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Abstract

Based on recent advances in phase-field models for integrating phase and defect micro-
structures as well as dislocation dynamics, the interactions between diffusional solutes and
moving dislocations under applied stresses are studied in three dimensions. A new functional

form for describing the eigenstrains of dislocations is proposed, eliminating the dependence of
the magnitude of the dislocation Burgers vector on the applied stress and providing correct
stress fields of dislocations. A relationship between the velocity of the dislocation and the

applied stress is obtained by theoretical analysis and numerical simulations. The operation of
Frank–Read sources in the presence of diffusional solutes, the effect of chemical interactions
in solid solution on the equilibrium distribution of Cottrell atmosphere, and the drag effect of

Cottrell atmosphere on dislocation motion are examined. The results demonstrate that the
phase-field model correctly describes the long-range elastic interactions and short-range
chemical interactions that control dislocation motion.

# 2003 Published by Elsevier Ltd.
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1. Introduction

Solid solution hardening is one of the commonly used mechanisms to strengthen
essentially all classes of alloy systems. Solid solution hardening arises from various
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interactions between dislocations and solutes such as elastic interactions, electric
interactions and chemical interactions (Cottrell et al., 1948; Haasen, 1964; Fridel,
1963; Hirth and Lothe, 1968; Mohri and Suzuki, 1999; Blavette et al., 1999;
Lebyodkin et al., 2000). Most studies to date were focused on the elastic interactions
between dislocations and solutes. At low temperatures, diffusion of solutes is negli-
gible, and the solutes act as point obstacles to moving dislocations. Statistical
methods (Friedel, 1963; Labusch, 1970) and computer simulations (Sakamoto, 1986;
Mohri and Suzuki, 1999) were employed for estimating the dependence of the cri-
tical resolved shear stress (CRSS) on solute concentration. At moderate or elevated
temperatures where solute diffusion is significant, the elastic interactions between
solutes and dislocations lead to solute segregation and depletion around disloca-
tions, leading to the formation of so-called ‘Cottrell atmosphere’ (Cottrell, 1948).
Such a solute atmosphere produces a drag force to a moving dislocation. For a two-
dimensional problem with a single dislocation and diffusive solutes, simplified theo-
retical analysis and numerical calculation of the drag force of the solute cloud on a
moving dislocation were presented by Cottrell (1953) and Hirth and Lothe (1968).
Asymptotic solute distribution and its dependence on dislocation velocity were
analyzed by Hirth and Lothe (1968) and Yoshinaga and Morozumi (1971).
Wang et al. (2000) recently developed a kinetic Monte Carlo model for studying
the interaction between a single moving edge dislocation and diffusing solute
atoms in two dimensions. The solute segregation profile around the moving
dislocation, and the relation between the islocation velocity and applied stress
were simulated.
Within the continuum mechanics framework, there has been tremendous amount

