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Incorporating diffuse-interface nuclei in phase-field simulations
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We propose a computational framework for incorporating diffuse-interface critical nuclei in phase-field simulations. Using a
structural transformation as an example, we first generate a table of diffuse-interface critical nuclei. We then incorporate them in
phase-field simulations through the explicit nucleation algorithm. The temporal growth kinetics of the introduced nuclei is obtained
by numerically solving the Allen–Cahn equation. The results are analyzed by comparing to the phase transformation kinetics using
the classical nucleation and normal growth theory and the Kolmogorov–Johnson–Mehl–Avrami equation.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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The phase-field method has been used to model
microstructure evolution for many different materials
processes [1–6]. In most phase-field simulations, the
phase-field equations are deterministic with the evolution
of the phase-field variables being driven by the reduction
in the total free energy of an inhomogeneous system.
However, many of the materials processes such as phase
transformations take place through a nucleation and
growth process so that it is crucial to effectively simulate
such a process within the phase-field framework. Existing
approaches of treating nucleation in phase-field method
can be separated into two types, one being the introduc-
tion of Langevin noise [7,8] and the other the explicit
nucleation method [9,10]. In the Langevin noise method,
stochastic phase-field equations are solved. The method
works well when the initial state is not too far away from
the instability temperature or composition with respect to
its transformation to the new state, i.e., the metastability
of the parent phase is small. It is very difficult to induce
nucleation events if a system is highly metastable unless
the amplitude of noise is unrealistically large; moreover,
the number of particles nucleated also depends on the
amplitude and spatial correlation of the noise [11–14].
On the other hand, the explicit nucleation method is based
on the classical nucleation theory [15] and Poisson seeding
[16–18]. In this method, the critical size and critical free
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energy of formation of a nucleus are determined using
the classical nucleation theory which assumes homoge-
neous properties within a critical nucleus and a sharp-
interface between a nucleus and matrix. Whether or not
a critical nucleus is introduced at a given location is deter-
mined by comparing a random number between 0.0 and
1.0 with the probability of nucleation. There are two main
drawbacks of this approach. One is related to the conser-
vation of mass for phase transformations involving com-
position changes. Since the composition of a new phase
particle is different from the parent phase, the addition
of a critical nucleus alters the overall composition. To
conserve the overall composition, removal of solute
atoms around an embedded nucleus is necessary. The sec-
ond drawback has to do with the sharp-interface descrip-
tion between a critical nucleus and the parent matrix.
Because of the diffuse-interface nature of phase-field
method, introduction of a nucleus with sharp-interfaces
requires relaxation from the highly non-equilibrium
sharp-interface to the diffuse-interface dictated by the
thermodynamics of the system. This can introduce arti-
facts in the kinetics of evolution during the nucleation
stage.

In this work, we propose a new approach to treat
nucleation in phase-field simulations which combines
diffuse-interface theory of nucleation [19–21] with Pois-
son seeding. We first obtain the diffuse-interface critical
profiles [22–25] employing either the minimax varia-
tional approach [26,27] or the constrained string method
[28,29]. We then use the explicit nucleation process [9,10]
for introducing critical nuclei in phase-field simulations.
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Using the new approach, we predicted the morphologi-
cal evolution and the kinetics for a phase transformation
via homogeneous nucleation and normal growth. A sim-
ilar approach was previously discussed in [30].

As a first attempt to implement diffuse-interface critical
nuclei, we considered the simple case of structural trans-
formation without compositional change in a two-dimen-
sional system as an illustration. Following the studies in
Refs. [22–25], our approach can be extended to include
the contributions of the elastic energy, interfacial energy
anisotropy effects, and composition change. The struc-
tural difference between the parent phase and the new
phase is described by a single non-conserved order param-
eter g. The total free energy F is given by

F ¼
R

X f ðgÞ þ jo
2
ð ~rgÞ2

� �
d~r [19], where f is the local free

energy density, jo is the gradient energy coefficient, and
X represents the volume of the whole system.

