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Abstract

We have studied strain-induced solute segregation at a grain boundary and the solute drag effect on boundary migration using a phase
field model integrating grain boundary segregation and grain structure evolution. The elastic strain energy of a solid solution due to the
atomic size mismatch and the coherency elastic strain energy caused by the inhomogeneity of the composition distribution are obtained
using Khachaturyan’s microelasticity theory. Strain-induced grain boundary segregation at a static planar boundary is studied numer-
ically and the equilibrium segregation composition profiles are validated using analytical solutions. We then systematically studied the
effect of misfit strain on grain boundary migration with solute drag. Our theoretical analysis based on Cahn’s analytical theory shows
that enhancement of the drag force with increasing atomic size mismatch stems from both an increase in grain boundary segregation due
to the strain energy reduction and misfit strain relaxation near the grain boundary. The results were analyzed based on a theoretical
analysis in terms of elastic and chemical drag forces. The optimum condition for solute diffusivity to maximize the drag force under
a given driving force was identified.
� 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Grain boundaries are planar defects separating regions
of different crystallographic orientations in a polycrystal-
line material and are associated with excess free energy.
The interaction between grain boundaries and impurity
solute atoms often leads to an inhomogeneous distribution
of solute atoms near the grain boundaries, i.e. grain bound-
ary segregation. The segregated solute atoms exert a drag
force on the moving grain boundaries and thereby lower
their rate of migration during grain growth or recrystalliza-
tion [1,2]. Moreover, grain boundary segregation may have
a pronounced effect on the mechanical properties of a
material [3–8], and microstructures can be tailored for spe-
cific properties by controlling the amount of segregation.
For example, in nanocrystalline materials solute segrega-
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tion significantly lowers the grain boundary energy to
almost zero and inhibits grain coarsening [9–12]. There-
fore, a fundamental understanding of solute segregation
behavior and its effects on grain boundary migration is
important in designing microstructures of engineering
materials with specific mechanical properties.

Grain boundary segregation has been extensively stud-
ied both experimentally and theoretically (for comprehen-
sive reviews see Johnson [13], Seah [14], Wynblatt [15],
Tingdong and Buyuan [16], Wynblatt and Chatain [17],
and Lejcek and Hofmann [18]). Recent experimental
studies include surface analysis techniques such as Auger
electron spectroscopy (AES) and X-ray photoelectron
spectroscopy (XPS) to quantitatively measure the nature
and concentration of segregated species [14]. Microscopic
methods with high spatial resolution (e.g. scanning trans-
mission electron microscopy (STEM) and atom probe field
ion microscopy) have also been employed [14]. However, it
is still challenging to quantify grain boundary segregation
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experimentally due to the complicated interplay among
energetics associated with it, such as the chemical potential
of solutes, the elastic strain energy, the grain boundary
energy, etc. Therefore, there have been a number of analyt-
ical models and computer simulations of grain boundary
segregation [17,19–27].

The interaction between migrating grain boundaries and
solute segregation, known as the solute drag effect, has also
been extensively investigated [28]. Even a minute quantity
of segregated impurity atoms can significantly change the
grain growth kinetics during recrystallization. Solute drag
can be simply considered as a coupled process of grain
boundary segregation and grain boundary motion. How-
ever, the physics underlying the drag effect are not so sim-
ple. Solute segregation to a migrating grain boundary is a
non-equilibrium phenomenon, and the composition profile
across the moving grain boundary is usually asymmetrical
due to the boundary migration. In addition, solute drag is
influenced by several factors, such as grain boundary
migration rate, diffusivity of solute atoms, size difference
between solute and host atoms, etc. The complicated inter-
play among these factors hampers the quantitative and sys-
tematic experimental study of solute drag effects on the
kinetics of grain boundary migration and grain growth.
Therefore, theoretical models have been developed to
understand the solute drag effect both qualitatively and
quantitatively. The first quantitative theoretical study was
conducted by Lücke and Detert [2]. They pointed out the
elastic nature of the solute drag effect due to the size differ-
ence between solute and host atoms. The most successful
solute drag theory was established by Cahn [1]. He
described the drag effect by employing a generic interaction
potential, and demonstrated two distinct velocity regimes:
low and high. As a result, the grain boundary migration
rate varies nonlinearly with the driving force for boundary
motion. A grain boundary experiences a drag force within
the low velocity regime, while it breaks away from the seg-
regated solutes in the high velocity regime. Lücke and
Stüwe extended Cahn’s work and developed a simple atom-
istic model [29]. Hillert and Sundman further generalized
the solute drag theory for systems with a high solute con-
tent. Their theory is based on the numerical calculation
of free energy dissipation by solute diffusion [30]. Hillert
also showed that the free energy dissipation analysis
becomes identical to Cahn’s impurity drag theory for grain
boundary migration in dilute solutions [31,32]. A compre-
hensive review of these approaches is given in Hillert [33].
The effect of non-ideality on the solute drag force was also
discussed by employing the regular solution model [34].

A number of attempts have been made to develop quan-
titative models for the solute drag effect. For example,
phase field models [35–40] have been developed to study
the solute drag phenomenon. The first phase field study
of the solute drag effect was conducted by Fan et al. [41].
They captured the drag effect by employing the phenome-
nological model and applied their model to the simulation
of grain growth to study the effect of solutes on the growth
kinetics and grain size distribution. Cha et al. developed a
phase field model to study the solute drag effect in binary
alloy systems in which the grain boundary is described as
a distinguishable phase from the grain interior and the
segregation potential is employed in the grain boundary
region [42]. Ma et al. investigated the effects of concentra-
tion gradient, spatial variation in the gradient energy
coefficient and the concentration dependence of the sol-
ute-grain boundary interactions using a regular solution
model [43]. They also discussed the transition of grain
boundary mobility as a function of temperature. Strandl-
und et al. proposed a different approach in which the effec-
tive grain boundary mobility is calculated as a function of
driving force and is used to simulate grain boundary migra-
tion without solving the diffusion equation [44]. Recently
Grönhagen et al. developed a phase field model [45] consis-
tent with Cahn’s solute drag theory [1]. In their model the
height of the double-well potential in the expression for the
Gibbs free energy is concentration dependent. Kim et al.
adopted Grönhagen’s model for their study of the solute
drag effect [46]. They combined the solute drag model with
a multiphase field model [47] for grain growth and pro-
posed a new mechanism of abnormal grain growth induced
by the solute drag effect. Li et al. also applied Grönhagen’s
model to study the drag effects in different velocity regimes
[48]. They considered the drag force at non-steady state
and the effect of a spatially variable diffusion mobility.

One of the dominant driving forces for grain boundary
segregation in alloy systems is the reduction in elastic strain
energy due to the redistribution of solute atoms. Solute
drag is also influenced by the elastic interactions, as Lücke
and Detert [2] and Cahn [1] pointed out. However, most of
the solute drag theories and phase field simulations
employed a generic interaction potential which arbitrarily
includes all interactions arising due to chemical contribu-
tions, elastic strain effects, etc. In other words, the elastic
interactions of solute atoms with the grain boundary is
not explicitly described in these models and simulations.
Thus a quantitative analysis of the elastic strain effects on
grain boundary segregation and solute drag is not possible
using the existing phase field models. Since elastic
interactions have a significant effect on grain boundary seg-
regation and solute drag, it is important to address the
effects of elastic strain energy on solute–grain boundary
interactions.