of effort devoted to dislocation dynamics. A number of models (based on the con-
cept of low energy dislocation structures (Bassim et al., 1986), reaction-diffusion
approach (Walgraef and Aifantis, 1985a,b; Kubin et al., 1992; Groma and Pawley,
1993), the concept of dislocation sweeping mechanism (Franek et al., 1991; Kra-
tochvil et al., 1997), and stochastic dislocation dynamic description (Hahner, 1996;
Bako and Groma, 1990) have been proposed for simulating the formation of dis-
location cell structures. A common feature of these models is that the behavior of a
dislocation system is described in analogy to other physical problems such as spi-
nodal decomposition, oscillating chemical reactions, etc, at a continuum level. The
properties of individual dislocations are taken into account indirectly. Plastic ani-
sotropy, localization and strain rate hardening associated with the formation of
dislocation cell structures and evolving microstructures are studied by strain gra-
dient deformation theory (Shizawa and Zbib, 1999; Langlois and Berveille, 2003)
and strain hardening model (Barlatb et al., 2002). For discrete dislocation dynamics
in 2D and 3D, computer simulations have also been performed by Zbib and Daiz de
la Rubia (2002), Hiratani et al. (2003), Groma and Bako (2001), Devincre et al.
(2001), Van der Giessen and Needleman (1995), Fivel et al. (1996), Fivel and
Canova (1999) and Politano and Salaza (2001). Due to the long range nature of
elastic interactions between dislocations, the direct numerical integration of the
equation of motion for dislocations is very time-consuming, and thus the size of
smulation cell and the number of dislocations are limited.
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Recently, Hu and Chen (2001, 2002) proposed a phase-field model by coupling the
Cahn–Hilliard diffusion equation (Larcheand, 1982) with the elastic fields produced
from solute atoms as well as from structural defects such as precipitates, disloca-
tions, grain boundaries and cracks. In this model, the structural defects are viewed
as lattice distortions, and described by ‘eigenstrains’. For example, dislocation loops
are viewed as coherent misfitting platelet inclusions. Such a description allows us to
obtain the elastic fields of defects with arbitrary spatial distribution using the Four-
ier Transform method (Mura, 1982; Khachaturyan, 1983). This is different from the
work based on analytical elastic solution of a dislocation (Leonard and Desai,
1998). A recent significant advance in phase-field modelling of dislocation dynam-
ics was made by Khachaturyan and his associates (Wang et al., 2001a,b). In their
phase-field model, the dislocation loops are labeled by a set of order parameter
field variables. The temporal evolution of the order parameter fields, i.e., disloca-
tion motion, is described by the phenomenological Time-Dependent Ginzburg–
Landau (TDGL) equation (Gunton et al., 1983). Their results show that the model
not only can take into account the long-range elastic interaction among disloca-
tions, but also the short range interactions, such as multiplication and annihilation
of dislocations.
The main purpose of this paper is to incorporate the solute diffusion into the

phase-field model of dislocation dynamics combining the static and dynamic models
(Hu and Chen, 2001; Wang et al., 2001a,b). Two sets of field variables, the solute
compositional field and order parameter fields describing the dislocation distribu-
tion, are employed. The temporal evolution of field variables, thus dislocation
motion and solute segregation near the moving dislocation, are obtained by solving
the Cahn–Hilliard equation and the TDGL equation, respectively. This model can
be used to simulate the dynamic drag effect of solute cloud near moving disloca-
tions, the nucleation of second phase precipitates near dislocations, growth and
coherent–incoherent transition, and also the hardening arising from lattice mis-
match, elastic modulus difference and long-range order.
The present paper is organized as follows. We start with the phase-field descrip-

tion of an arbitrary dislocation system and the kinetic equations. Next, to validate
the model, the stress fields of a dislocation from analytical and numerical methods
are compared, and the operation of Frank–Read source in a solid solution is
modeled. Finally, the static and dynamic drag effects of Cottrell atmospheres are
investigated.
2. Phase field description of a binary system with dislocations

We consider a binary solid solution with a compositional inhomogeneity and a
distribution of dislocations. The compositional field X(r, t), representing the mole
fraction X at position r at time t, is used to describe the solute distribution. If we
assume that the variation of stress-free lattice parameter, a, with composition obeys
Vegard’s law, then the local stress-free strain caused by compositional inhomo-
geneity is given by
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�0ij r; tð Þ ¼ �0�X r; tð Þ�ij; ð1Þ
where �0 ¼ 1
a

da

dX
is the composition expansion coefficient of the lattice parameter,

�X(r, t)=X(r, t)�X0 with X0 being the overall composition of the solid solution, and
�ij is the Kronecker-Delta function.