We chose a simple double-well potential

f ðgÞ ¼ ðg2�1Þ2
4
þ 3

4
k g3

3
� g

� �
for the local free energy den-

sity to describe the structural phase transformation.
The bulk driving force for the phase transformation

from the g ¼ �1 state to g ¼ þ1 state is equal to k.
The increase of the total free energy caused by the order
parameter fluctuation in an initial homogeneous state

with g0 is given by DF ¼
R

X Df ðgÞ þ jo
2
ð ~rgÞ2

� �
d~r, where

Df ðgÞ ¼ f ðgÞ � f ðg0Þ. The critical nucleus is the order
parameter fluctuation which has the total energy at the
saddle point. In order to obtain the critical profiles
describing a critical nucleus, we employed the minimax
technique (see the details in Refs. [22–24]). The nuclei
were generated numerically on a square domain discret-
ized by a 64Dx � 64Dx square grid which provided suf-
ficient spatial resolution. The grid size is Dx = 0.03, and
the gradient energy coefficient, jo = 0.006. The initial
order parameter value for the parent phase was chosen
to be �1. We computed critical nucleus profiles at differ-
ent values of driving forces. Some examples of the criti-
cal profiles are shown in Figure 1a and b. The critical
nucleation energy (DG*) as a function of driving force
is plotted in Figure 1c. As expected, the size of critical
nuclei and the critical nucleation energy decrease with
the increase of the driving force. The critical nucleation
energy is non-dimensionalized by kBT where kB is the
Boltzman constant and T is the absolute temperature.
The calculated diffuse-interface critical nucleation en-
ergy (DG*) was compared with that from the classical
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Figure 1. (a) Planar order parameter profiles of some examples of
diffuse-interface critical nuclei, (b) their cross sections, and (c) the
critical nucleation energy (DG*) as a function of driving force (k).
nucleation theory [15] DG� ¼ pr2

k , where r is the specific
interfacial energy. The interfacial energy was calculated
by the integration of excess energy across the interface
when k is equal to zero [19]

r ¼
Z þ1

�1
Df ðgÞ þ jo

2
ð ~rgÞ2

� �
dx: ð1Þ

The calculated interfacial energy (r) is 7.3 � 10�2. As
shown in Figure 1c, there is no significant difference in
the calculated critical energy between the classical and
the diffuse-interface nucleation theory.

We added one critical nucleus (with k = 0.1172) to
evaluate the growth kinetics of a single nucleus. The crit-
ical nucleus was embedded at the center of a square do-
main with 128Dx � 128Dx grids. As shown in Figure 2a,
the order parameter profile in the square area within the
dashed line was replaced by that in the square domain
(with 64Dx � 64Dx grids) containing the critical nucleus.
The cross-section profiles of the order parameter before
and after the addition of a nucleus were plotted in
Figure 2b.

The temporal evolution of order parameter was ob-
tained using the Allen–Cahn equation [31]:

@gð~r; tÞ
@t

¼ �L
dF

dgð~r; tÞ

� �
; ð2Þ

where L is the kinetic coefficient related to interfacial

mobility, t is time, and dF
dg

� �
is the variation of the free

energy function with respect to the order parameter.
The equations were solved by employing the finite differ-
ence method.

The values for Dx and jo are the same as those for
generating the critical nuclei. The time step Dt was cho-
sen to be 0.002, and L was 2.0. The particle growth is
shown in Figure 3a. The radius of the growing particle
as a function of time step was plotted in open circles
in Figure 3b. The radius was calculated from the area
of the transformed phase. The area of the transformed
phase was obtained by counting the number of grid
points having the order parameter value greater than
zero. The growth rate increases as the particle grows
due to the decrease of the Gibbs–Thomson effect with-
out the change of k. In order to elucidate the contribu-
tions of curvature and the driving force for phase
transformation to the growth rate, we compare the
kinetics of single diffuse-interface nucleus growth with
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Figure 2. (a) The addition of a single diffuse-interface critical nucleus
generated in a 64Dx � 64Dx square domain to 128Dx � 128Dx