In this paper we present a phase field model which quan-
titatively takes into account the effect of elastic interactions
between solutes and a grain boundary. Based on the ener-
getics associated with the elastic strain energy of the solid
solution, we formulate the elastic strain energy density
due to the size difference between solute and host atoms
in the presence of grain boundaries. We extend the model
of Grönhagen et al. [45] by additionally incorporating the
effect of elastic strain energy and integrate our model with
the grain structure evolution model developed by Chen
et al. [49] to study the thermodynamics and kinetics of
solute segregation at static or moving grain boundaries.
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Our study also theoretically explores the origin of the drag
force in the presence of elastic strain interactions. We per-
form a systematic study of the drag force as a function of
atomic size difference, driving force for grain boundary
migration, and diffusivity (or diffusion coefficient). In par-
ticular, the optimum condition in terms of these variables
for the strongest drag force is discussed.

2. Phase field model for solute–grain boundary interactions

with strain energy

2.1. Energetics

Solute segregation at a static or migrating grain bound-
ary is a kinetic process which leads to an inhomogeneous
distribution of the solute in a polycrystalline solid solution.
In the diffuse interface description, the total free energy F

of a compositionally and structurally inhomogeneous sys-
tem is described as a function of a set of continuous phase
field variables [50]. To study the behavior of segregating
solutes to a grain boundary in a binary alloy system we
use a conserved field X ð~r; tÞ to describe the composition
of solute and a set of non-conserved order parameters
ggð~r; tÞ to describe the crystallographic orientations of
grains. The total free energy F of the system is given by
the volume integral [35]:

F ¼
Z

V
finc þ x � gðg1; g2; . . . ; ggÞ þ

jc

2
ðrX Þ2

(

þ jo

2

X
g

ðrggÞ
2 þ ecoh

)
dV ; ð1Þ

where finc is the incoherent local free energy density of the
solid solution, g is the local free energy density of the grain
structure, x is an interaction parameter which determines
the height of g, jc and jo are gradient energy coefficients
associated with composition X and grain order parameters
gg, respectively, and ecoh is the coherency elastic strain en-
ergy density arising due to compositional inhomogeneity.

The incoherent local free energy density finc of a binary
system is described using a regular solution-based model.
An interaction potential E is incorporated to represent
the chemical interaction between the grain boundary and
solute atoms following Cahn [1]. Thus the incoherent local
free energy is expressed as:

finc ¼½lo þ RT lnX þ X � ð1� X Þ2 þ E� � X
þ ½lo

h þ RT lnð1� X Þ þ XX 2� � ð1� X Þ: ð2Þ

where l
�

is the chemical potential of solute atoms at standard
state, l

�
h is the chemical potential of host atoms at standard

state, R is the gas constant, T is the temperature, and X is the
regular solution parameter representing the interactions be-
tween the atoms. In the present model we specify the chem-
ical interaction potential E as [�m � x � g(g1, g2, . . ., gg)],
where m is a parameter determining the strength of the inter-
action. Therefore, Eq. (2) becomes:
finc ¼ loX þ lo
hð1� X Þ þ RT ½X lnX þ ð1� X Þlnð1� X Þ�

� m � x � g � X þ X � X ð1� X Þ: ð3Þ

The regular solution parameter X in Eq. (3) determines
the non-ideality of the solid solution and intrinsically con-
tains two contributions: one from the pure chemical effect
and the other from the elastic strain due to the atomic size
difference (or size mismatch) between solute atoms and
host atoms. Therefore, the regular solution parameter can
be expressed as a sum of two contributions:

X ¼ Xchem þ Xhom
elast; ð4Þ

where Xchem is the regular solution parameter associated
with the pure chemical contribution, i.e. regular solution
parameter of a hypothetical solid solution in which all
the atoms have the same size (this representation is similar
to that of Cahn [51]), and Xhom

elast is the regular solution
parameter due to elastic strain interactions arising from
the atomic size mismatch in a solid solution. Using Eqs.
(4) and (3) can be expressed as:

finc ¼loX þ lo
hð1� X Þ þ RT ½X lnX þ ð1� X Þlnð1� X Þ�

� m � x � g � X þ XchemX ð1� X Þ þ Xhom
elastX ð1� X Þ: ð5Þ

The last term in Eq. (5) represents the elastic strain
energy due to the size difference between solute atoms
and host atoms in a homogeneous solid solution. Accord-
ing to Khachaturyan [52] the elastic strain energy stemming
from the atomic size mismatch between the solute and
matrix atoms in a homogeneous solid solution is given by:

ehom ¼
1

2
½Cijkle

m
ije

m
kl � hLð~nÞi~n�X ð1� X Þ; ð6Þ

where Cijkl is the elastic modulus, em
ij is the misfit strain

tensor, hLð~nÞi~n represents the average of Lð~nÞ over all the
directions of ~n with Lð~nÞ ¼ nir0

ijXjkr0
klnl, r0

ij ¼ Cijklem
kl,

X�1
jk ¼ Cjiklninl, and ni denotes the unit wave vector in

Fourier space. We assume a dilatational strain tensor e0dij

for em
ij where dij is the Kronecker delta function and e0 is

the composition expansion coefficient of the lattice param-
eter. For elastically isotropic solids the elastic strain energy
density of the homogeneous solid solution in Eq. (6)
reduces to Eshelby’s elastic energy for an isotropic
homogeneous solid solution [53]:

eiso
hom ¼ 2l

1þ m
1� m

� �
e2

0X ð1� X Þ ðin three dimensionsÞ

eiso
hom ¼

l
1� m

� �
e2

0X ð1� X Þ ðin two dimensionsÞ; ð7Þ

where l is the shear modulus and m is the Poisson’s ratio.
Replacing the last term in Eq. (5) with Eq. (7), the incoher-
ent free energy density is expressed as:

finc ¼loX þ lo
hð1� X Þ þ RT ½X lnX þ ð1� X Þlnð1� X Þ�

� m � x � g � X þ XchemX ð1� X Þ

þ 2l
1þ m
1� m

� �
e2

0X ð1� X Þ: ð8Þ
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Therefore, the incoherent free energy is expressed by
the summation of the purely chemical free energy and
elastic strain energy of the homogeneous solid solution
itself. A similar expression of the incoherent free energy
density with the isotropic elastic modulus was used for
phase field modeling of solute segregation near a disloca-
tion [54].

When the solute atom is larger than the matrix atom
the bulk of the grain is elastically strained when a solute
atom is squeezed into the matrix. However, the strain is
relaxed when the solute atom approaches a grain bound-
ary due to its relatively open structure. Relaxation of the
strain is one of the main driving forces for grain bound-
ary segregation, as noted earlier. Therefore, we model
the strain relaxation near the grain boundary by using
position (or grain structure)-dependent atomic size mis-
match, given as:

e0ð~rÞ ¼ ecuð~rÞ; ð9Þ
where uð~rÞ is an interpolation function, which is 1 inside
grains and becomes 0 at the center of a grain boundary,
and ec is the composition expansion coefficient of the lattice
parameter inside the bulk defined as 1

a0

da
dX

� �
, where a0 is the

lattice parameter of a solid solution with the overall com-
position X0. If the solid solution is dilute (X0� 1) a0 can
be approximated as the lattice parameter of a pure host
material. Assuming Vegard’s law, the expansion coefficient
ec can be evaluated as:

ec ¼
1

a0

da
dX

� �
¼ 1

a0

Da
DX

� �
¼ 1

a0

as � a0

1

� �
¼ as � a0

a0

ffi rs � r0

r0

; ð10Þ

where as is the lattice parameter of a pure material com-
posed of the solute species, rs is the radius of a solute atom,
and r0 is the radius of a host atom. Thus, the composition
expansion coefficient ec can be considered a measure of the
atomic size mismatch between the solute atoms and the
host atoms. The size mismatch of a solute atom inside
the bulk is ec, and the mismatch becomes smaller near
the grain boundary. The strain is assumed to be fully re-
laxed when a solute atom occupies the center of a grain
boundary. The mathematical form of uð~rÞ is:

uð~rÞ ¼ � /� /min

/max � /min

� �2

þ 2
/� /min

/max � /min

� �
; ð11Þ

where / ¼
P

gggð~rÞ
2, /max is the maximum value of /

which corresponds to the value inside the bulk, and /min

is the minimum value of / which corresponds to the value
at the center of a grain boundary. The properties of the
function uð~rÞ are: (i) uj/¼/max