We recently showed that any structural defects such as dislocations, grain
boundaries and slip bands can be introduced into a phase-field model using their
corresponding spatially dependent eigenstrains (Mura, 1982; Hu and Chen, 2001).
For the case of dislocations, the stress field of a dislocation loop on slip plane p with
a Burgers vector b, is described by the stress-free strain (Landau and Lifshitz, 1986;
Wang, 2001):
�ij rð Þ ¼
1

2d0
b ið Þn jð Þ þ b jð Þn ið Þð Þ� r� r0ð Þ: ð2Þ
where n is the unit vector normal to the slip plane, d0 is the interplanar distance of
the slip planes, �(r�r0) is the Dirac delta function and r0 is a point inside the dis-
location loop on the slip plane. As a matter of fact, u0=b�(r�r0) is the discontinuous
displacement field of the atoms above the slip plane relative to those below it.
To describe the temporal evolution of a dislocation system within the context of a

phase-field model, Wang et al. (2001a,b) introduced an evolving order-parameter
field, �(r, t), which represents the magnitude of the discontinuous relative displace-
ments in units of the Burgers vector b, i.e., u0=b�(r, t). The stress free strain of a
dislocation system is then rewritten as
�disij r; tð Þ ¼
1

2d0
b ið Þn jð Þ þ b jð Þn ið Þð Þ� r; tð Þ: ð3Þ
For perfect dislocations, �(r, t) should satisfy certain conditions: (i) they should
assume non-zero values only inside the dislocation loop; and (ii) these non-zero
values should be integers. However, with the definition of eigenstrain given by
Eq. (3), it is impossible to satisfy these conditions during dislocation motion
under an applied stress. Therefore, one of the main purposes of this paper is to
propose a new model to describe the dislocation eigenstrain distribution. We
propose to use f(�(r, t)) to replace the �(r, t) in expression (3). A particular choice
for this function is
f � r; tð Þð Þ ¼ � r; tð Þ �
1

2�
sin 2�� r; tð Þð Þ: ð4Þ
This function f(�(r; t)) has the following two properties: (i) It is exactly equal to �(r, t)
when �(r, t) is an integer; and (ii) Its derivatives at integer values of ���(r, t) are zero.
Following Wang et al. (2001a,b), the dislocations in a single crystal with N

slip systems can be described by N N ¼
Pp

�¼1m�

� �
dislocation field variables

��� r; tð Þ � ¼ 1; 2; . . . p; � ¼ 1; 2; . . . ;m�ð Þ, where p denotes the number of
elementary slip planes and m� denotes the number of elementary Burgers vectors
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on the slip plane a. For instance, in a FCC single crystal, there are four slip planes:

(111), 1�11
� �

; 11�1
� �

; 111�
� �

, and three slip directions on each slip plane, and hence it

requires 12 dislocation field variables [p=4, and m�=3 (�=1, 2, 3, 4)]. In a BCC

crystal 48 dislocation field variables are needed. Thus, for a given dislocation dis-
tribution ���(r, t), the stress-free strain tensor using function (4) can be written as
�disij r; tð Þ ¼
X
�;�

b�� ið Þn� jð Þ þ b�� jð Þn� ið Þ

2d0
f ��� r; tð Þ
� �

¼
X
�;cdb

�disij �; �ð Þf ��� r; tð Þ
� �

: ð5Þ
In this paper, we introduce 13 field variables to describe the composition X(r, t) and
dislocation distribution ���(r, t) in a model FCC system. The total stress free strain
associated with compositional inhomogeneity and an arbitrary distribution of dis-
locations is then given by
�ij r; tð Þ ¼ �0ij r; tð Þ þ �disij r; tð Þ ð6Þ
3. Thermodynamics of a binary system with dislocations

The temporal evolution of the composition profile and the dislocation distribution
is driven by the reduction in the total free energy that include (i) the chemical free
energy Echem which consists of both the local bulk free energy of a binary solution
and the composition gradient energy; (ii) elastic energy Eelast associated with solutes,
defects and applied stresses; (iii) a local free energy function with an infinite number
of degenerate minima with respect to the order parameters describing a dislocation
system, the so-called ‘crystalline’ energy Ecryst (Wang et al., 2001a,b); and (iv) order
parameter gradient energy related to the dislocation core energy, Egrad.

