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Abstract

In theoretical analyses and computational simulations chemical free energies of stoichiometric compounds and solid solution phases are often
approximated by parabolic functions. In the present work, we focus on examining the effect of different approximations of chemical free energies
on predicted precipitate growth kinetics with phase-field modelling. As an example, we studied the precipitation of plate-like θ ′(Al2Cu) in Al–4
wt%Cu Alloys. Using six sets of chemical free energies for θ ′ and Al–Cu solid solution, growth kinetics of θ ′ precipitates were simulated by
assuming either constant diffusivity or constant atomic mobility. It is demonstrated that the parabolic function provides a good description for the
chemical free energy of a stoichiometric compound while the growth kinetics is sensitive to the approximation of chemical free energy for the
solution phase.
Published by Elsevier Ltd

Keywords: Phase-field modelling; θ ′ precipitate; Growth kinetics; Al–Cu alloys
1. Introduction

Many intermetallic precipitates in which there is no
solubility or the solubility is extremely small are known as ‘line
compounds’. The free energy of a line compound, by definition,
is represented by a single value at a given temperature.
Modelling the growth of stoichiometric line compounds via the
phase-field approach poses serious numerical challenges since
the derivative of the free energy does not exist. One possible
approach is to approximate the free energy of a line compound
by a parabolic function of composition. However, it is not clear
how to choose the curvature and whether its magnitude has
any significant effect on the predicted growth kinetics of a
precipitate. Further, the free energy of a solution phase always
contains an entropy mixing term. When the solute solubility
is very low, e.g. at low temperatures, the logarithmic function
term in the free energy function is also numerically challenging
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because numerical errors during temporal evolution may lead
to negative values for the composition and thus blow-up of
the logarithmic function. The main purpose of this paper is to
examine the approximations for free energy functions of both
a stoichiometric line compound and a solution phase on the
predicted growth kinetics of a precipitate in a binary alloys in
the context of phase-field modelling.

As an example, we consider precipitation of metastable
θ ′(Al2Cu) phase, a stoichiometric line compound, in Al–Cu
alloys. θ ′ is one of the primary strengthening precipitates in
Al–Cu alloys [1–11]. This system is scientifically interesting
as the precipitation process involves strong anisotropies of
elastic interactions, interfacial energy and interface mobility.
The phase-field approach has recently been employed to
simulate the growth kinetics of this plate-like precipitate.
Li and Chen [12] simulated stress-oriented nucleation and
growth of θ ′ precipitates using two parabolic functions to
describe the chemical free energies for θ ′ and α phases.
Based on first-principles calculations, Vaithyanathan et al. [13]
also constructed parabolic functions to describe chemical free
energies of θ ′ and α phases, and studied the effect of elastic
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energy, interface energy anisotropy and interface mobility
anisotropy on the morphology and growth of θ ′ precipitates.

In the present work, we extended Kim’s model for
solidification [14,15] to the precipitation reactions that involve
strong anisotropies in interfacial energy and interface mobility,
and we established relationships between model parameters
and materials properties. One feature of this model is that
the model parameter, interfacial energy coefficient, is uniquely
determined by the interface thickness and interfacial energy,
and is independent of chemical free energies. This feature
allows one to study the effect of different approximations
of chemical free energies on precipitate growth with one set
of model parameters. Although our model can include the
elastic energy associated with the lattice mismatch between
precipitates and matrix, we ignore it in this paper in order
to examine the effect of chemical free energy approximations
on predicted growth kinetics of precipitates. In simulations,
the interfacial energies and diffusivity were taken from first-
principles calculations and experimental data, respectively. Six
sets of chemical free energies were constructed in order to study
the effect of the approximation in chemical free energies on the
predicted growth of θ ′ precipitates in one and two dimensions.