¼ 1; (ii) uj/¼/min
¼ 0; (iii)

@u
@g jgg¼1ðgrain interiorÞ ¼ 0. Property (iii) is employed to avoid
an artificial change in the equilibrium value of the grain
order parameters ggð~rÞ due to the elastic strain energy.
Taking into account the position-dependent atomic size
mismatch, we rewrite ehom for a solid solution with an
isotropic elastic modulus using Eq. (7):
ehom ¼ 2l
1þ m
1� m

� �
e2

cuð~rÞ
2X ð1� X Þ ðin three dimensionsÞ

ehom ¼
l

1� m

� �
e2

cuð~rÞ
2X ð1� X Þ ðin two dimensionsÞ:

ð12Þ
To calculate the total elastic strain energy of a composi-

tionally inhomogeneous solid solution the coherency elastic
strain energy (ecoh) arising from the compositional inhomo-
geneity should be included in addition to the elastic strain
energy (ehom) of a homogeneous solid solution itself. Since
elastic relaxation is much faster than diffusional processes,
the local elastic fields are obtained by solving the mechan-
ical equilibrium equation:

rjrij ¼ rj½Cijkl � ðekið~rÞ � eo
klð~rÞÞ� ¼ 0; ð13Þ

where rij is the local elastic stress, Cijkl denotes the elastic
modulus tensor, eijð~rÞ is the total strain tensor, and eo

ijð~rÞ
is the stress-free strain (or eigenstrain) tensor. Thus the
term ðeklð~rÞ � eo

klð~rÞÞ is the elastic strain tensor.
The local stress-free strain due to the compositional

inhomogeneity is given by:

eo
ijð~rÞ ¼ dije0ðX ð~rÞ � X 0Þ ¼ em

ijðX ð~rÞ � X oÞ; ð14Þ

where dij is the Kronecker delta function, e0 is the compo-
sition expansion coefficient of the lattice parameter, em

ij

represents the misfit strain tensor, and X0 is the overall
composition of the solid solution. The structural inhomo-
geneity due to the presence of a grain boundary is de-
scribed using the position-dependent mismatch e0ð~rÞ
defined in Eq. (9). The total strain tensor eijð~rÞ in Eq.
(13) is expressed as the sum of the homogeneous strain
�eij and heterogeneous strain deijð~rÞ, and the heterogeneous
strain is expressed in terms of the displacement fields uið~rÞ
as [52]:

eijð r!Þ ¼ eij þ deijð r!Þ ¼ eij þ
1

2

@ui

@rj
þ @uj

@ri

� �
; ð15Þ

where the homogeneous strain represents the macroscopic
shape change of the system and is defined such that:Z

V
deijð~rÞdV ¼ 0: ð16Þ

Taking into account the strain fields defined in Eqs.
(14)–(16) we solve the mechanical equilibrium equation
(Eq. (13)) in Fourier space and obtain the elastic dis-
placement fields. The coherency elastic strain energy den-
sity due to the compositional inhomogeneity is defined
as:

ecoh ¼ 1
2
Cijklð�eij þ deij � eo

ijÞð�ekl þ dekl � eo
klÞ;

¼ 1
2
Cijkleel

ij e
el
kl;

ð17Þ

where eel
ij denotes the elastic strain tensor, which is equal

to ð�eij þ deij � eo
ijÞ. If we assume the elastic modulus of

the system to be homogeneous and isotropic, the coher-
ency elastic strain energy density defined in Eq. (17)
becomes:
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eiso
hom ¼ 2l

1þ m
1� m

� �
e2

0ðX � X 0Þ2 ðin three dimensionsÞ;

eiso
hom ¼

l
1� m

� �
e2

0ðX � X 0Þ2 ðin two dimensionsÞ:

ð18Þ
In the original model of Grönhagen et al. [45] a simple

double-well type potential g2(1 � g)2 is employed. Kim
et al. implemented the multiphase field model [47] for grain
structure evolution in a polycrystalline structure [46]. In the
present model we employ the following local free energy
density function for g(g1, g2, . . .gg) in Eq. (1) based on
the model in Chen and Yang [49] associated with the evo-
lution of grain structure with multiple grain order
parameters:

gðg1; g2; . . . ; ggÞ ¼0:25þ
X

g

� 1

2
g2

g þ
1

4
g4

g

� �

þ c
X

g

X
g0>g

g2
gg

2
g0 ; ð19Þ

where c is the phenomenological parameter describing the
interactions among the grain order parameters. A constant
0.25 is used in Eq. (19) to make the value of g equal to 0
inside the bulk so that the interaction potential (�m � x � g
in Eq. (8)) is zero inside the grain. It should be noted that
the addition of a constant does not affect the kinetics of the
grain structure evolution.

2.2. Discussion of the free energy model

In this section we critically compare our free energy
model with the existing thermodynamic models of solute
segregation [45]. Neglecting the gradient energy terms,
the total free energy density given in Eq. (1) is given as:

f ¼finc þ x � g þ ecoh;

¼loX þ lo
hð1� X Þ þ RT ½X lnX þ ð1� X Þlnð1� X Þ�

þ XchemX ð1� X Þ þ ð1� mX Þ � x � gðg1; g2; . . . ; ggÞ

þ ehom þ ecoh;

¼fchem þ ð1� mX Þ � x � g þ ehom þ ecoh; ð20Þ

where fchem ¼ loX þ lo
hð1� X Þ þ RT ½X ln X þ ð1� X Þ

lnð1� X Þ� þ XchemX ð1� X Þ. If we ignore Xchem in fchem

and the elastic energy components ehom and ecoh, the expres-
sion for the local free energy density becomes identical to
that of Grönhagen et al. [45], where the barrier height of
the double-well potential for the evolution of grain struc-
ture is composition dependent. The driving forces for grain
boundary segregation in metallic alloy systems are both
chemical and elastic in nature. The sum of the first two
terms [fchem + (1 � mX) � x � g] in Eq. (20) accounts for
the chemical driving force due to the chemical potential
inhomogeneity caused by the grain boundary while the
sum of the last two terms [ehom + ecoh] is responsible for
the elastic driving force.
The coherency elastic strain energy density ecoh does
not include the elastic strain energy density of a homoge-
neous solid solution itself since ecoh is calculated using
the homogeneous solid solution as the reference system
for the compositional inhomogeneity [55]. In other
words, ehom is the elastic strain energy density of the
homogeneous solid solution itself in a local region due
to atomic mismatch, and ecoh is the elastic strain energy
density caused by the inhomogeneous fluctuations in
composition. For a system with volume V without grain
boundaries and assuming it to be an elastically isotropic
solid solution with compositional inhomogeneity the total
elastic strain energy is calculated using Eqs. (7) and (18)
as discussed in Chen [55]:

Eiso
total ¼

R
V ½eiso

hom þ eiso
coh�dV ;

¼
R

V ½2l 1þm
1�m

� �
e2

0X ð1� X Þ

þ2l 1þm
1�m

� �
e2

0ðX � X 0Þ2�d3r;

¼ 2l 1þm
1�m

� �
e2

0 � V � X 0ð1� X 0Þ:

ð21Þ

Thus, without considering the effect of grain boundaries,
the total elastic strain energy of a compositionally inhomo-
geneous system (with an average composition X0) is identi-
cal to that of a homogeneous solid solution having the
same composition, which is in accordance with the Crum
theorem.