3.1. The chemical free energy

For a binary system with a spatial composition distribution X(r), the chemical free
energy can be described as the sum of two contributions, i.e., the local bulk free
energy and the gradient energy. It reads
E chem ¼

ð
v

f0ðXð Þ þ 	 rXð Þ
2

� 	
dv; ð7Þ
where the first term f0(X) is the bulk free energy density of a binary solution; the
second term is the gradient energy density, and 	 is the gradient energy coefficient.
As a model system, we assume a regular solution model,
f0 Xð Þ ¼ RT ’X 1� Xð Þ þ X ln Xð Þ þ 1� Xð Þln 1� Xð Þ½ � ð8Þ
where R is the ideal gas constant, T is the absolute temperature, and ’ is a material
constant. For an ideal solution, ’ is equal to zero.
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3.2. Elastic energy of the system

Using the concept of stress-free strain/eigenstrain, the calculation of the internal
stress field produced by the lattice mismatch due to solutes and dislocations is
reduced to finding the elastic solution due to the associated stress-free strains
described by Eq. (6) (see Khachaturyan, 1983; Hu and Chen, 2001; Wang et al.,
2001a,b for the details). Therefore, once compositional and dislocation distributions
in an elastically homogeneous and anisotropic system are known, the total strain
energy can be calculated by
E elast ¼

ð
v

1

2
lijkl�elij �

el
kldv; ð9Þ
where
�elij ¼ �ij þ ��ij rð Þ � �0ij r; tð Þ �
X
�;�

�disij �; �ð Þf ��� r; tð Þ
� �

� �def0ij rð Þ

" #
; ð10Þ
lijkl is the elastic constant tensor, ��ij the homogeneous or uniform macroscopic
strain characterizing the macroscopic shape and volume change, ��ij(r) hetero-
geneous strain, and �def0kl (r) the stress-free strain associated with other defects such as
precipitates.

3.3. The local free energy density associated with dislocations

Dislocations are lines separating regions which have undergone different degrees
of slipping on a given slip plane. For perfect dislocations, these different regions are
represented by different integer values of order parameters in the phase-field model,
and the difference between the order parameter values of neighboring regions is the
total number of dislocations located along the line between them. Therefore, to
describe a multiple dislocation system, a local free energy function with an infinite
number of degenerate minima is required. One of the free energy functions which
satisfy this condition is proposed by Wang et al. (2001a,b) for a crystal with N dis-
location slip systems in three dimensions,
E cryst ¼

ð
v

Xp
�¼1

Xm�

�¼1

A �; �ð Þsin2 ���� rð Þ
� �" #

dv: ð11Þ
Khachaturyan called this ‘crystalline energy’ simulating the Peierls potential that a
dislocation experiences during gliding under an applied stress. However, it should be
pointed out that this potential function does not provide a critical stress for the
dislocation motion described by the continuum TDGL equation, i.e., the Peierls
stress is zero for an isolated dislocation in the perfect crystal in the continuum
description.
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3.4. Gradient energy associated with dislocation core

In the phase-field model of multi-phases, the energy associated with the composi-
tion gradient provides the interfacial energy between different phases. Similarly, the
gradient energy in the order parameter fields in the dislocation model describes the
dislocation core energy. However, the dislocation core energy is only proportional
to the length of a dislocation for perfect dislocations. Wang et al. (2001a,b) pro-
posed the following general form for the gradient term,
Egrad ¼
�

2

ð
v

F rð Þdv ð12Þ
where � is positive constant and the function F(r) is expressed as:
F rð Þ ¼
Xp
�1¼1

Xp
�2¼1

� �1; �2ð Þijkl
@b �1;r
� �

i

@rj

@b �2; rð Þk

@rl

" #
ð13Þ
b(� r) is the total Burgers vector of dislocations on slip plane � at r.
b �; rð Þ ¼
Xm�

�¼1

b����� rð Þ: ð14Þ
For dislocation systems a0
2 111f g 110h i in a FCC crystal, a specific form of the

function F(r) is constructed in (Wang et al., 2001a,b).