2. Phase-field model

2.1. Description of microstructures

According to the orientation relationship (100)θ ′ ‖

(100)matrix and (010)θ ′ ‖ (010)matrix, there exist three
orientational variants of θ ′ precipitates [5,6]. Fig. 1 shows one
of three θ ′ orientation variants, which has a broad interface
with normal direction n along 〈001〉. In order to describe the
θ ′ precipitation in the fcc α Al–Cu solid solution, we use four
field variables, i.e. composition field c(x, t) associated with
Cu composition and three order parameter fields ηi (x, t)(i =

1, 2, 3) associated with three θ ′ orientation variants. The order
parameter ηi (x, t) is defined as 1 in the θ ′ phase and 0 in the
α phase. It varies smoothly from 1 to 0 across the interface
between θ ′ and α phases.

With the chemical free energies f α(cα, T ) and f θ ′

(cθ ′ , T )

of α and θ ′ phases, the chemical free energy of the system is
defined as:

G(c, η1, η2, η3, T ) = (1 − h(η1, η2, η3)) f α(cα, T )

+ h(η1, η2,η3) f θ ′
(cθ ′ , T )

+ wg(η1, η2, η3), (1)

where cα and cθ ′ are the molar fractions of Cu atoms in α and θ ′

phases respectively, T the absolute temperature, g(η1, η2, η3) a
double-well potential, w the height of the double well potential,
and h(η1, η2, η3) a monotonous function from 0 to 1. In the
present paper, g(η1, η2, η3) and h(η1, η2, η3) are taken as:

h(η1, η2, η3) = 3(η2
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Fig. 1. (a) Coordinate system associated with θ ′, (b) definition of ϕ which is
used to describe the interfacial energy and mobility anisotropies. n is the normal
direction of the interface, and the angle ϕ is defined by ϕ = π/2 − arccos(n ·

〈001〉).

The total free energy F(c, ηi , T ) of the system includes
chemical free energy and interfacial energy. It is defined as:

F(c, η1, η2, η3, T ) =

∫
V

[
1
Ω0

G(c, η1, η2, η3, T )

+

3∑
i=1

k2(ϕi )

2
|∇ηi |

2]
dV (3)

where Ω0 is the molar volume, κ(ϕi ) is a gradient coefficient
associated with anisotropic interfacial energy, and ϕi is the
angle as shown in Fig. 1.

2.2. Kinetic equations

In the framework of phase-field models, the temporal and
spatial evolution of conserved fields such as composition c
is governed by the Cahn–Hilliard equation [16], whereas the
evolution of non-conserved fields, such as order parameter η, is
governed by the Allen–Cahn equation [17]

∂c

∂t
= ∇ ·

[
D(η1, η2,η3, T )

Gcc
∇

(
∂G

∂c

)]
= ∇ ·

[
M(η1, η2,η3, T )∇

(
∂G

∂c

)]
(4)

∂ηi

∂t
= −L(ϕi )

δF

δηi

=
L(ϕi )

Ω0

[
−

∂G

∂ηi
− Ω0

∂

∂ηi

(
κ(ϕi )

2

2
|∇ηi |

2
)]

(5)

where D(η1, η2, η3, T ) and M(η1, η2, η3, T ) are chemical
diffusivity and mobility, respectively, L(ϕi ) is the interface
mobility coefficient, and Gcc is the second derivative of G with
respect to the composition c.

We consider the interfacial region to be a mixture of α and θ ′

phases with the same chemical potential, i.e. cα and cθ ′ satisfy
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the following set of constraint conditions,

c = [1 − h (η1, η2, η3)] cα + h (η1, η2, η3) cθ ′ and

∂ f α (cα)

∂cα

=
∂ f θ ′

(cθ ′)

∂cθ ′

. (6)

In order to simplify the evolution equations, let us consider
an isolated precipitate. In this case, only two field variables are
needed to describe the system, i.e. one composition field c(x, t)
and one order parameter field η. Setting η1 = η2 = 0, η3 = η

and ϕ3 = ϕ, the evolution equations (4) and (5), are simplified
as:

∂c

∂t
= ∇ ·

[
D(η, T )

Gcc
(Gcη∇η + Gcc∇c)

]
= ∇ · [M(η, T )(Gcη∇η + Gcc∇c)] (7)

∂η

∂t
=

L(ϕ)

