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a b s t r a c t

In order to continue the performance enhancement of Si-based semiconductor devices, the number of

devices on a chip as well as the performance of those devices must continue to improve. One method for

improving device functionality is the incorporation of strained Si–Ge heterostructures. While such

heterostructures have been the focus of much research in planar Si processing, only recently has the

fabrication of a Si–Ge radial nanowire heterostructure requires a consideration of the epitaxial stability

of the shell on the underlying core nanowire. This work develops a model for the strain state of a radial

nanowire heterostructure, focusing on the particular example of Si–Ge. The behavior of the radial

nanowire heterostructure is compared to that of a planar heterostructure, and we find that much higher

strains can be achieved in the nanowire geometry.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

The reliable and controlled fabrication of semiconductor
heterostructures has for decades made possible the development
of many new devices as well as improvements in speed in existing
devices [1]. More recently, the ability to synthesize semiconductor
nanowires has opened the door for many novel devices in which
the advantages of heterostructures can be incorporated into
nanoscale devices. It has been shown that axial heterostructure
nanowires can be grown, in which the composition of the nanowire
is changed during growth [2–4]. Such devices have great potential
in optical and electronic applications in which quantum confine-
ment leads to behavior differing from the bulk. In addition to axial
heterostructures, radial heterostructures hold great promise for
many unique devices, such as nanowire FETs and nanoscale optical
cavities [4]. Several groups have devised methods of making these
radial core–shell heterostructures [3–6], but the exact limitations
on epitaxial growth have not been fully explored.

One critical feature of these nanoscale heterostructures is the
quality of the interface. As is true for conventional planar
heterostructures, it is desirable to produce epitaxial, or fully
ll rights reserved.
coherent, layers without interfacial defects. Much work has been
done on epitaxial thin films grown on planar substrates to
determine conditions for epitaxial growth without defects [7,8].
The two layers will, in general, have different lattice parameters,
thus introducing a coherency strain in an epitaxial system. In
planar films, the strain energy can be relieved by bending (in the
case of thin substrates) [9], by the introduction of misfit
dislocations at the interface [8], or by a transition from 2D film
growth to 3D island growth (i.e. Stranski–Krastanow growth)
[10,11]. In systems in which bending is not possible, there exists a
critical film thickness above which perfect 2D epitaxy fails, and
any devices using such a heterostructure may lose functionality
[7]. If one uses thin enough substrates, however, this critical
thickness can be increased by allowing the substrate and the film
to partition the strain energy [12,13].

Epitaxial lattice-mismatched structures also provide an op-
portunity to control the strain state of the system. Tensile-strained
silicon grown on a SixGe1�x layer has been shown to exhibit a
sizeable electron mobility increase relative to bulk Si [14,15], and
compressively strained SixGe1�x structures grown on a Si
substrate have been shown to exhibit a higher hole mobility
relative to bulk [16,17]. Similarly in nanowires, by judicious
selection of the core and shell compositions as well as the
thickness, it may be possible to engineer the strain state of a
nanowire to achieve similar mobility increases.

www.sciencedirect.com/science/journal/crys
www.elsevier.com/locate/jcrysgro
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Fig. 1. Schematic of a (a) core–shell structure and a (b) thin film, substrate

structure with coordinate axes defined.
Fig. 2. Representation of a two-step process from (a) the initial state to (b) the

reference state and finally to (c) the final epitaxial state.
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The purpose of this paper is to develop an elasticity model for
studying the behavior of core–shell nanowires and to compare the
results with the known behavior of the planar system. The distinct
geometries of the two systems (see Fig. 1) lead to profound
differences in the limitations and behavior of epitaxy in the two
systems. Based on the previous work on Si–SixGe1�x planar
systems, particular attention will be paid to the Si–SixGe1�x

core–shell nanowire system.
2. The model

The development of the elasticity model closely follows the
work by Warwick and Clyne [18] in their consideration of the
mismatch in thermal expansion in concentric fibers. We ignore
facets at the interface assuming the interface is cylindrical, thus
allowing the development of the model in cylindrical coordinates.
It is recognized, however, that in actual nanowires faceting can
occur and more complex models would need to be developed to
understand the role of this faceting.