2.3. Kinetics

The temporal evolution of the composition field X is
governed by the Cahn–Hilliard equation [56], and that of
the non-conserved order parameters gg by the Allen–Cahn
equation [57]. Taking into consideration the free energy
of the system given by Eq. (1), we obtain the kinetic
equations:

@X
@t
¼r�Mcr

@fchem

@X
�m �x �gþ@ehom

@X
þ@ecoh

@X
�jcr2X

� �
;

ð22Þ
@gg

@t
¼ �L ð1� m � X Þ � x � @g

@gg
þ @ehom

@gg
þ @ecoh

@gg
� jor2gg

� �
;

ð23Þ
where Mc is the interdiffusion mobility, L is the kinetic
coefficient related to grain boundary mobility, and t is time.
The derivatives of ehom and ecoh with respect to X or gg in
Eqs. (22) and (23) are obtained as follows using Eqs. (12)
and (17):

@ehom

@X ¼ 2l 1þm
1�m

� �
e2

cuð~rÞ
2ð1� 2X Þ;

@ecoh

@X ¼ �Cijkleel
ij ecdkluð~rÞ;

ð24Þ

and



Table 1
Simulation parameters.

Parameter Value

C11, C12, C44 118, 60, 29 GPa
X0 0.01
ec 0.00–0.08
jo 4.0 � 10�9 J m�1

jc 4.0 � 10�9 J m�1

x 1.14 � 109 J m�3

m 5.0
lo 1.0 � 109 J m�3

lo
h 1.0 � 109 J m�3

Mo
c 1.7 � 10�26–1.7 � 10�24 m5 J�1 s�1

L 0.36 � 10�5 m3 J�1 s�1

Dx 1 nm
Dt 0.56 � 10�4 s
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@ehom

@gg
¼ 2gg

@ehom

@/

� �
¼ 4ggl

1þ m
1� m

� �
e2

c

@ðu2Þ
@/

X ð1�X Þ;

@ecoh

@gg
¼ 2gg

@ecoh

@/

� �
¼�2ggCijkle

el
ij ecdklðX �X 0Þ

@u
@/

� �
; ð25Þ

where / ¼
P

gggð~rÞ
2.

The interdiffusion mobility Mc in Eq. (22) can be

expressed as D= @2fchem

@X 2

� �
, where D is the interdiffusion coef-

ficient and fchem is the chemical free energy defined in Eq.
(20). Ignoring the regular solution parameter and assuming
D to be constant, the composition-dependent mobility is
given as

Mc ¼
D

RT

� �
� X ð1� X Þ ¼ M0

c � X ð1� X Þ; ð26Þ

where the prefactor M0
c is equal to D/RT. To solve the

Cahn–Hilliard equation with the composition-dependent
interdiffusion mobility we use the numerical technique de-
scribed in Zhu et al. [58]. The governing equations (Eqs.
(22) and (23)) are solved using the semi-implicit Fourier
spectral method [58,59].
3. Results and discussion

First, we study the effects of strain energy on solute seg-
regation to a static grain boundary. The equilibrium solute
composition segregated at the grain boundary is compared
with the corresponding analytical solution. In the subse-
quent simulations the grain boundary is moved by applying
artificial driving forces to study the strain energy effect on
solute drag in grain boundary motion. We systematically
vary the magnitude of the driving force, misfit, and diffu-
sion mobility to study their effect on solute drag. The sim-
ulations are conducted using bicrystalline systems.
3.1. Simulation parameters

An elastically isotropic system is chosen for the simula-
tions for simplicity, although the model is applicable to
general, elastically anisotropic systems. The elastic moduli
of the system are taken to be C11 = 118 GPa,
C12 = 60 GPa, and C44 = 29 Gpa, which are close to those
of aluminum (Al), but the Zener anisotropy factor
Az(=2C44/(C11 � C12)) is equal to 1. The overall composi-
tion X0 of solutes is taken as 0.01 in all simulations. The
composition expansion coefficient or atomic size mis-
match e0 ranges from 0.00 to 0.08. For example, if we
consider Al (atomic radius 0.125 nm [60]) to be the host
material, the atomic size mismatch of Ni (0.135 nm [60])
or Cu (0.135 nm [60]) solutes is 0.08, that of Ga
(0.130 nm [60]) solutes is 0.04, and so on. The magnitude
of the eigenstrain due to the atomic size mismatch is
approximately equal to ecX0, whose value is of the order
of 10�4. Two different sizes of computational domains
were employed. The simulations of solute segregation to
a static grain boundary were carried out on
256Dx � 256Dx � 2Dx grids, where Dx is the grid size,
chosen to be 1 nm. However, longer computational
domains (2048Dx � 32Dx � 2Dx grids) were used to study
the solute drag effect on grain boundary migration. The
longer domains are used to ensure steady-state motion
of the grain boundary. The gradient energy coefficients
jo and jc associated with the grain order parameters
and composition field, respectively, are assumed to be
equal and to be 4.0 � 10�9 J m�1. The barrier height x
of the grain local free energy density was taken to be
1.14 � 109 J m�3. The equilibrium grain boundary energy
rgb is 0.82 J m�2 and the equilibrium grain boundary
width lgb is 12 nm. These values are reasonable for a gen-
eric high angle grain boundary. The parameter m describ-
ing the chemical interaction potential in Eq. (5) is chosen
to be 5.0. The chemical potentials of both solute atoms
(lo) and host atoms (lo

h) at standard state are assumed
to be 1.0 � 109 J m�3. The prefactor Mo

c of the interdiffu-
sion mobility Mcin Eq. (26) ranges from 1.7 � 10�26 to
1.7 � 10�24 m5 J�1 s�1, which corresponds to an interdif-
fusion coefficient D of 	1.0 � 10�13–1.0 � 10�11 cm2 s�1

through the relation D ¼ M0
cRT . The kinetic coefficient

L for the Allen–Cahn equation (Eq. (23)) is chosen to
be 0.36 � 10�5 m3 J�1 s�1, and the intrinsic mobility M0

of the grain boundary motion is calculated to be
1.76 � 10�14 m4 J�1 s�1 using the relation M0 = L � jo/
rgb[61]. We use the temperature T (=700 K) and the
molar volume Vm of Al (=10 cm3 mol�1) for unit
conversion. The time step Dt for integration is taken as
0.56 � 10�4 s. The physical parameters are summarized
in Table 1. The kinetic equations are solved in their
dimensionless forms. The parameters are normalized
by Dx
 ¼ Dx

l , Dt* = L cot E � Dt, x
 ¼ x
E, l
 ¼ l

E, f 
 ¼ f
E,

C
ij ¼
Cij

E , j
 ¼ j
E�l2, and M0


c ¼
M0

c

L�l2, where E is the
characteristic energy (taken to be 109 J m�3) and l is the
characteristic length (taken to be 2 nm). All the
simulations were conducted using periodic boundary
conditions.
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3.2. Strain energy effect on grain boundary segregation

Simulations were carried out on a simple bicrystal con-
taining a flat grain boundary. The equilibrium grain struc-
ture was first prepared without solute segregation using a
phase field simulation, and then the solute species was
allowed to segregate to the grain boundary by solving
Eqs. (22) and (23). A high diffusivity (1.0 � 10�11 cm2 s�1)
of the solute was used to rapidly achieve the equilibrium
state. The pure chemical part of the regular solution
parameter Xchemin Eq. (8) was set to 0 for simplicity. Since
there is neither curvature of the grain boundary nor an
external driving force for grain boundary motion, the grain
boundary remains stationary. In the simulations of grain
boundary segregation the gradient energy coefficient jc in
Fig. 1. Temporal evolution of (a) composition profile, (b) nondimensional
elastic strain energy density across a grain boundary, and (c) nondimen-
sional total elastic strain energy of the entire system when ec = 0.04 and
D = 1.0 � 10�11 cm2 s�1.
Eq. (1) was set to 0, thus reducing the Cahn–Hilliard equa-
tion (Eq. (22)) to a simple diffusion equation.