Ω0

[
−Ω0

∂

∂η

(
κ(ϕ)2

2
|∇η|

2
)

+ h′(η)

×

[
f α(cα) − f θ ′

(c′
θ ) − (cα − c′

θ )
∂ f α(cα)

∂cα

]
− wg′(η)

]
(8)

and the constraint conditions become,

c = [1 − h(η)] cα + h(η)c′
θ (9a)

∂ f α(cα)

∂cα

=
∂ f θ ′

(c′
θ )

∂c′
θ

(9b)

where Gcη is the second derivative of G with respect to
composition c and order parameter η. h′(η) and g′(η) are the
first derivatives with respect to η.

In summary, the simulation of θ ′ precipitation reduces the
solution of the kinetic equations (7) and (8) under the constraint
conditions (9).

2.3. Chemical free energies

Murray [18] gave a critical assessment of the phase
equilibria of the Al–Cu alloys based on optimization of
experimental phase diagram and thermodynamic data. Not
only the stable equilibrium diagram but also metastable and
constrained equilibrium were predicted. The chemical free
energies of α and θ ′ phases were

f α(cα, T ) = RT [cα ln(cα) + (1 − cα) ln(1 − cα)]

+ cα(1 − cα)[(−24085 − 18.18944T )

+ (40399.8 − 3.91235T )(1 − 2cα)

+ (−19683 + 16.06993T )

×(−1 + 3(1 − 2cα)2)/2] [J/mol] (10)

f θ ′
(c′

θ , T ) = −10245.8 + 0.0579T [J/mol] (11)

with fcc Al and fcc Cu being the reference states at
corresponding temperatures. The chemical free energies versus
the Cu composition are plotted in Fig. 2 for T = 498 K. Since θ ′

phase is considered as a stoichiometric compound, its chemical
free energy is defined at one point cθ ′ = 1/3.
Fig. 2. Chemical free energies of α and θ ′ phases calculated from Eqs. (10)
and (11) at Al rich compositions.

2.4. Model parameters

There are three unknown model parameters in the evolution
equations (7) and (8), i.e. L(ϕ), κ(ϕ) and w which relate to
materials constants such as interface mobility L̄(ϕ), interface
thickness 2λ(ϕ) and interface energy σ(ϕ). For a quantitative
simulation, we must establish the relationships between these
model parameters and material constants. Analyzing the
equilibrium properties of kinetic equations (7) and (8) via thin
interface limit analysis [19], the relationship among κ(ϕ), w,
2λ(ϕ) and σ(ϕ) can be obtained,

σ(ϕ) =
κ(ϕ)

√
w/Ω0

3
√

2
(12)

2λ(ϕ) = α
√

2
κ(ϕ)

√
w/Ω0

(13)

where α is a constant which depends on the definition of the
interface. For example, when the interface is defined in the
region between η = 0.1 and η = 0.9, then α = 2.2. Following
the same procedure, the relationship between L(ϕ) and L̄(ϕ)

can be established if the Peclet number, p = 2λV/D̃ is very
small (D̃ is the average interface diffusivity, and V is the
interface velocity)

1

L̄(ϕ)
=

1
L(ϕ)

∫ λ

−λ

(
dη

dx

)2

dx +
ce
α − ce

θ ′

Ω0

×

∫ 0

1

(∫ x

λ

Gcc

D(η)
[c(x) − cint

θ ′ ]dx

)
h′(η)dη (14)

where ce
θ ′ and ce

α are equilibrium compositions in θ ′ and α

phases respectively, and cint
θ ′ is the composition of θ ′ phase at the

interface x = λ. Note that generally speaking, if the interface
mobility L̄(ϕ) is known, the interface mobility coefficient
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L(ϕ) can be calculated by Eq. (14). Unfortunately, there are
no experimental data available. Therefore, in the simulations,
interfacial mobility coefficients are determined numerically.