This section develops the model used to determine the strain
state of the system. After the model has been described
mathematically, it is utilized to solve analytically for the strain
state of the core–shell system (for definitions of the dimensions
used, Q, R, S, L, refer to Fig. 1a). As a note on the mathematical
symbols used, a superscript denotes the layer (c for core and s for
shell), and a subscript denotes either the direction (i.e., r, y, z) or
the fact that it is an initial state (the subscript o is used).

The model considers a system in which the two layers are
cubic in their unstrained states, with lattice parameters of ac

o and
as

o. In the initial state, the core and shell lattices are incoherent
and there is no strain in either layer. In order to determine the
final strain state of the coherent system, a two-step process of
equilibration is modeled. Fig. 2 is a simplified depiction of these
two steps in a planar arrangement. The first step is the establish-
ment of coherent epitaxy, as shown in Fig. 2b. This step puts the
system in an arbitrary reference state to which both layers are
coherently strained to the same lattice parameter. This reference
state is mathematically represented by the lattice spacing of a
reference, ar

o. The choice of reference state does not affect the final
solution. Thus, the lattice spacings of the core and the shell are all
initially strained to ar

o to establish a coherent epitaxial arrange-
ment. The associated misfit strain, emn

o, is defined as the strain
between the initial state and the reference state such that

emn
o ¼

an
o � ar

o

ar
o

(1)

The above equation can easily be modified to produce a misfit
strain that is dependent on direction if one wishes to consider a
non-cubic system or different reference states in each direction.
For the example of Si and Ge, however, cubic symmetry is
maintained in the unstrained state as well as in the reference
state.

Now that the entire system is strained to the reference state,
the second step is that the system is allowed to elastically relax to
the final state, as shown in Fig. 2b. Displacements from the
reference state are defined in all three directions in each layer, un

i .
In order to maintain the epitaxy provided by step one, the
displacements at the interface must be continuous at the inter-
face. In other words, at r ¼ Q

uc
z ¼ us

z (2a)

uc
y ¼ us

y (2b)

uc
r ¼ us

r (2c)

These displacements lead to what is termed ‘‘displacement
strains’’ on the system, denoted by �ni . The displacement strains
(again in terms of the reference layer) are expressed as

�ni ¼
an

i � ar
o

ar
o

(3)

In (3), an
i represents the lattice spacing after the system has

relaxed to its final state.
The displacement strains, �nij, are related to the displacement

functions, un
i , as follows [19]:

�nrr ¼
qðun

r Þ

qr
(4a)

�nyy ¼
1

r

qðun
y Þ

qy
þ

un
r

r
(4b)

�nzz ¼
qðun

z Þ

qz
(4c)

�nyz ¼
1

2

qðun
z Þ

qr
þ
qðun

r Þ

qz

� �
(4d)
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�nyz ¼
1

2

qðun
y Þ

qz
þ

1

r

qðun
z Þ

qy

� �
(4e)

�nry ¼
1

2

1

r

qðun
r Þ

qy
þ

qðun
y Þ

qr
�

un
y

r

� �
(4f)

Assuming that the system exhibits radial symmetry, several
simplifications are made. First, there is no displacement in the
tangential direction:

un
y ¼ 0 (5a)

Also, as a consequence of the cylindrical symmetry,

un
r ¼ un

r ðrÞ (5b)

un
z ¼ un

z ðzÞ (5c)

Inserting Eq. (5a–c) into Eq. (4a–f) and simplifying the notation,
we obtain

�nrr ¼
qðun

r Þ

qr
¼ �nr (6a)

�nyy ¼
un

r

r
¼ �ny (6b)

�nzz ¼
qðun

r Þ

qz
¼ �n

z (6c)

�nrz ¼ �
n
yz ¼ �

n
ry ¼ 0 (6d)

After both the misfit compensation (step 1) and the elastic
relaxation (step 2), the total elastic strain, en

i , is obtained. Due to
the sign convention used in Eq. (1), the total elastic strain in each
layer is expressed as

en
i ¼

ar
o

an
o

ð�n
i � emn

oÞ (7)

The leading term expressed in Eq. (7) is a correction factor that
allows the elastic strain of an individual layer to be in terms of
that layer rather than the reference state. This represents the
strain state of each phase in the nanowire in the most general
form.