4. Phase-field kinetic equations

There are two types of evolving objects: solute atoms and dislocations. For the
evolution of the solution concentration profile, it is natural to employ the Cahn–
Hilliard nonlinear diffusion equation,
@X r; tð Þ

@t
¼ Mr2

�E

�X r; tð Þ
þ 
 r; tð Þ; ð15Þ
where X is the composition, E is the total free energy of the system, and M is a
kinetic coefficient related to the chemical diffusion mobility. 
(r, t) is the noise term.
Substituting the total energy into the Cahn–Hilliard Eq. (15) and taking the first
variational derivatives with respect to the composition function X(r, t), we find that
the composition field kinetic equation is
@X r; tð Þ

@t
¼Mr2

�
� lijkl�0�ij �ij þ ��ij r; tð Þ

� �
þ lijkl �0

� �2
�ij�klX r; tð Þ

þ lijkl�0�ij

"X
��

�diskl �; �ð Þf ��� r; tð Þ
� �

þ �def0kl rð Þ




þ
@f0 Xð Þ

@X
� 	r2X r; tð Þ



þ 
 r; tð Þ:

ð16Þ
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order parameter fields describing the dislocation distribution are non-con-
The
served, and their temporal evolution can be assumed to follow the TDGL
equations:
@��� r; tð Þ

@t
¼ �L

�E

���� r; tð Þ
þ � �; �; r; tð Þ; ð17Þ
where L is the kinetic coefficient characterizing the dislocation mobility, and �(�, �,
r, t) is the Langevin Gaussian noise term simulating the thermal fluctuations. Eq.
(17) can be rewritten as
@��� r; tð Þ

@t
¼ L

�
lijkl�diskl �; �ð Þ

@f ��� r; tð Þ
� �
@��� r; tð Þ

�
�ij þ ��ij r; tð Þ � �0�ijX r; tð Þ

�
X
�;�

�disij �; �ð Þf ��� r; tð Þ
� �

� �def0ij rð Þ



� A�sin 2���� r; tð Þ

� �

�
�

2

@F r; tð Þ

@
��� r; tð Þ
g þ � �; �; r; tð Þ ð18Þ
To facilitate the computation, we introduce the following dimensionless parameters,
r
 ¼
r

d0
; d
 ¼

dx

d0
; "0 ¼

a0
d0

l
ijkl ¼
lijkl
G

; �
ij ¼
�ij
"0

; �

ij ¼

�ij
G"0

A
 ¼
A

G"20
; �
 ¼

�

2Gd20 "
2
0

; t
 ¼ LG"20t

M
 ¼
M

Ld20
; 	
 ¼

	

Gd20 "
2
0

f



0 Xð Þ ¼
f0 Xð Þ

G"20
;E elas
 ¼

E elas

G"20
; �
 ¼

RT

G"20

ð19Þ
where dx is the grid size of the computational mesh. With the dimensionless para-
meters, the kinetic equations can be written as:
@X r
; t
ð Þ