2.5. Anisotropy of interfacial energy and interface mobility

The interfacial energies from first-principles calculation
at 0 K for coherent and semi-coherent interfaces are
0.235 J/m2 and 0.615 J/m2 [19]. However, based on
the theoretical estimation of the interfacial energy, Laird
and Aaronson suggested that coherent and semi-coherent
interfaces are about 0.03 J/m2 and 0.35 J/m2 [4]. Despite
quantitative discrepancy, both calculations show that θ ′

precipitates have strong interface energy anisotropy. Two
methods are often used to describe the dependence of
interfacial energy on the interface normal in phase-field models
[20–23]. One is to make the square-root of the gradient
coefficient have the same directional dependence as the
interfacial energy. Another method is to add higher order
gradient energy terms. In the present work, the first method
is used. We assume that the interfacial energy of plate-like θ ′

precipitate has cylindrical symmetry. It is described in terms of
ϕ as:

σ(ϕ) =
σ0

1 + γ



1 + γ1 + γ2 sin(ϕ),

−π/2 ≤ ϕ ≤ −π/2 + ϕ0
1 + γ cos(ϕ),

−π/2 + ϕ0 ≤ ϕ ≤ π/2 − ϕ0
1 + γ1 − γ2 sin(ϕ),

π/2ϕ0 ≤ ϕ ≤ π/2

(15)

where σ0 is the interfacial energy at ϕ = 0, γ1 =

γ cos(ϕ0)/ sin(ϕ0), γ2 = γ / sin(ϕ0), γ is determined by the
interfacial energy at ϕ = π/2. ϕ0 = π/200 is chosen as a
very small angle to describe two cusps at ϕ = ±π/2 [24],
which reflect two flat interfaces of θ ′ precipitates according to
the Wullf Construction [25]. The gradient coefficient κ(ϕ) is
determined by Eq. (12) for given interfacial energy σ(ϕ).

Since we have no experimental data on the interface mobility
L̄(ϕ), we give the interface mobility coefficient L(ϕ) the same
angular dependence as σ(ϕ)

L(ϕ) =
L0

1 + β



1 + β2 + β1 sin(ϕ),

−π/2 ≤ ϕ ≤ −π/2 + ϕ0
1 + β cos(ϕ),

−π/2 + ϕ0 ≤ ϕ ≤ −π/2 − ϕ0
1 + β2 − β1 sin(ϕ),

pi/2ϕ0 ≤ ϕ ≤ π/2

(16)

where L0 is the interface mobility coefficient at ϕ = 0, β1 =

β cos(ϕ0)/ sin(ϕ0), β2 = β/ sin(ϕ0), β is determined by the
interface mobility at ϕ = π/2, and ϕ0 is again taken to be
π/200.

3. Dimensionless kinetic equations and input data

Using dimensionless variables t∗ = D0t/ l2 and x∗
= x/ l

where l represents the grid spacing (1x) or the characteristic
length, the kinetic equations (7) and (8) are simplified to:

∂η

∂t∗
= L∗(ϕ)

{
∇

∗
· κ∗(ϕ)2

∇
∗η + h′(η)

[
f α∗(cα)

− f θ ′
∗(c′

θ ) − (cα − c′
θ )

∂ f α∗(cα)

∂cα

]
− w∗g′(η)

}
(17)

∂c

∂t∗
= ∇

∗
· (D∗(T )∇∗c) + ∇

∗
· (D∗(T )h′(η)(cα − cθ ′)∇∗η)

(18)

where:

L∗(ϕ) =
L(ϕ)C44l2

D0
; κ∗(ϕ)2

=
κ(ϕ)

C44l2 ;

f α∗(cα) =
f α(cα)

C44Ω0
, f θ ′

∗(cθ ′) =
f θ ′

(cθ ′)

C44Ω0
;

w∗
=

w

C44Ω0
; D∗(T ) =

D(T )

D0
, ∇

∗
=

∇

l
.