domain, and (b) the cross section of the order parameter profiles
before and after the addition of a diffuse-interface critical nucleus.
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Figure 3. The temporal evolution of single nucleus growth. (a) The
morphologies of the growing particle are at 700, 39,000, 62,400, and
78,000 time steps, and (b) the radius of the single growing particle as a
function of time step.
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Figure 4. The temporal evolution of multiple nucleation events and
growth. (a) The morphologies of growing particles are at 50,000,
80,000, 100,000, and 150,000 time steps, and (b) the area fraction of
transformed phase as a function of time step.
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that of single classical (sharp-interface) nucleus growth.
In the case of the sharp-interface description for the
growth of the nucleus, both the Gibbs–Thomson effect

r
r

� �
and the driving force for phase transformation

(Dg) have to be explicitly included:

dR
dt
¼ Mr � Dg � r

R

� �
; ð3Þ

where R is the radius of the growing particle, t is time,
Mr is the mobility for the interface migration, Dg is
the driving force for phase transformation, and r is
the interfacial energy. Mr and L are related by
Mr ¼ j�L

r : [32].
The analytic equation for the relation between R and

t can be obtained from Eq. (3) as the following:

1

Dg
ðR� R0Þ þ

r
Dg2

ln
Dg � R� r
Dg � R0 � r

� 	
¼ Mr � t; ð4Þ

where R0 is the initial radius of the particle. The values
of R as a function of t from Eq. (4) are shown in a solid
line in Figure 3b.

The differential equation (Eq. (3)) was also numeri-
cally solved to obtain the radius of the particle as a func-
tion of time. The explicit Euler scheme was employed to
solve Eq. (3) as follows:

rniþ1 ¼ rni þ Dt �Mr

Dx
Dg � r

rni � Dx

� �
; ð5Þ

where Dx is the spatial grid size, Dt is the time interval, and
rni is the radius in a discretized system (i.e., R ¼ rn � Dx) at
time step i. The values of Dx and Dt were taken to be the
same as those in the phase-field simulation of diffuse-
interface nucleus growth. The same interfacial energy
(r) was taken as that of the diffuse-interface calculated
by Eq. (1).

The result from Eq. (5) was plotted in open squares in
Figure 3b. First of all, the results numerically computed
from Eq. (5) agree with the analytic equation (Eq. (4)).
In addition, the agreement between the phase-field sim-
ulation result and results from Eq. (5) indicates that the
Gibbs–Thomson effect was properly taken into account
in the growth of diffuse-interface nucleus in the phase-
field simulations.

The multiple nucleation events were conducted by the
explicit nucleation algorithm developed by Simmons
et al. [9,10]. We considered a 1024Dx � 1024Dx square
grid. First, one of 64Dx � 64Dx square phase-field cells
is randomly chosen by determining the middle point
location of the phase-field cell in the whole domain using
the uniformly distributed random numbers as a nucle-
ation site. Given nucleation rate I, the nucleation prob-
ability P is given by P ¼ 1� expð�I � DtÞ, where Dt is
the time interval between time steps. At the same time,
a uniformly distributed random number between 0 and
1 is generated. If the probability is greater than the ran-
dom number, a nucleus is added at the cell. The nucle-
ation rate I is I ¼ I0 expð�DG�Þ, where I0 is the
prefactor and DG* is the critical nucleation energy.

To avoid nucleation on the cells which are already
transformed, the chosen 64Dx � 64Dx cell for the poten-
tial nucleation is scanned. If any transformed grid points
are found, the nucleation is not allowed to happen. The
nucleation algorithm was implemented for every single
time step. The driving force for the phase transformation
between two states at g ¼ �1 was chosen to be 0.1172. The
prefactor (I0) for the nucleation rate was chosen to be 0.5,
which leads to a nucleation rate of the order of 10�7.