The next step is to solve for general forms of the displacement
functions to calculate the total strains associated with the system.
The first boundary conditions applied to the system are the stress
equilibrium relations in cylindrical coordinates such that there is
no net force on any body element [19]:

1

r

qðsn
r rÞ

qr
þ

1

r

qtn
ry

qy
þ

qtn
rz

qz
�

sn
y

r
¼ 0 (8a)

1

r

qsn
y

qy
þ
qtn

yz

qz
þ

qtn
ry

qr
�

2tn
ry

r
¼ 0 (8b)

1

r

qðtn
rzrÞ

qr
þ

1

r

qtn
yz

qy
þ
qsn

z

qz
¼ 0 (8c)

The stresses are expressed in terms of the elastic strains
multiplied by the stiffness matrix. For cubic crystal structures,
the stiffness matrix simplifies to

Cn
11 Cn

12 Cn
12 0 0 0

Cn
12 Cn

11 Cn
12 0 0 0

Cn
12 Cn

12 Cn
11 0 0 0

0 0 0 Cn
44 0 0

0 0 0 0 Cn
44 0

0 0 0 0 0 Cn
44

2
6666666664

3
7777777775

which results in the following simplified expressions for stress:

sn
r ¼ Cn

11en
r þ Cn

12en
y þ Cn

12en
z (9a)
sn
y ¼ Cn

12en
r þ Cn

11en
y þ Cn

12en
z (9b)

sn
z ¼ Cn

12en
r þ Cn

12en
y þ Cn

12en
z (9c)

tn
rz ¼ tn

yz ¼ tn
ry ¼ 0 (9d)

This provides expressions for the stresses of the layers in terms
of the displacement functions and the lattice spacings. Inserting
Eq. (9a–d) into Eq. (8a–c):

d2
ðun

r Þ

dr2
þ

1

r

dðun
r Þ

dr
�

un
r

r2
¼ 0 (10a)

d2
ðun

z Þ

dz2
¼ 0 (10b)

Eq. (10a,b) can be satisfied by the following displacement
functions:

un
r ¼ Anr þ

Bn

r
(11a)

un
z ¼ Enzþ Fn (11b)

Now the entire strain state of the system is expressed in terms of
eight unknowns (Ac, Bc, Ec, Fc, As, Bs, Es and Fs). Of course, these
unknowns and thus the strain state of the system depend on the
relevant dimensions of the core–shell structure (Q, R, S) as well as the
unstrained lattice spacings of the core, shell, and the reference state.

Other constraints on the system and how they can be used to
solve for the unknowns mentioned above are now examined.
Because the displacements must be continuous, there are two
initial constraints on the system:
i.
 According to Eq. (2a) the displacement in the axial direction
should be continuous.
This constraint maintains epitaxy such that ac

zjr¼Q ¼ as
zjr¼Q .
ii.
 According to Eq. (2c) the displacement in the radial direction
should be continuous.
This constraint maintains epitaxy such that ac

yjr¼Q ¼ as
yjr¼Q .

Since there is no applied force on the system, the forces on all
surfaces of the system are zero.
iii.
 There is no net force on the surface perpendicular to the z-

direction:Z Q

0

Z 2p

0
sc

zr dr dyþ
Z R

Q

Z 2p

0
ss

zr dr dy ¼ 0 (12)
iv.
 There is no net force on the surface perpendicular to the r-
direction:

ss
r jr¼Rj ¼ 0 (13)

And finally:

v.
 All displacements, strains, and stresses must be finite

throughout the system.
Examining the equations for displacement above, we can see
that in the core at r ¼ 0, uc

r ¼ 1 unless Bc is zero. Therefore,

Bc
¼ 0 (14)
vi.
 At the interface, the stresses in the radial direction should be
continuous:

sc
r jr¼Q ¼ ss

r jr¼Q (15)

As a consequence of Eq. (2a), Fc
¼ Fs
¼ 0, and Es

¼ Ec. Thus,
Eq. (2a) eliminates three unknowns, Eq. (14) eliminates another,
and we are left with four unknowns (Ac, Ec, As, Bs) and four more
constraint Equations (2c), (12), (13) and (15). Using the definitions