Periodic boundary conditions in x-, y- and z-directions are
used and the kinetic equations are solved numerically using the
Fourier-spectral method [26]. The input data include the grid
spacing 1x = 0.5 nm, the semi-coherent interface thickness
2λ1 = 61x = 3 nm, the constant α = 2.2 in Eq. (13),
the molar volume Ω0 = 10−5 m3/mol, coherent interfacial
energies (0.235 J/m2) and semi-coherent interfacial energy
(0.615 J/m2). We assume that the diffusion coefficient D(η, T )

only depends on temperature T [27],

D(T ) = D0 exp
[
−

Q

RT

]
(19)

where D0 = 4.5 × 10−5 m2/s, Q = 1.33 × 105 J/mol, and
R is the universal gas constant. The overall composition and
aging temperature to be simulated are c0 = 0.0172, i.e. 4 wt %
Cu, and T = 498 K. The composition is that for which we
have the most experimental, and the temperature is one for
which only θ ′ precipitates (not GP zones or θ ′′) are observed. In
our model, once the interfacial energy and interface thickness
and artificial double well potential height w∗ are given, the
model parameter k∗ is uniquely determined, independent of
the chemical free energies unlike the WMB model [28]. We
can now make a comparison of the effect of different chemical
free energy approximations on calculated precipitate growth
kinetics.

4. Results and discussion

In order to study the effect of the approximation in
chemical free energies on the calculated growth kinetics, six
sets of chemical free energies f α(cα, T ) and f θ ′

(cθ ′ , T ) are
constructed. They are numbered Case # (# = 0, 1, . . . , and 5),
and plotted in Fig. 3. In Case 0, the chemical free energy of
stoichiometric line compound θ ′ phase is employed. In order
to avoid multiple solutions of the constraint equation (10), the
convex part of f α(cα, T ) is smoothly replaced by a concave
function, that is

f̃ α(cα, T ) =

{
f α(cα, T ) cα ≤ c∗

A0 + A1cα cα ≥ c∗
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Fig. 3. Six sets of chemical free energies of α and θ ′ phases.
Table 1
Driving forces of phase transformation and nucleation for approximated
chemical free energies at T = 498 K

Cases 1G̃ p (J/mol)
transformation

1G̃n (J/mol) nucleation

1 −103 −4568
2, 4 and 5 −72 −3187
3 −55 −2456
0 −72 −2484

where c∗ is the spinodal composition, i.e., the small root of
∂2 f α(cα,T )

∂2cα
= 0, A0 and A1 are determined by the values of

function f α(cα, T ) and its first derivative at cα = c∗. In Case
1 to Case 5, f α(cα, T ) and f θ ′

(cθ ′ , T ) are approximated with
parabolic functions that give the same common tangent as the
CALPHAD type functions (10) and (11), but have different
second derivatives at the equilibrium phase compositions.
Table 1 shows nucleation driving force 1G̃n and phase
transformation driving force 1G̃ p for different approximations.
The second derivative in Case 2, is fitted by minimizing
the difference in transformation driving forces at the overall
composition c0 = 0.0172 with respect to the analytical free
energy (10). The chemical free energy in Case 3 is fitted by
minimizing the difference in nucleation driving forces with
respect to the analytical free energies (10) and (11).

4.1. Determination of interface mobility coefficient

For a given semi-coherent interface energy (0.615 J/m2),
interface thickness (61x), and set of chemical free energies,
the interface mobility coefficient L∗ is the only unknown
parameter. There are no experimental data available. Therefore,
it is important to examine this parameter numerically. To do
so, one-dimensional growth of θ ′ precipitate is simulated with
a θ ′ precipitate of a size of 401x placed in the centre of a
simulation cell 20481x . The initial composition is set to be the
equilibrium composition c = 0.33 in the precipitate and c0 =

0.0172 in the matrix (α phase). Fig. 4 presents the precipitate
length as a function of time and square root of time, calculated
using the free energies of Case 2 and various values of the
interface mobility coefficient L∗. From Fig. 4, it can be seen
Fig. 4. Precipitate length as a function of time t , (a) vs t and (b) vs
√

t .

that the relationship between the precipitate length and time
approaches to be linear as L∗decreases while the relationship
between the length and square root of time approaches to be
linear as L∗ increases. The nonlinear relationship observed in
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Fig. 4(b) for large L∗ and long time is due to the periodic
boundary conditions. Two critical values of L∗ are determined,
i.e., L∗

= 0.001 and 0.1. When L∗ < ∼0.001 the growth
is interface-controlled and when L∗ > ∼0.1 it is diffusion-
controlled. The results also show that the two critical values are
independent of chemical free energies, i.e. they are the same for
all six sets of chemical free energies.