We chose a particular value of the compositional expan-
sion coefficient (ec = 0.04) to observe the change in elastic
strain energy as a function of solute segregation. The solute
composition at the grain boundary increases with time (see
Fig. 1a). The variation in non-dimensionalized elastic
strain energy density ((ehom + ecoh/E) across the grain
boundary is shown in Fig. 1b. Elastic strain energy density
inside the grains becomes relaxed with increasing solute
segregation to the boundary. As a result, the total non-
dimensional elastic strain energy of the entire system
(=
R

V[(ehom + ecoh)/E]dV) decreases with time (see
Fig. 1c). Thus the elastic strain energy reduction drives
the solute atoms to segregate to the grain boundary.

To quantitatively examine the effect of the elastic strain
energy on grain boundary segregation the solute composi-
tion at the grain boundary were monitored as a function of
the atomic size mismatch (ec) between the solute atoms and
host atoms. To compare the simulation results with the
analytical solution the simulations were conducted with ec

ranging from 0 to 0.08. Fig. 2a shows the equilibrium com-
position profile across the grain boundary with increasing
Fig. 2. (a) Equilibrium composition profile near a grain boundary with
atomic size mismatch (ec) ranging from 0.0 to 0.08 without compositional
gradient energy. (b) Comparison of equilibrium solute compositions at
the grain boundary as a function of atomic size mismatch obtained
from phase field simulations and analytical solutions when
D = 1.0 � 10�11 cm2 s�1.



Fig. 3. (a) Migration of a flat grain boundary with periodic boundary
conditions, (b) solute composition change at a grain boundary, and (c)
displacement of grain boundary location as a function of time.
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atomic mismatch (ec). The concentration of segregated sol-
ute increases with increasing ec, since larger solute atoms
prefer the grain boundary region to grain interior since
the elastic strain energy can be further relaxed at the grain
boundary. The analytical equation for obtaining the
equilibrium solute composition at the center of the grain
boundary (denoted by X eq

gb) is given by (see Appendix A
for derivation):

X eq
gb

1� X eq
gb

" #
¼ X eq

m

1� X eq
m

� 	
� exp

�Egb þ 2l 1þm
1�m

� �
e2

cð1� 2X 0Þ
RT

� �
; ð27Þ

where Egb (=�m � x � gGB) is the pure chemical interaction
potential at the center of the grain boundary. The equilib-
rium solute composition at the grain boundary obtained
from phase field simulations without the compositional
gradient energy contribution (marked with open squares)
agrees well with the corresponding analytical solution (rep-
resented by a dashed line), as shown in Fig. 2b. Solute
segregation with the compositional gradient energy
jc = 4 � 10�9 J m�1 was also simulated, and the degree
of grain boundary segregation in this case is slightly lower
than in the case without the gradient energy over the entire
range of atomic mismatch.

3.3. Effect of strain energy on solute drag

3.3.1. Steady-state grain boundary migration

All prior theoretical discussions of the solute drag effect
considered the steady-state motion of a grain boundary.
For instance, Cahn [1] assumed a constant velocity of the
migrating grain boundary to derive the drag force arising
from impurities. However, almost all the previous phase
field simulations have been carried out with circular grains
for curvature-driven grain boundary motion during which
the driving force for boundary motion increases with
shrinking grain size and is not steady state. Only a few sim-
ulations [48] have considered the migration of a flat grain
boundary by imposing constant velocities to achieve
steady-state motion of the boundary, which should be
determined before the simulations. A better evaluation of
the drag forces and comparison with analytical theories
can be obtained if the steady-state motion of grain bound-
aries is established naturally as a result of interactions
among possible factors under a given driving force. There-
fore, we employed a bicrystal containing a flat grain
boundary to achieve steady-state grain boundary motion
during a simulation. Since the flat boundary cannot move
by itself, we devised an additional energy term which pro-
vides the necessary driving force for grain boundary
motion, b � H(g2), where b is the magnitude of the driving
force for the motion and H(g2) is an interpolation function
of grain order parameter g2 (representing grain 2). The
function H is given as Hðg2Þ ¼ �2g3

2 þ 3g2
2 and has the fol-

lowing properties: (i) H(g2 = 0) = 0 and H(g2 = 1) = 1, (ii)
dH
dg2
jg2¼0;1 ¼ 0. Property (i) of the H function allows us to

assign an extra energy b only to grain 2 and property (ii)
prevents any artificial change in the equilibrium grain order
parameter values within the bulk of each grain. The energy
term b � H(g2) is added to the local free energy density,
which is an integrand of Eq. (1). The driving force for grain
boundary motion can be easily controlled by changing the
magnitude of b. Thus we can plug in the driving force cor-
responding to the curvature of the particular grain size we
are interested in. To examine the drag effect due to the pres-
ence of solute under given conditions the migrating grain
boundary shown in Fig. 3a is considered. We monitored
the location of the moving grain boundary and the solute
composition at the grain boundary as a function of time,
as shown in Fig. 3b and c, respectively. When the steady
state is established the velocity of grain boundary migra-
tion is measured from the slope of the displacement–time
plot using linear fitting.



Fig. 4. (a) Grain boundary velocity as a function of driving force without
solutes and its linear fitting, and (b) grain boundary migration velocity as
a function of driving force with solutes of D = 1.0 � 10�12 cm2 s�1 when
elastic strain effects are ignored and its comparison with theoretical
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3.3.2. Origin of elastic strain energy contribution to drag

force: theoretical assessment

Before conducting simulations we discuss the elastic
strain energy contribution to the drag force to provide a
better understanding of the simulation results. Basically,
the relation between the drag force Pdrag and the driving
force b is:

V gb ¼ M0½b� P drag�; ð28Þ
where M0 is the intrinsic mobility of the grain boundary
and Vgb is the migration velocity. Kim et al. [46] derived
the drag force from the kinetic equation assuming an
instantaneous steady state with a spherical coordinate sys-
tem, since they considered a spherical grain in their analy-
sis. Using a similar procedure we derived the drag force
exerted by the solute atoms on the migrating flat grain
boundary under a given constant driving force in a Carte-
sian coordinate system. The drag force is derived as (see
Appendix B for the derivation):

P drag ¼mx
Z þ1

�1
X � @g

@x

� �
dx

� 4ð1� 2X 0Þl
1þ m
1� m

� �Z þ1

�1
X � e0

@e0

@x

� �
dx; ð29Þ

Based on the functional form of the drag force in Eq.
(29) we can easily understand that the asymmetrical distri-
bution of solute composition across the moving grain
boundary is the key to a non-zero drag force, since @g

@x

� �
and e0

@e0

@x

� �
in the integrands are odd functions. The static

grain boundary generates a symmetrical distribution of sol-
ute composition across the boundary, and the drag force is
therefore equal to zero.