ARTICLE IN PRESS

T.E. Trammell et al. / Journal of Crystal Growth 310 (2008) 3084–3092 3087
of stress, strain, and displacement given above, a simple matrix
elimination method can be used to solve for the displacements
(and thus displacement strains, elastic strains, and stresses) in
terms of the dimensions of the structure, the lattice spacings of
the core and the shell, the elements of the stiffness matrix, and
the reference state ar

o. Since we have already mentioned that the
choice of ar

o is arbitrary, we have set ar
o equal to ac

o in order to
simplify some of the expressions (i.e., emc

ois now zero).
While the strain state of the system is useful, we ultimately

need to determine the energy associated with the strained
core–shell system, so that we may examine issues of stability.
The elastic strain energy of each layer is denoted by U and is
calculated as follows:

Uc
¼

1

2

Z L

0
dz

Z Q

0
dr

Z 2p

0
sc

i ec
i r dy (16a)

Us
¼

1

2

Z L

0
dz

Z R

Q
dr

Z 2p

0
ss

i es
i r dy (16b)

In particular, we are concerned with the elastic strain energy
per area (J/m2) of both the shell and the core. We denote the
elastic strain energy originating per interfacial area as

Û
c
¼

1

2Q

Z Q

0
sc

i ec
i r dr (17a)

Û
s
¼

1

2Q

Z R

Q
ss

i es
i r dr (17b)

This model is general in its treatment of an arbitrary core and shell
material, provided they are both cubic. Since nanowire hetero-
structures of Si and Ge are of great interest for their compatibility
with existing integrated circuit technology, we examine how a
structure with a Si core and a Ge shell behaves. The lattice constants
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Fig. 3. Strain energy in system with a 100 nm Si core/substrate as a function of Ge shell/

Si substrate; (b) strain energy partitioning of a Ge shell grown on a Si core of radius 1
of Si and Ge are 5.431 and 5.657 Å, respectively [20]. The stiffness
tensor elements of the system at room temperature are, for Si [21]:
C11 ¼165.8 GPa, C12 ¼ 63.9 GPa, C44 ¼ 79.6 GPa; for Ge [21]:
C11 ¼128.5 GPa, C12 ¼ 48.3 GPa, C44 ¼ 66.8 GPa. While we model
the /10 0S growth axis in this paper, it should be noted that
the SixGe1�x nanowire growth directions are predominantly /111S,
/110S, and /112S when grown via vapor–liquid–solid techniques
[22–26], although /10 0S Si nanowire arrays can be fabricated by
bottom-down lithography and etching approaches [27]. Since Si and
Ge are elastically anisotropic, having a Zener ratio of 1.56 and 1.67,
respectively, the stress and strain states will be dependent on the
growth axis; however, the qualitative conclusions of the elasticity
calculations will be similar.

It should be noted that others have also approached the problem
of an epitaxial core–shell structure, but they have taken a slightly
different approach [28,29]. The work by Gutkin et al. takes a similar
approach but ignores strain in the axial direction of the nanowire. In
the work by Liang et al., pressure vessel theory is used to calculate
the strain state. The limitation of applying pressure vessel theory is
that it again assumes the system is only stressed in the radial
direction. In addition, both studies assume that the core and shell
have identical elastic properties. While it is true that Si and Ge have
similar elastic properties, this work takes the more rigorous
approach, which is applicable to a broader set of materials.
3. Results and discussion

To explore the implications of this model, consider the case of a
Ge shell grown on a Si nanowire substrate in comparison to a Ge
film grown on a planar Si substrate for the similarly sized systems.
The planar strain state is determined by an analogous approach to
that used to determine the strain state of the nanowire and is
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shown in Appendix 1. Throughout this discussion, the strain
energy refers to the strain energy per interfacial area. The
quantitative values presented here are specifically for /10 0S
growth axis nanowires, but the trends and qualitative conclusions
will be the same for any nanowire geometry.

