within grains, and gbµ  is the chemical potential of 

solutes at the grain boundary. The chemical potential is a function of the order parameters describing 

the grain structure. The summation of squares of order parameters is equal to unity within a grain, and 

is less than unity at the grain boundary. The behavior of solute segregation can be controlled by 

adjusting the difference between bulkµ  and gbµ .In a similar way, we define the position-dependent 

regular solution parameter as  
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where Abulk is the regular solution parameter within grains, and Agb is the regular solution parameter at 

the grain boundary.  

     The temporal and spatial evolution of the composition field ( )(rX
r

) can be obtained by solving the 

Cahn-Hilliard nonlinear diffusion equation (Eq. 2). Substituting the total free energy F (Eq. 1) with 

the assumption that M is a constant, and plugging the local elastic energy (Eel) [17]  
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into Eq. 2, we obtain 
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The diffusion equation (Eq. 14) was solved using the semi-implicit Fourier-spectral method [19-20], 

i.e. the temporal evolution of the compositional distribution was obtained by solving 
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where k
r
is the wave vector in Fourier space, k is the magnitude of k

r
, X

~
is the Fourier transform of 

X , t∆ is the time step for integration, and the subscribe k
r
means the Fourier transform. 
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     We first introduced two circular precipitates into the grain structure in Fig. 1(a). One was 

embedded in Grain I, while the other was embedded in Grain II. The initially sharp interfaces were 

relaxed by solving the Cahn-Hilliard equation without elasticity for hundred time steps. The chemical 

potentials of solutes in the bulk and the grain boundary were chosen to be *

bulkµ = 0.5 and *

gbµ = 0.25, 

respectively, to induce the segregation of solutes to a grain boundary. In addition, we used *

bulkA = 3.0 

and *

gbA = 3.0 as the regular solution parameters to make the free energy density a double-well type 

potential. To obtain the morphologies of precipitates under inhomogeneous elasticity, the diffusion 

equation containing inhomogeneous elasticity contribution (Eq. 15) was numerically solved for 

10000 time steps. As shown in Fig. 2(a) and (b), the morphology of the precipitate is cubic with 

rounded corners. The precipitate embedded in Grain II is rotated by 60° with respect to the precipitate 

embedded in Grain I in Fig. 2(a). From the morphologies of the precipitates, we can confirm that the 

inhomogeneous, anisotropic elasticity is properly incorporated by our proposed model, and the model 

successfully describes the orientation of the precipitates in the differently oriented grains. We 

assigned different misorientation angles such as 45° for Grain II as shown in Fig. 2 (b) and applied the 

inhomogeneou elasticity model to the case of multi-grain system as shown in Fig.2 (c).  In all cases, 

we obtained precipitates with correct orientations. 

 
Fig. 2 Coherent precipitates inside grains in different crystallographic orientations in the case of 

(a) bi-crystal (60
o
 grain II), (b) bi-crystal (45

o
 grain II), and (c) 4 grains system. 

 

 

     The presence of the precipitates inside the grains generates the elastic strain field. In addition, the 

elastic field directly affects the diffusion process according to the equation [21]: 

 

  ),( PXFcMJ i ∇∆Ω+=                                                                                                                                                (16) 

 

where J is the flux, c is the total concentration, M is the diffusion mobility, F is the driving force for 

diffusion except the local pressure effect, Xi is the mole fraction of species i, ∆Ω is the pure dilation 

during the atomic jump, and P is the local pressure defined by 
2

yyxx
P

σσ +
=  in two dimensions. 

Consequently, the diffusion kinetics can be significantly affected by the local pressure fields. We 

monitored the effects of the local pressure on the solute segregation at grain boundaries. The 

composition and local pressure profiles along the grain boundary are shown in Fig. 3. The solute 

segregation at the regions with locally maximum compressive local pressure is suppressed. On the 

other hand, the segregation composition at the locally minimum compressive region has a local 

maximum value. Since we assume dilatational eigenstrain for solute atoms, the solute atoms do not 

favor regions with compressive local pressure since these regions provide smaller space for 

accommodation of the atoms. The solute segregation behavior under local pressure is similar to that 

near a dislocation [22]. 
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Fig. 3 Grain boundary segregation composition 

((a): 60
o
 case and (b): 45

o
 case) and local 

pressure ((c): 60
o
 case and (d): 45

o
 case) 

distributions along the grain boundary 

 

Summary 

We successfully implemented the 

inhomogeneous elasticity model for 

predicting the diffusional phase 

transformation in polycrystals in phase-field 

simulations. The model is able to predict 

both the morphology of coherent precipitates 

within grains and grain boundary 

segregation. However, stress relaxation due 

to the atomic rearrangement near grain boundary region, e.g., through grain boundary migration at 

high temperatures, is not considered in this work since the present work is focused on phase 

transformations in a static grain structure. Three-dimensional simulations of precipitate 

microstructure evolution in both static and evolving polycrystalline Ni-alloys are currently underway. 
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