The above results illustrate that the developed model is
able to describe interface-controlled and diffusion-controlled
growth as well as mix-controlled growth depending on the value
of interface mobility coefficient L∗. In the present work, we
are interested in studying the effect of chemical free energy
approximations on diffusion-controlled growths of precipitates.
Therefore, a large interface mobility coefficient L∗

= 50 is
employed in the following simulations. In addition, we consider
two cases: constant diffusivity and constant mobility, i.e. either
the D or M in Eq. (4) is assumed to be constant.

4.2. Diffusion-controlled growth in 1D

4.2.1. Constant diffusivity
Using the simulation cell described in last section, one

dimensional growth of θ ′ is simulated with six different
chemical free energies. Fig. 5(a) shows the composition
evolution for chemical free energy Case 0–3. As expected, one-
dimensional diffusion-controlled growth at constant diffusivity
is independent of chemical free energies. The growth is
completely driven by the composition gradient, which can be
seen from the Eq. (4). In this case, an analytic solution can be
found [29].

c(x, t) = c0 + (ce
α − c0)erfc

(
x − xint

2
√

Dt

)
(20)

v =
dxint

dt
=

ce
αc0

ce
α − ce

θ ′

√
D

π t
(21)

where xint is the interface position, v the velocity of interface
migration and c0 the overall composition. It is found that the
simulated composition profiles are in good agreement with the
analytical solution except at the interface region because the
analytical solution has a sharp interface. The interface velocities
calculated by Eq. (21) and simulated with different chemical
free energies are presented in Fig. 5(b). Except at long times,
the phase-field simulations exactly reproduce the analytical
solution. The deviation in interface velocities at late stage is due
to the periodic boundary conditions in the simulations which
differ from the analytical solution with constant composition c0
at infinite.

4.2.2. Constant mobility
Now let us consider the growth with constant mobility. With

the assumption of constant mobility, the Eq. (4) can be rewritten
as:

∂c

∂t
= ∇ · (M0Gcc∇c) = M0∇ · (Gcc∇c) (22)
Fig. 5. (a) Composition profile evolution. The profiles overlap at a given time
for different chemical free energies, (b) Comparison of interface velocities
obtained by the phase-field simulations with different chemical free energies
and analytical solutions.

where

Gcc =
f α
cαcα

f θ ′

cθ ′ cθ ′

h(η) f α
cαcα

(cα, T ) + (1 − h(η)) f θ ′

cθ ′ cθ ′
(cθ ′ , T )

.

Since h(η) changes from 1 in the θ ′ phase to 0 in the
α phase, the constant mobility implies that the diffusivity
changes continuously from M0 f θ ′

cθ ′ cθ ′
in the θ ′ to M0 f α

cαcα
in the

α phase. Fig. 6(a)–(b) presents the composition evolution for
six different chemical free energies. It is seen in Fig. 6(b) that
different parabolic approximations of θ ′ free energy give almost
the same growth kinetics, but that different approximations
for α do affect the calculation. From Case 1 to Case 3, the
second derivative f α

cαcα
decreases. This means that the overall

driving force or effective diffusivity decreases from chemical
free energy Case 1–3. We find that the θ ′ growth kinetics
strongly depends on the chemical free energy of solid solution
phase. It is a natural result that the larger the driving force is,
the faster the precipitate grows as shown in Fig. 6(a). Fig. 6(a)
also show another interesting fact that the chemical free energy
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Fig. 6. (a) Composition profile evolution for chemical free energy Case 0–3,
(b) composition profile evolution for chemical free energy Case 2, Case 4 and
Case 5, where the profiles overlap at a given time for different chemical free
energies.