In Fig. 3, we plot the calculated values of the strain energy in
system with a 100 nm Si core/substrate as a function of Ge shell/
film thickness. Fig. 3a depicts the strain energy partitioning of a
Ge film grown on a Si substrate. For films much thinner than the
substrate thickness, most of the strain energy is partitioned to the
film and only a small amount is associated with the substrate. For
relatively thick films, however, the roles of the film and substrate
invert, and the strain energy in the film approaches zero. In
core–shell system, qualitatively different behavior is observed.
Fig. 3b shows that for Ge shell grown on a Si core of radius 100 nm,
while for very thin shells the strain energy in the shell is much
greater than that in the core, even for very thick shells the strain
energy in the shell never converges to zero. The strain energy
converges to a constant value much quicker in the nanowire
geometry and remains partitioned between the two layers. Fig. 3c
shows the comparison of the total strain energies between
systems. It shows that as the ratio of the shell thickness to core
radius approaches zero, the strain energy in the core–shell system
converges to that in the planar system, as would be expected. It
also shows that the total strain energy in the core–shell system is
lower than that in the planar system with the same shell/film
thickness. This allows for a larger critical thickness when growing
a shell as opposed to those found in the planar case.

We can understand the qualitatively different behavior in the
nanowire system in terms of the partial relaxation of the strain as
a function of distance from the interface. In Fig. 4a–c, we plot the
elastic strain as a function of radial position, r, in a core–shell
nanowire. In this case, Si core thickness is 100 nm and Ge shell is
50 nm. Fig. 4a and b show the y-axis strain and r-axis strain
dependence of r. Fig. 4c shows the z-axis strain dependence of r.
We can see that there is a large amount of strain in the core and
shell at the interface since the lattice spacing at the interface must
be matched as a condition for epitaxy. The r-axis strain and y-axis
strain are relaxed as the outside free surface of the shell is
approached. However, the z-axis strain cannot be relieved at the
outside surface. The z-axis strain is constant through the core and
shell. This behavior is same as the similar-sized planar case, as
shown in Fig. 4d. The ability to relax the y-axis and r-axis strains
away from the interface gives rise to pronouncedly lower strain
energy in the nanowire geometry and potentially greater
flexibility to design coherently strained structures.

Before we look at the exact limits of coherency, it is first
important to consider how these shells might lose coherency with
the underlying core. In the case of thin films grown on substrates,
there exists a critical thickness at which the interfacial strain
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energy becomes high enough that it is energetically favorable for
misfit dislocations to form [7,8]. There are several ways to
calculate this critical thickness, the most common being the so-
called Matthews–Blakeslee (MB) criterion. According to this
method, the critical thickness occurs once the energy of the
system with a dislocation becomes lower than the energy due
to coherency strain [28,29]. While other groups have attempted to
apply this same logic to the current system [30,31], it is not
certain that misfit dislocations are the dominant mechanism
for loss of coherency of a shell around a core. In fact, some
work has shown that instead of forming misfit dislocations at a
certain thickness it may instead be energetically favorable to
form islands (so-called Stranski–Krastanow growth) in Si–Ge
core–shell nanowires [6]. This is similar to Stranski–Krastanow
growth observed in the planar geometry [10,11]. For the purposes
of the present work, we shall leave open the question of how
the strain is relieved. It is assumed that there is some shell
thickness at which the strain energy becomes high enough
that coherent epitaxial growth is no longer energetically favor-
able. We will discuss the symmetry of the nanowire problem,
how it compares to the planar case, and how we expect this
symmetry to affect the critical thickness of the epitaxial core–
shell nanowire.

In the planar case, the interface is very large in both the x and y

directions as compared to the z-direction, and due to the cubic
symmetry of the Si–Ge system the coherency strains will be
isotropic within the plane of the film. In the core–shell system,
however, the interface plane is the z–y plane and the lower
symmetry leads to anisotropy in the components of the elastic
strain in the interface plane, and so we might expect anisotropic
instabilities. Fig. 5 plots the elastic strain in the interface plane as
a function of shell thickness when the core thickness is 100 nm.
Fig. 5a shows in the core the elastic strains in the z and y
directions diverge, with the elastic strain in the z partitioned to
the core more rapidly as a thicker shell is grown. Fig. 5b shows in
the shell side the elastic strain in the y-direction is larger than in
the z-direction. All components of the elastic strain in the shell are
a maximum for an infinitesimally thin shell and then decrease
with shell thickness as the strain energy is gradually partitioned
to the core.

Even though the exact strain relief mechanism is unclear, we
can use the work done on the misfit dislocation formation in the
planar case to study certain trends in the limits of epitaxy and see
how they might play out in our model. The following is not a
rigorous quantitative analysis, but rather an attempt to utilize
approaches from planar studies in order to evaluate differences
between the planar system and our core–shell model. In fact, any
rigorous analysis would have to take into account the potential
active slip systems, which will depend upon the nanowire growth
axis.