The first term in Eq. (29) is identical to Cahn’s expres-
sion for the drag force [1] using the definition
E = �m � x � g. One remarkable point of the derivation is
the existence of the second term in Eq. (29). Both the
atomic mismatch itself and its position dependency (or
grain structure dependency) contribute to the second term.
In other words, both the magnitude of misfit strain itself
and its relaxation near a grain boundary contribute to
the solute drag force. In our model we separate the interac-
tions between the solute and grain boundary into a pure
chemical interaction (E) and an elastic strain interaction.
Thus the first term accounts for the drag force due to the
pure chemical interaction and the second term describes
the drag force due to the elastic strain interaction. The
increase in atomic size mismatch inside the bulk (ec) would
induce enhanced grain boundary segregation, similar to the
equilibrium grain boundary segregation discussed above,
and cause a stronger drag force due to an increase in the
first term. At the same time, the increase in ec itself gives
rise to an enhancement of the drag force stemming from
the second term in Eq. (29), since e0

@e0

@x

� �
and @g

@x

� �
have

opposite signs. Therefore, the elastic strain energy contri-
bution to the solute drag effect is significant.
Employing the Cahn–Hilliard diffusion equation (Eq.
(22)), the drag force in Eq. (29) reduces to a simpler expres-
sion in terms of measurable variables such as grain bound-
ary migration velocity at steady state and diffusivity, given
as (see also Appendix B for the derivation):

P drag ¼ RTV gb

Z þ1

�1

ðX � X mÞ
Dð1� X Þ dx; ð30Þ

where Xm is the solute composition inside the grain. The
expression in Eq. (30) implicitly contains the contribution
from elastic strain interaction, while the expression for
the drag force in Eq. (29) explicitly shows the contribution
from the elastic strain.

3.3.3. Solute drag under different driving forces
Evaluation of the solute drag effect under several driving

forces for grain boundary motion will be useful because the
magnitude of the driving force in our model for the migra-
tion of a planar grain boundary corresponds to a particular
radius of a circular grain in the case of curvature-driven
grain boundary motion, as noted earlier. Thus a set of sim-
ulations under different levels of the driving force for
boundary motion will provide us with information regard-
ing the stability of the grain structure in terms of an aver-
age grain size. In addition, the dependency of the drag
predictions.



Fig. 5. (a) Grain boundary velocity with solutes with several atomic size
mismatches under different driving forces with D = 1.0 � 10�12 cm2 s�1,
and (b) reconstructed graph with the datasets from (a).
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force on atomic mismatch will give us guidelines for the
selection of solutes to suppress grain growth.

We first conducted simulations of the solute drag effect
in the absence of elastic strain energy. These simulations
provide us with a benchmark with which we can compare
the results of the drag effect when elastic strain interactions
are taken into consideration. As a reference, grain bound-
ary motion without solute was first simulated with a driv-
ing force varying from 0 to 0.02 in dimensionless units.
The velocity of the migrating grain boundary is propor-
tional to the driving force within this regime, as shown in
Fig. 4a. The grain boundary velocity Vgb as a function of
driving force b is fitted using the linear equation
Vgb = M0 � b to determine the intrinsic grain boundary
mobility M0 from the simulations. M0 is determined to
be 2.25 in dimensionless units. The value of the computa-
tionally measured intrinsic mobility is slightly (7%) smaller
than the value (2.42) calculated from the equilibrium grain
boundary energy rgb using the relation M0 = Ljo/rgb. This
is because the migrating grain boundary is in a non-equilib-
rium state under this driving force.

The grain boundary motion was then simulated in the
presence of solute under the same range of driving force
without taking into account the elastic strain energy. The
interdiffusivity D was chosen to be 1.0 � 10�12 cm2 s�1.
As shown in Fig. 4b, the velocity of the boundary motion
in this case shows a nonlinear behavior with increasing
driving force, and the rate of boundary migration is slower
than that of the previous case due to the solute drag effect.
We compared the simulation results with the theoretical
analysis by Cahn [1]. It should be noted that fully analyti-
cal calculation of the drag force under a given driving force
for grain boundary motion is not an easy task, in fact
almost impossible, since the velocity of grain boundary
migration and the solute segregation composition are inter-
dependent. Moreover, steady-state grain boundary motion
is achieved by iterative interactions between the grain
boundary velocity and the composition of the segregated
solute. One possible way is to assume one of the variables
for analytical calculation of the drag force. For example,
we need to assume the steady-state grain boundary velocity
and then calculate the composition profile across the grain
boundary based on the solution of the diffusion equation
for a moving grain boundary derived by Cahn [1]. With
the calculated composition profile and an assumed velocity
the drag force is calculated using either Eq. (29), (30).
However, without information on the steady-state grain
boundary velocity a pure analytical prediction of the drag
force is impossible. Instead, we computed the steady-state
composition profile by solving both the Cahn–Hilliard
and Allen–Cahn equations under a constant driving force.
It should be noted that this is the more natural way to
obtain the steady-state solute composition profile near a
migrating grain boundary, since the steady state is
automatically achieved after iterative interactions between
the solute composition profile and the migrating grain
boundary by solving these well-defined equations. The drag
force is then calculated using both Eqs. (29) and (30) as a
theoretical prediction in the absence of elastic interactions,
i.e. only the first term is employed in the case of Eq. (29).
Fig. 4b shows a comparison between the migration velocity
obtained from the simulations and those estimated analyt-
ically. It should be mentioned that Eq. (30) and the first
term of Eq. (29) give the same predicted results as shown
in Fig. 4b in the absence of the elastic strain energy. In
addition, the computationally measured velocities agree
well with the theoretically predicted ones in the low driving
force regime. There is a slight difference between measured
and predicted velocities in the high driving force regime.
The difference stems from the assumption of an equilibrium
grain boundary profile (Eq. (B6)) during migration. The
profile of the moving grain boundary shifts from equilib-
rium when the driving force is large. However, such a small
discrepancy is not significant for validation of the
simulations.

We next investigated the strain energy effects on solute
drag and compared our results with the analytical predic-
tion. The elastic modulus was assumed to be isotropic for
simplicity. The steady-state grain boundary velocities were
computationally measured under different levels of driving
force for boundary motion with increasing atomic size mis-
match (ec). To ensure the accuracy of the predictions from
the simulations 136 sets of simulations (17 different values
of mismatch under a particular driving force � 8 different
levels of driving force) were carried out. As shown in
Fig. 5a, the grain boundary velocity decreases as the mis-



Fig. 6. Total drag force as a function of driving force for grain boundary
motion. Chemical and elastic strain contributions to total drag force are
plotted in the case of ec = 0.08. The solute diffusivity is assumed to be
D = 1.0 � 10�12 cm2 s�1.
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match increases under any driving force, as expected from
the discussion in Section 3.3.2. When the magnitude of the
driving force is large, 0.0175 or 0.02, the grain boundary
velocities are insensitive to the atomic size mismatch. Thus
when the driving force is large enough the incorporation of
solute atoms with large atomic radii does not effectively
impede grain boundary motion. However, one can identify
a critical mismatch within the range we employed in our
simulations beyond which there is a sharp reduction in
grain boundary velocity in the low driving force regime
(b < 0.0150). For a better representation of the datasets
we also plotted grain boundary velocity as a function of
driving force for different levels of atomic size mismatch,
shown in Fig. 5b, using the same datasets as in Fig. 5a.
The plot shows the typical nonlinear behavior of a dragged
grain boundary velocity with increasing driving force. The
nonlinearity becomes significant with an increase in atomic
mismatch, and a discontinuous change in velocity with
increasing driving force becomes evident. For ec = 0.08
there is an abrupt increase in velocity when the magnitude
of the driving force is above 0.0125.