Case 0 and Case 2 provide a very similar growth kinetics. Case
0 is the real chemical free energy described by Eq. (10) except
the convex part while Case 2 is fitted by the overall phase
transition driving force at c0. Therefore, from one-dimensional
simulations, we can conclude that (1) to minimize the effect
of chemical free energy approximation on growth kinetics the
parabolic function of solid solution phase should be fitted by the
overall phase transformation driving force; (2) the chemical free
energy of stoichiometric compound phase can be approximated
by a parabolic function which does not significantly affect its
growth kinetics.

4.3. Diffusion-controlled growth of a circular precipitate in 2D

4.3.1. Constant diffusivity and constant mobility
A one-dimensional precipitate has a planar interface. Now

we consider the growth of a circular precipitate in two
Fig. 7. (a) Composition profile evolution with constant diffusivity, (b)
composition profile evolution with constant mobility.

dimensions with a curved interface. The curved interface raises
the free energy of the precipitate phase relative to a planar
interface due to the Gibbs Thomson effect. Consequently, the
equilibrium compositions at the phase interface between the
precipitate and matrix will change during the growth. In the
simulations, a circular θ ′ precipitate with radius a = 121x is
initially placed in the centre of the simulation cell 5121x ×

5121x . The initial composition in the precipitate and the matrix
are c = 0.33 and c0 = 0.0172. Fig. 7(a)–(b) show the
composition profiles along the radial direction of the circular
precipitate for various cases and time. We can see that different
chemical free energies (Case 0–3) affect the circular precipitate
growth in both constant diffusivity and constant mobility. The
results in Fig. 7 illustrate that the effect of curved interface
and chemical free energy approximations on growth kinetics
is smaller with constant diffusivity than that with constant
mobility. From the results in Fig. 8, we can drawn the same
conclusion as in Section 4.1 that the chemical free energy
of stoichiometric compound phase can be approximated by a
parabolic function, and chemical free energy Case 2 is the best
approximation for the solid solution because it produces the
same result as chemical free energy Case 0.
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Fig. 8. Composition profile evolutions with constant diffusivity and mobility.
The composition profiles overlap for different chemical free energies for
constant diffusivity and mobility, respectively.

4.3.2. Growth kinetics of θ ′ in 2D

Plate-like θ ′ precipitates have strong anisotropies in
interfacial energy and interface mobility. To study the effect
of the approximations in chemical free energies on the growth
kinetics, we assume that the lengthening of the plate-like
precipitate is diffusion-controlled while the thickening is a
mixture of diffusion and interface controlled growth. In the
simulations, parameters β = 10 000, L∗

0 = 50, σ0 =

0.615 J/m2 and γ = 2 are used. The interface mobility
and interfacial energy anisotropy are described by Eqs. (16)
and (17). We thus obtain the interface mobility coefficient
and interfacial energy of the planar precipitate interface at
ϕ = ±π/2 as L∗

= 0.005 and σ0 = 0.205 J/m2. In
order to eliminate the effect of grid numerical pinning in z
direction, a small grid size is used, i.e. 1z = 0.3331x . In
addition, although the more accurate chemical free energy Case
0 can still be used in simulating plate-like precipitate growth,
numerical stability requires that much smaller grid size and
time step be used for simulating the growth of a very thin θ ′

precipitate (few nanometer thickness). Therefore, we only use
the five sets of chemical free energies (Case 1–5) in this section.
We put an elliptic θ ′ precipitate with a long axis a = 121x
and a short axes b = 41z in the centre of the simulation
cell 5121x × 5121z. The composition in the precipitate and
the matrix are c = 0.33 and c0 = 0.0172, respectively.
Fig. 9(a)–(b) shows the lengthening and thickening of θ ′ for
constant diffusivity, and Fig. 10(a)–(b) for constant mobility.
The results show the precipitate grows almost linearly with
very slow thickening rates. If a smaller mobility of the planer
interface, L∗

= 0.0002, is used, constant thickness and exactly
linear lengthening are observed. The linear lengthening is in
agreement with the theoretical prediction under assumptions
of diffusion-controlled growth and constant thickness [29]. It
should be pointed out that the rapid increase of θ ′ thickness in
the early stage is due to the relaxation of initial non-equilibrium
elliptic precipitate. A detailed comparison with experimental
lengthening and thickening data will be reported soon.
Fig. 9. (a) Lengthening with constant diffusivity, (b) thickening with constant
diffusivity.