We assume there is some critical energy in the system, fcr,
which if the system surpasses along any direction, misfit
dislocations appear. Just as in work done on thin films, we define
a critical shell thickness, Scr, above which a shell cannot be grown
when the core is rather large and all strain is in the shell. Similar
to the work by Lo for planar films, however, our model predicts
that as the core shrinks one can grow a thicker shell and still be
below fcr because the total strain energy is partitioned between
layers [12,13]. The equations used by People and Bean [32] are
used here to determine the critical energy. In their approach,
People and Bean determine the critical thickness as the thickness
at which the strain energy of a coherent system becomes larger
than the energy associated with the dislocation of minimum
energy, namely a screw dislocation [32]. While the critical energy
used in the approach is a function of film thickness, we make the
simplification that it is constant.
In the planar case, a system with film strain energy greater
than fcr is equally likely to form a dislocation in the x- as in the y-

direction, but since the strains in the z-direction are generally
higher (Fig. 2) the limits of epitaxy should be reached in the z-

direction first. A stability map can be created such that stability
corresponds to

ðf s
y þ f c

yÞof cr

ðf s
z þ f c

zÞof cr

Specifically, fcr ¼ 0.307 J/m2 and Scr ¼ 2.74 Å. Fig. 6 plots the
theoretical shell thickness as a function of core radius below
which misfit dislocations would not occur. Looking at this figure,
strain energy in the core limits the coherency of the system when
core radius is less than 10 nm. Since the strain is relieved in the
y-direction, epitaxial failure occurs preferentially in the z-direc-
tion over the y-direction. In other words, if the strain relief in the
y-direction could be prevented, at a larger shell thickness the
strain energy would become great enough in the z-direction to
cause dislocation formation, and the shell might lose coherency
with the underlying core. When core radius is more than 10 nm,
however, strain energy in the shell limits the coherency of system.
Epitaxial failure occurs preferentially in the y-direction over the
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z-direction. At a thicker shell thickness the strain energy would
become great enough in the y-direction to cause dislocation
formation. In reality, the nucleation of defects is a thermally
activated process, so if shells can be grown at low temperatures it
is possible to have a metastable system with critical thicknesses
greater than predicted by theory [32].

As mentioned before, distinct advantages can be gained in the
carrier mobility of Si and Ge if strain can be added to the materials
in the direction of current transport [14–18]. While this can be
either the x- or the y-direction in the planar system, we consider it
to be the z-direction in the core–shell system. Fig. 7 shows the
maximum achievable elastic strain in the direction of transport for
both the planar and core–shell system as a function of substrate
thickness. For the planar case it is assumed that the Si substrate is
strained and in the core–shell system, it is assumed that the Si core
is strained. Since the Si undergoes tensile strain, an increase in the
electron mobility is expected [14,15]. As can be seen, for moderately
thin structures a wire can accommodate more strain than the
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planar structure. For very thin cores with relatively thick shells, all of
the strain is partitioned to the core and the maximum elastic strain
is equal to the misfit between the core and shell. Eventually, a
similar strain partitioning is seen in the planar case, but it occurs at
smaller substrate sizes. As the figure shows, it is possible strain a
nanowire more as compared to a planar structure of the same
thickness if both are strained to the limit of epitaxy.

In addition to considering the strain energies and the effects on
the limits of coherency, we can also consider the interplanar
spacings of the system. Fig. 8 plots the interplanar spacing of
planes in the r, y and z directions as a function of position r. In this
case, the shell thickness is 50 nm and core radius is 100 nm. Fig. 8a
and b shows the interplanar spacings of the shell in the z and y
directions at the interface will match those of the underlying core.
Fig. 8c shows the interplanar spacing of the shell in the r-direction
at the interface will be slightly different from that of the
underlying core. With this information in mind, we can predict
the selected area electron diffraction pattern based on the results
of our model. In the axial direction, the interplanar spacing is the
same throughout the whole system, so a single diffraction spot for
both the core and the shell should be observed. If the wire is
grown and oriented in such a way as to have planes lying in the
radial direction, these planes exhibit a constant interplanar
spacing in the core, but a slightly varying interplanar spacing in
the shell, as seen in Fig. 8c. Two spots are present in the radial
direction, one corresponding to the core and the other corre-
sponding to the shell. In fact, such a diffraction pattern has been
shown by Lauhon et al. [3] in the case of a Ge shell grown around a
Si core. While there is one interplanar spacing in the radial
direction throughout the core, the interplanar spacing in the shell
changes slightly, thus suggesting that there is a smeared spot in
the diffraction pattern. In practice, this might be difficult to
differentiate from the small volume effects [33].
4. Conclusions