As discussed earlier, both chemical and elastic interac-
tions contribute to the drag force. We attempt to quantify
each contribution based on Eq. (29) using the case of
Fig. 7. (a) Grain boundary velocity for different solute diffusivities for a driv
(c) ec = 0.06.
ec = 0.08 as an example. Since the intrinsic grain boundary
mobility M0, driving force b, and the grain boundary veloc-
ity are known, the total drag force can be either
analytically estimated using Eq. (30) or computationally
measured from the simulations using Eq. (28). The
contribution from chemical interactions is calculated using
ing force b = 0.005, (b) composition profiles in the cases of ec = 0.02 and
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the first term in Eq. (29), and deducted from the measured
total drag force to calculate the contribution of elastic
strain. First, the computationally measured drag force
agrees well with that estimated analytically using Eq. (30)
(see Fig. 6). In the presence of elastic strain the drag force
calculated using Eq. (30) is significantly different from the
drag force calculated using the first term of Eq. (29), which
shows that Eq. (30) implicitly contains the elastic strain
contribution, as discussed above. We also observe that
the contribution of the elastic strain interaction to the total
drag force is comparable with that of the chemical interac-
tion, in this case from Fig. 6. Based on this comparison we
could confirm that the elastic strain interaction contribu-
tion to the total drag force is significant, as expected from
the theoretical analysis discussed in the previous section.

3.3.4. Effect of diffusivity on solute drag

One important factor that determines the drag force is
the diffusivity (or diffusion coefficient) of the solute species,
as shown in Eq. (30). Solute atoms with high diffusivity can
easily catch up with the migrating boundary, and the com-
position profile across the grain boundary can be close to a
symmetrical one, i.e. an equilibrium profile. Thus solute
atoms with high diffusivity will exert less drag force. On
the other hand, rapidly diffusing solute atoms can easily
Fig. 8. (a) Grain boundary velocity for different solute diffusivities for a driv
(c) ec = 0.07.
simultaneously segregate to a moving grain boundary. This
will lead to an increase in the solute composition near the
grain boundary, which, in turn, will cause an increase in
the drag force. Solute atoms with low diffusivity will exhibit
the opposite tendency. Therefore, we expect that there
should be an optimum diffusivity of the solute which results
in a maximum solute drag force in grain boundary motion.
When elastic interactions are also considered the correla-
tion between solute composition and the grain boundary
migration velocity becomes more complicated. Thus it is
more obvious that a computational approach is required
to specify the optimum conditions for the maximum drag
force.

We conducted simulations with different values of diffu-
sivity and atomic size mismatch under a fixed driving force
for grain boundary motion. The magnitudes of driving
force for grain boundary motion were chosen to be 0.005
or 0.01 in dimensionless units. The diffusivities range from
1.0 � 10�13 to 1.0 � 10�11 cm2 s�1. Figs. 7a and 8a show
the computationally measured velocities for different solute
diffusivities as a function of mismatch when b = 0.005 and
b = 0.01, respectively. In addition, the composition profiles
for the cases of ec = 0.02 and ec = 0.06 when b = 0.005 are
shown in Fig. 7b and c, and those for the cases of ec = 0.03
and ec = 0.07 when b = 0.01 are shown in Fig. 8b and c.
ing force b = 0.010, (b) composition profiles in the cases of ec = 0.03 and
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We observe a wide spectrum of grain boundary velocities
depending on diffusivity as well as the atomic size mis-
match, even though the same driving force is applied as
shown in Figs. 7a and 8a. This implies that the change in
either diffusivity or size mismatch is an effective way to
control the grain boundary migration rate. Moreover,
when the atomic size mismatch is larger, the migration
velocity of the boundary is more sensitive to the solute dif-
fusivity for both driving forces.

It should be noted that the drag force depends on a
complicated interplay between the atomic size mismatch
and solute diffusivity for a given driving force. In the case
of the lowest diffusivity (1.0 � 10�13 cm2 s�1) very small
number of solute atoms segregate to the migrating grain
boundary, since few solute atoms cannot catch up with
the moving boundary. The drag effect is insignificant under
both driving forces (b = 0.005 and 0.01), and the depen-
dency of the velocity on the atomic size mismatch is very
slight. On the other hand, a remarkable tendency of the
boundary velocity is observed (Figs. 7 and 8) as the diffu-
sivity increases. Let us consider the case where the magni-
tude of the driving force b = 0.005 and the mismatch
ec = 0.02 (marked by a vertical line in Fig. 7a). Under these
conditions the solute with diffusivity D = 1.0 �
10�12 cm2 s�1 results in the strongest drag force. Even
though more solute atoms segregate to the grain boundary
when the solute diffusivity is higher (1.0 � 10�11 and
5.0 � 10�12 cm2 s�1) the drag is less effective, since the fast
diffusing solute atoms keep pace with the migrating grain
boundary and the composition profile becomes more sym-
metrical. However, the reason for the smaller drag force
when the diffusivity is low (D = 5.0 � 10�13 cm2 s�1) is dif-
ferent from the cases with high solute diffusivity. With a
significantly lower solute diffusivity the relatively slow dif-
fusion causes less solute segregation to the moving grain
boundary and such a small number of solute atoms cannot
effectively suppress boundary motion. When the mismatch
is larger than 0.04 the optimum diffusivity for the strongest
drag force is, however, different from that of the above
case. The strongest drag force is achieved for D = 5.0 �
10�13 cm2 s�1. Even the smallest amount of solute exerts
a very strong drag force within this regime, as shown in
Fig. 7c. When the magnitude of the driving force is chan-
ged (e.g. b = 0.01) the optimum condition for maximum
drag force changes. For example, solute atoms with a size
mismatch of 0.03 suppress boundary motion most effec-
tively when D = 5.0 � 10�12 cm2 s�1, but a solute with a
mismatch of 0.07 gives the strongest drag force when
D = 1.0 � 10�12 cm2 s�1 (see Fig. 8a).

One interesting feature is observed in Fig. 8a and b.
Significantly different amounts of solute segregation result
in similar drag forces. For example, when the size mismatch
is 0.03 the grain boundary velocities (as well as the drag
forces) for D = 1.0 � 10�11 and 1.0 � 10�12 cm2 s�1 are very
similar to each other, although much larger numbers of
solute atoms segregate to the grain boundary when
D = 1.0 � 10�11 cm2 s�1, as shown in Fig. 8b. The faster dif-
fusion of solute atoms enables them to easily catch up with
the migrating grain boundary even though a large number
of solute atoms segregate to the moving grain boundary in
the case of D = 1.0 � 10�11 cm2 s�1. On the other hand,
the small number of segregated solute atoms effectively drags
the boundary migration in the case of slow diffusion
(D = 1.0 � 10�12 cm2 s�1), since a more asymmetrical com-
position profile is achieved. As a result, totally different
amounts of grain boundary segregation give rise to the same
resultant velocities. In other words, the determining factors
for the same drag forces for these two cases are different.
4. Summary