Fig. 9(a) shows a considerable increase of the lengthening
rate of a plate-like precipitate from the chemical free energy
Case 3, Case 2 to Case 1. A comparison between the results
in Fig. 7(a) and Fig. 9(a) demonstrate that the lengthening
of plate-like precipitates depends much more strongly on the
chemical free energy of the solid solution phase than that
of a circular precipitate. As we know, the Gibbs Thomson
effect causes an increase in equilibrium compositions at
interface. The increase of equilibrium compositions depends
on the curvature of the interface and chemical free energy.
For example, the equilibrium composition in the matrix side
increases as the second derivative of the chemical free energy
Gcc decreases from Case 1, Case 2 to Case 3. A lower
equilibrium composition at the interface for Case 1 generates
a larger diffusion driving force compared to Case 3. This
explains why the lengthening increases with the increase of
Gcc as shown in Fig. 9. To understand that the lengthening
of plate-like precipitates depends much more strongly on the
chemical free energy of the solid solution phase than that of a
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Fig. 10. (a) Lengthening with constant mobility, (b) thickening with constant
mobility.

circular precipitate, we should consider the following fact. For
a circular particle, the Gibbs Thomson effect is important only
when the radius is small. It becomes increasingly less important
as the particle size increases. As a result, the growth of the
circular particle is insensitive to chemical free energy under
the assumption of a constant diffusivity. For the plate-like θ ′,
however, the radius at the rim is very small, about 2–4 nm,
and remains almost constant during the growth. Therefore,
the Gibbs–Thomson effect exists during the whole growth
process. Therefore, we conclude that the strong dependence
of growth kinetics on the free energy approximation of the
solution phase is attributed to the Gibb’s Thomson effect. In the
case of constant mobility, besides the Gibbs Thomson effect,
chemical free energies also affect the effective diffusivity in
the solid solution phase. It is expected that the dependence
of the lengthening on chemical free energy in the case of
constant mobility is stronger than that in the case of constant
diffusivity as shown in Fig. 10. In addition, we can see that
both the lengthening and thickening are almost independent
of the chemical free energy of the precipitate phase (Case 2,
Case 4 and Case 5). This confirms again our conclusion that the
parabolic approximation of θ ′ free energy does not affect the
growth kinetics.

5. Conclusions

In this work, we studied the effect of free energy
approximations on the precipitation kinetics of plate-like
precipitates with strong anisotropies in interfacial energy and
interface mobility. Simulation results showed that the phase-
field model is able to reproduce the analytical solutions in
one dimensional diffusion-controlled growth and the linear
growth behaviour of plate precipitate with constant thickness,
and to reproduce a reasonable lengthening and thickening of
θ ′ precipitate in 4wt %Al–Cu alloys. Six sets of chemical free
energies were constructed for studying the effect of chemical
free energy approximations on calculated growth kinetics. The
results demonstrated that (1) the chemical free energy of
stoichiometric compounds can be reasonably approximated by
a parabolic free energy function; (2) the precipitate growth
kinetics is sensitive to the chemical free energy of solid solution
phase. However, a parabolic function fitted by the overall phase
transition driving force Case 2 is a reasonable approximation
for the chemical free energy of solid solution phase; (3) for
very thin precipitates such as θ ′ precipitates in Al–Cu alloys,
the Gibbs Thomson effect enhances the effect of chemical free
energy approximation on growth kinetics. This implies that
an accurate chemical free energy is needed for a quantitative
simulation of θ ′ precipitate growth kinetics. In addition, even
though the simulations results showed that precipitate growth
kinetics is insensitive to the free energy approximation for the
precipitate phase, we would like to point out that the nucleation
of θ ′ does depend strongly on the free energy functions used for
the precipitate phase.
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