In summary, we have developed a model to determine the
strain state of an epitaxial core–shell nanowire structure and have
used the example of a Ge shell grown on a Si core. In order to
determine if such a structure provides any advantages over a
standard planar heterostructure, we have examined several
important issues. The first is the strain energy per interfacial area
in each system, and it is shown that a core–shell nanowire has a
lower energy than an analogous planar heterostructure. The
second issue is the limit of epitaxy, based on a reasonable
estimate of the critical energy to form misfit dislocations. Next, for
the mobility enhancement strain provides, the maximum achiev-
able strain in substrates of varying thicknesses is analyzed, again
with the conclusion that nanowires offer greater flexibility.
Finally, the behavior of the core–shell system is examined in the
vicinity of the free surface of the shell. The conclusion reached is
that the ability to relax the strain as this free surface is
approached is the reason for all of these advantages over the
planar system.
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Appendix 1. Strain state of planar heterostructure

This takes an analogous approach to that taken in the
cylindrical case in order to set up the problem.
This heterostructure has the geometry of that shown in Fig. 1b.
Due to the symmetry of the problem, we work in Cartesian
coordinates with x, y, and z defining our system. The interface is in
the x– y plane at z ¼ 0, and is considered to be infinite in the x and
y directions. We assume a film such that the thickness of the film
is hf and the unstrained lattice spacing is af

o. Similarly, we assume
a substrate such that the thickness of the substrate is hs and the
unstrained lattice spacing is as

o. In the following symbols, a
superscript denotes the relevant layer (f or s), and a subscript
either denotes the relevant direction (x, y, z) or the fact that it is a
constant in all directions (0).

The process of making an epitaxial heterostructure is divided
into two steps. The first step is to adjust both layers to some
reference state such that they both have the same lattice spacing,
namely that of the reference, ao

r . The choice of reference state is
arbitrary and does not affect the final outcome. We adjust to the
reference state in all directions, meaning each layer is being
uniformly contracted or expanded. In each layer we can define the
misfit to the reference as follows:

emn
0 ¼

an
0 � ar

0

ar
0

(A.1)

As a result of the first step, the system is epitaxial. Even though
it may be epitaxial, the system is not at its ideal configuration as it
has been artificially put in this configuration without regard to
balancing stresses on the system. In the next step, the system is
allowed to relax. In general, this relaxation can be different in
different directions. This relaxation corresponds to the displace-
ment, ui

n, of each layer. In order for the system to remain epitaxial,
the displacement must be continuous at the interface. In
mathematical terms, at z ¼ 0:

uf
i ¼ us

i (A.2)

After displacement, at each point in each layer the system can
be characterized by the strained lattice spacings an

i . Note that the
final lattice spacing can in general be different in each layer and in
each direction. We can define the displacement strain ei

n as the
strain between the final state and the reference state:

�fi ¼
an

i � ar
0

ar
0

(A.3)

As a result of this misfit correction followed by relaxation
process, there is an induced elastic strain en

i in each layer. This
elastic strain arises from the misfit strain in Eq. (A.1) and from the
displacement strain in Eq. (A.3) such that it is expressed as

en
i ¼

ar
o

an
o

un
i � emn

o

� �
(A.4)

The negative sign is due to the sign convention used to define
the misfit strain, and ar

o=an
o is a correction factor so that the elastic

strain in a layer is in reference to that layer and not the reference
state.