The temporal evolution of nucleation and growth
process is shown in Figure 4a. The area fraction of the
transformed phase as a function of time step is plotted
in solid squares in Figure 4b. The area fraction was cal-
culated by counting the number of grid points having
the order parameter value greater than zero. We com-
pared the simulation result with the Kolmogorov–
Johnson–Mehl–Avrami (KJMA) equation f ðtÞ ¼ 1�
expðX eðtÞÞ, [33–37] where f(t) is the area fraction of
the transformed phase at time t, and Xe(t) is the ex-
tended area fraction of the transformed phase at time
t. If the nucleation and growth rates are constant, the
KJMA equation in two dimensions becomes a simple
form as the following:

f ðtÞ ¼ 1� exp � p � I � u2

3
t3

� �
; ð6Þ

where I is the nucleation rate, u is the growth rate, and t is
time. However, the growth rate is not constant as shown
in the simulation of single nucleus growth in Figure 3b.
Thus, Eq. (6) cannot be directly applied. The analytical
form of the KJMA equation for the varying growth rate
is generally not available except for simple time-depen-
dences of the growth rates. Thus, we resort to numerical
calculations. In the numerical scheme is expressed as
f ðiÞ ¼ 1� expðX eðiÞÞ, where f(i) is the area fraction of
the transformed phase at time step i, and Xe(i) is the
extended area fraction of the transformed phase at time
step i. According to the KJMA interpretation, the differ-
ence in the area fraction of the transformed phase between
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time step i and i + 1, is the summation of newly nucleated
phase area fraction at time step i and the area fraction in-
crease of existing transformed phase at time step i. At time
step i, there exist nuclei with different radii. The radii
include rnk (k = 0, . . . , (i � 1)) where rnk is the radius of
a nucleus which is nucleated at time step (i � k) and grows
for k time intervals. For instance, rn5 is the radius of a
nucleus taking place at time step (i � 5) and growing for
five time intervals. During one time interval, all the nuclei
grow from the nuclei of rnk to those of rnk+1 as well as new
nuclei of radii rn0 take place. Thus, the recurrence relation
for Xe(i) can be constructed as the following:

X eðiþ1Þ¼X eðiÞþ
I �Dt�p�ðrn0DxÞ2þI �Dt�p

Pi�1

k¼0
ððrnkþ1DxÞ2�ðrnkDxÞ2Þ


 �
ðNxDxÞ�ðNyDxÞ

¼X eðiÞþ I �Dt�p�ðrniDxÞ2
ðNxDxÞ�ðNyDxÞ

ð7Þ
where I is the nucleation rate, Dx is the spatial grid size, Nx

(=1024) is the total number of grid points along x direc-
tion, Ny (=1024) is the total number of grid points along
y direction, and Dt is the time interval. The radius of nu-
cleus at time step i (rni) can be obtained by the same
scheme as Eq. (5). The area fraction of transformed phase
as a function of time step calculated by the recurrence
relation is plotted in open circles in Figure 4b. For com-
parison, the area fraction of transformed phase when
the growth rate is constant (without including the
Gibbs–Thomson effect in KJMA equation is plotted in
open squares in Figure 4b. In the case of fixed growth rate
in Figure 4b, the state at g = �1 is transformed to g = +1
faster than the case of variable growth rate. This is be-
cause the initial growth rate of a single nucleus is slower
due to the Gibbs–Thomson effect.

The phase-field simulation result in Figure 4b agrees
well with that from the recurrence relation except at later
stages during which impingement takes place. In the
KJMA equation, the impingement is considered simply
by the interference factor (1 � X) where X is the trans-
formed volume fraction. On the other hand, the impinge-
ment among the growing particles is more complicated.
For instance, the particles are deformed in order to reduce
the interfacial energy when two particles are close to each
other. The phase-field simulation implicitly considers all
the effects taking place in the impingement process. For
example, at the time step 50,000 (Fig. 4a), there are few
impingements. However, a number of impingements take
place after approximately 100,000 time steps.

In summary, a procedure of incorporating diffuse-
interface nuclei into phase-field simulations is proposed
in this work. The diffuse-interface profiles are generated
using the minimax technique, and nuclei are incorporated
using Poisson seeding. Nucleation and growth of both a
single particle and multi-particles are studied. The critical
profiles are compatible with the diffusion description of
interfaces in phase-field simulations. The transformation
kinetics obtained from the phase-field simulations are in
good agreement with traditional theory of particle growth
and the KJMA equation. Although illustrative example is
on structural transformations, it is also applicable to
nucleation and growth involving composition changes
and the critical nuclei will automatically satisfy the mass
conservation condition. Therefore, the proposed compu-
tational procedure is expected to be applicable to any
phase transformations and microstructure evolution via
nucleation and growth.
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