We revisited Cahn’s impurity drag theory [1] with an
emphasis on the contribution of the elastic strain energy
to the drag force. We successfully modeled and the elastic
strain energy of a polycrystalline solid solution and incor-
porated it into a phase field model for the quantitative
study of grain boundary segregation and solute drag effects
on grain boundary motion. Solute segregation to a grain
boundary was simulated by taking into account the contri-
bution of elastic strain energy, and the results compared
with analytical predictions. The effect of elastic strain
energy on solute drag in grain boundary motion was theo-
retically analyzed based on Cahn’s theory. The theoretical
analysis reveals that the drag force is influenced by both
chemical and elastic strain interactions. The chemical inter-
actions include the degree of grain boundary segregation as
well as the asymmetry of the solute composition profile
across the grain boundary. The elastic strain interaction
is associated with the misfit strain relaxation near the grain
boundary. We quantitatively analyzed the effects of these
interactions. Our simulation results show that the grain
boundary velocity depends strongly on the solute diffusiv-
ity as well as the atomic size mismatch under a given driv-
ing force for grain boundary migration. In addition, the
velocity becomes more sensitive to solute diffusivity when
the solute atoms have a larger size mismatch. We should
emphasize that the grain boundary migration rate in the
presence of solute is determined by different mechanisms
under different conditions. In addition, there exists an opti-
mum condition of solute diffusivity which results in the
strongest drag effect on grain boundary motion. The opti-
mum conditions for maximum drag force under given
parameters were identified using computer simulations. It
is expected that the model provides us with guidelines in
terms of atomic size of solute and diffusivity to maximize
the drag force and arrest grain growth in polycrystalline
materials.
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Appendix A: Equilibrium composition profile of grain

boundary segregation

Let us consider a polycrystalline binary alloy. The bin-
ary solid solution is in thermodynamic equilibrium when
@f
@X ð¼ l� lhÞ becomes constant everywhere in the polycrys-
tal. To determine the equilibrium composition of solute at
the center of the grain boundary the following relation
should be satisfied:

@f
@X
j~ratGB ¼

@f
@X
j~rat Bulk; ðA1Þ

where f ¼ loX þ lo
hð1� X Þ þ RT ½X ln X þ ð1� X Þ

lnð1�X Þ� þ ð1� mX Þ � x � g þ ehom þ ecoh.
Therefore,

lo � lo
h þ RT ln

X eq
gb

1� X eq
gp

� m � x � gGB

¼ lo � lo
h þ RT ln

X eq
m

1� X eq
m

þ @ebulk
hom

@X
þ @ebulk

coh

@X
: ðA2Þ

Using the homogeneous and isotropic modulus approxima-
tion (Eqs. (12) and (18)), Eq. (A2) becomes

lo � lo
h þ RT ln

X eq
gb

1� X eq
gb

� m � x � gGB

¼ lo � lo
h þ RT ln

X eq
m

1� X eq
m

þ 2l
1þ m
1� m

� �
e2

cð1� 2X 0Þ:

ðA3Þ

Rearranging Eq. (A3) we obtain the analytical
expression

X eq
gb

1� X eq
gb

" #
¼ X eq

m

1� X eq
m

� 	
� exp

�Egb þ 2l 1þm
1�m

� �
e2

cð1� 2X 0Þ
RT

� �
:

ðA4Þ
where Egb is defined as [�m � x � gGB].
Appendix B: Drag force expression with D and Vgb

Let us consider a bicrystal consisting of grains 1 and 2.
With the driving force term (b � H(g2)) and elastic strain
energies of the isotropic elastic modulus approximation
(Eqs. (12) and (18)) the Allen–Cahn relaxation equations
for g1 and g2 in Eq. (23) become

@g1

@t
¼� L xð1� mX Þ @g

@g1

� jo
@2g1

@x2

�

þ 4l
1þ v
1� v

� �
e0

@e0

@g1

X ð1� X Þ

þ4l
1þ v
1� v

� �
e0

@e0

@g1

ðX � X 0Þ2
�
;

@g2

@t
¼� L xð1� mX Þ @g

@g2

� jo
@2g2

@x2
þ b

@H
@g2

� ��

þ 4l
1þ m
1� m

� �
e0

@e0

@g2

X ð1� X Þ

þ4l
1þ m
1� m

� �
e0

@e0

@g2

ðX � X 0Þ2
�
: ðB1Þ

If the boundary moves along the direction perpendicular
to itself (x direction) with a constant velocity Vgb the fol-
lowing equations are satisfied:

� L xð1� mX Þ @g
@g1

� jo
@2g1

@x2

�

þ4l
1þ m
1� m

� �
e0

@e0

@g1

ðX � 2X 0X þ X 2
0Þ
�
¼ �V gb

@g1

@x
;

� L xð1� mX Þ @g
@g2

� jo
@2g2

@x2
þ b

@H
@g2

� ��

þ4l
1þ m
1� m

� �
e0

@e0

@g2

ðX � 2X 0X þ X 2
0Þ

2

�
¼ �V gb

@g2

@x
:

ðB2Þ

Multiplying @g1

@x

� �
in the first equation and @g2

@x

� �
in the

second equation of Eq. (B2) and adding two equations
we obtain

xð1� mX Þ @g
@g1

� dg1

dx
þ @g
@g2

� @g2

@x

� 	

� jo
@2g1

@x2
� @g1

@x
þ @

2g2
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@x
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þ b

@H
@g2

� @g2

@x
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1þ m
1� m

� �
e0ðxÞ
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� 2X 0X þ X 2
0Þ

¼ V gb

L
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� �2
" #

: ðB3Þ

Therefore, we have

xð1� mX Þ @g
@x
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: ðB4Þ

Integrating both sides of the equation with respect to x

the equation becomes

� mx
Z þ1

�1
X

@g
@x

� �
dx� jo

Z þ1

�1
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� @g1
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� ðX � 2X 0X þ X 2
0Þdx

¼ V gb

L

Z þ1

�1

@g1

@x

� �2

þ @g2

@x

� �2
" #

dx: ðB5Þ

Applying the integration
Rþ1
�1 ½

@2g1

@x2 � @g1

@x þ
@2g2

@x2 � @g2

@x �dx ¼ 0

and
Rþ1
�1

@H
@x dx ¼ 1 and the following approximation with

an equilibrium order parameter assumption:

jo

Z þ1

�1

@g1

@x

� �2

þ @g2

@x

� �2
" #

dx � rgb; ðB6Þ

where rgb is the grain boundary energy, to Eq. (B5) we ob-
tain the relation:

V gb ¼M0 b� mx
Z þ1

�1
X

@g
@x

� �
dx

�

þ4l
1þ m
1� m

� �Z þ1

�1
e0

@e0

@x

� �
ðX � 2X 0X þ X 2

0Þdx
	
;

ðB7Þ

where M0 is the intrinsic mobility of the grain boundary
motion and is defined as Ljo/rgb as discussed above. We
can readily induce expression of the drag force if we com-
pare Eq. (B7) with Eq. (28). Hence, the drag force is given
by

P drag ¼mx
Z þ1

�1
X

@g
@x

� �
dx

� 4l
1þ m
1� m

� �Z þ1

�1
e0

@e0

@x

� �
ðX � 2X 0X þ X 2

0Þdx:

ðB8Þ

Moreover, if we assume that e0 is symmetrical across the
grain boundary, the drag force expression becomes simpler
as

P drag ¼ mx
Z þ1

�1
X

@g
@x

� �
dx

� 4ð1� 2X 0Þl
1þ m
1� m

� �Z þ1

�1
e0

@e0

@x

� �
dx; ðB9Þ

since the integration
Rþ1
�1 e0

@e0

@x

� �
dx is equal to zero.

Following a similar procedure to that discussed in Kim
and Park [46], the Cahn–Hilliard equation (Eq. (22)) in a
one-dimensional system with an isotropic elastic modulus
approximation is employed as another expression of drag
force. The Cahn–Hilliard equation becomes

@X
@t
¼ @
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Mc

@

@x
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� m � x � g þ 2l

1þ m
1� m

� �
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��

�jc
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��
: ðB10Þ

With a grain boundary moving at a constant velocity
Vgb the following relation is satisfied:
@

@x
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Integrating both sides with respect to x we have
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Rearranging Eq. (B12) using Eq. (26) we obtain
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Plugging Eq. (B13) into Eq. (B9) the drag force becomes
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Applying the integrations
Rþ1
�1 X @

@x
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� �
dx ¼ 0 andRþ1

�1 X @3X
@x3

� �
dx ¼ 0 the following expression is obtained:
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