The strain state of the heterostructure has been described in its
most general form. Now we use some basic premises of elasticity
theory to determine some relevant relationships [19]. First of all,
the displacement relates to the displacement strain as follows:

�nij ¼
1

2

qun
i

qj
þ
qun

j

qi

 !
(A.5)

For this case we assume only normal strains. This implies that
un

i is a function of only i and that Eq. (A.5) can be simplified to

�nij ¼
qun

i

qi
¼ �ni (A.6)

Now the elastic strain is in terms of the unstrained lattice
spacings, the reference lattice spacing, and the displacement



ARTICLE IN PRESS

T.E. Trammell et al. / Journal of Crystal Growth 310 (2008) 3084–30923092
functions. We can determine the stresses si
n in the system if we

use the simplified stiffness matrix for cubic symmetry to obtain
the following:

sn
x ¼ Cn

11en
x þ Cn

12en
y þ Cn

12en
z (A.6a)

sn
y ¼ Cn

12en
x þ Cn

11en
y þ Cn

12en
z (A.6b)

sn
z ¼ Cn

12en
x þ Cn

12en
y þ Cn

12en
z (A.6c)

tn
xy ¼ tn

xz ¼ tn
yz ¼ 0 (A.6d)

In order to satisfy the condition that the force acting on an
element of the system be zero, we impose the stress equilibrium
conditions:

qðsn
x Þ

qx
þ
qðtn

xyÞ

qy
þ

qðtn
xzÞ

qz
¼ 0 (A.7a)

qðsn
y Þ

qy
þ
qðtn

xyÞ

qx
þ

qðtn
yzÞ

qz
¼ 0 (A.7b)

qðsn
z Þ

qz
þ
qðtn

yzÞ

qy
þ
qðtn

xzÞ

qx
¼ 0 (A.7c)

Inserting (A.6a–A.6c) into (A.7a–A.7c) and neglecting shear
stresses, we determine

@2ðun
i Þ

@i2
¼ 0 (A.8)

Therefore un
i and �ni take the form

un
i ¼ Ln

i iþMn
i (A.9)

�ni ¼ Ln
i (A.10)

We are only concerned with the strain state, and so we can
neglect the Mi

n terms in (A.9). Furthermore, since the system has
cubic symmetry and the system is essentially infinite in
both x and y directions, we assume the strain state in the x-

direction to be equivalent to the strain state in the y-direction. In
other words:

Ln
x ¼ Ln

y (A.11)

Therefore, the displacements, displacement strains, elastic
strains, and stresses are equivalent in the x- and y-directions.

Now we describe the strain state in terms of the four
remaining integrations constants, the unstrained lattice spacings,
the reference state, and the elastic properties of the film and
substrate. We can look at some of the constraints on the system in
order to determine the unique solution.
1.
 The displacement in the x-direction should be continuous at
the interface:

uf
xjz¼0 ¼ us

xjz¼0 (A.12)

This equation guarantees epitaxy in the x-direction.

2.
 The displacement in the y-direction should be continuous at

the interface:

uf
yjz¼0 ¼ us

yjz¼0 (A.13)

This equation guarantees epitaxy in the y-direction. It is
redundant after Eq. (A.12) as we have already said Ln

x and Ln
y are

equivalent.

3.
 The displacement in the z-direction should be continuous at

the interface:

uf
zjz¼0 ¼ us

zjz¼0 (A.14)
This equation simplifies to 0 ¼ 0, so Eq. (A.14) is always
satisfied.
4.
 Assume a plane stress situation such that the stresses normal
to the interface are zero:

sf
z ¼ ss

z ¼ 0 (A.15)
5.
 The net forces on the free surfaces must be zero. The net force
on the two (0 0 1) surfaces is zero as a result of Eq. (A.15). The
net forces on the (10 0) and (0 10) surfaces are equivalent and
each must balance according to

sf
xhf þ ss

xhs ¼ 0 (A.16)

One unknown can be eliminated in each of the Eqs. (A.12),
(A.16), and Eq. (A.15) can be used to eliminate two unknowns.
After this process of elimination, we are left with a description of
the strain state of the system in terms of the elastic constants, the
unstrained lattice spacings, the reference state lattice spacing, and
the relative thicknesses of the two layers.

In order to determine the elastic strain energy per interfacial
area fnin each layer, we can use the equation

un ¼ 1
2ðs

n
x en

x þ sn
yen

y Þh
f (A.17)

Note that there is no term due to the stress in the z-directions
since it was set to zero in (A.15). Since the x- and y-direction play
equal roles in this model, it can be assumed that the contributions to
the strain energy from strains in the x- and y-directions are equal.
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