@t

¼M
r2

�
� l
ijkl�

0
�ij �
kl þ ��
ij r

; t
ð Þ

� �
þ l
ijkl �

0

� �2

�ij�klX

r
; t
ð Þ þ l
ijkl�
0
�ij

X
��

�dis
kl �; �ð Þf ��� r
; t
ð Þ
� �

þ �def0
kl r
ð Þ

" #

þ
@f




0 Xð Þ

@X
� 	
r2X r
; t
ð Þ



þ 

 r
; t
ð Þ

ð20Þ
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@��� r
; t
ð Þ

@t

¼ l
ijkl�

dis

jk �; �ð Þ

@f ��� r
; t
ð Þ
� �
@��� r
; t
ð Þ

�
�ij þ ��ij r; tð Þ � �0
�ijX r
; t
ð Þ

�
X
�;�

�dis
ij �; �ð Þf ��� r
; t
ð Þ
� �

� �def0
ij r
ð Þ




� A
�sin 2���� r
; t
ð Þ
� �

� �
 @F r
; t
ð Þ

@
��� r
; t
ð Þ
þ �
 �; �; r
; t
ð Þ ð21Þ
The elastic equilibrium equation and the kinetic equations are solved numerically.
The semi-implicit spectral method (Chen and Shen, 1998) is employed, which implies
the use of periodic boundary conditions along x-, y- and z-directions. In all the
simulations, we fix the following parameters: C11=3.0, C12=1.0, C44=1.0,
A*=0.05 �*=0.25, 	*=0.05, �0=0.075, X*=0.09, �0=0.25, dt*=0.02, d*=1.0,
d0=4a0 where a0 is the lattice parameter. We systematically vary the dimensionless
parameters M*, ’, X0 and �
ij to study their effect on dislocation–solute interac-
tions under applied stresses. In addition, we do not consider the effect of immo-
bile defects, i.e., �def0kl r
ð Þ ¼ 0 in the present paper. The influence of elastic
anisotropy, elastic inhomogeneity and immobile defects will be presented in future
publications.
5. Result and discussion

5.1. Stress fields of dislocations

Before the solute–dislocation interactions are studied, the stress field of a disloca-
tion described by the dislocation eigenstrain (5) is examined. Since an analytical
elastic solution exists for a single edge dislocation in two dimensions, we consider a
two-dimensional model system shown in Fig. 1. We assume that the composition of
Fig. 1. Schematic illustration of a dislocation loop located at the center of a 2D computational cell.
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solutes is zero or uniform and does not evolve with time. A dislocation loop with
R=120dx is introduced into the center of the simulation cell 512�512 by assigning
the initial value �=1 on the grid points inside the dislocation loop on the slip plane
and �=0 outside the loop. The Burgers vector of the dislocation loop is b=(100)
along the x-direction, and its slip plane is the n=(001) plane. The equilibrium solu-
tion of kinetic Eq. (21) in the absence of applied stresses automatically provides the
stress field of the dislocation. In Fig. 2 we present the normal and shear stress dis-
tributions of the edge dislocation in the right side of simulation cell along A–A line
just below the slip plane shown in Fig. 1. The corresponding analytical solution is
also plotted for comparison. The results demonstrate that the stress fields obtained
with the new expression of dislocation eigenstrains are in good agreement with the
analytical elastic solution except for two or three points where the stresses of ana-
lytical solutions are singular. In addition, we can find that numerical stresses are
continuous at the dislocation line. This means that the singularity of the stress field
at the dislocation line is removed. It is a natural result if we notice that the dis-
continuous displacement at a dislocation line in classical elastic theory is replaced by
a continuous displacement in the phase field model. Therefore, phase field models of
dislocations provide similar elastic stress fields as nonlocal elastic theory (Walgraef
and Aitantis, 1985a,b). The elimination of singularity not only brings the dislocation
stress field much closer to the real situation but also benefits the stability of numerical
calculation.
Fig. 2. Comparison of dislocation stress distributions calculated from numerical and analytical solutions

along A–A line shown in Fig. 1, the solid lines for analytical solution and the symbol lines for numerical

solutions.
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Although linear expression (3) (Wang et al., 2001a,b) can also provide correct
stress fields of static dislocations, it results in the dependence of the magnitude of the
dislocation Burgers vector on applied stresses. Hence, it might lead to incorrect
stress fields of moving dislocations. To examine the effect of two dislocation eigen-
strain expressions on the stress field of moving dislocations, the kinetic Eq. (21) is
solved under different applied shear stresses ��
31. Fig. 3 shows the temporal order
parameter profiles at t*=400dt*, 800dt*, 1200dt* and 1600dt* with a loading his-
tory ��
31=0.0, 0.015, 0.02 and 0.025 for every 400 time steps. The related shear stress
Fig. 3. Order parameter profiles under different applied stresses ��31, (a) with the non-linear expression of

dislocation eigenstrain, (b) with the linear expression of dislocation eigenstrain.
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distributions on the slip plane are plotted in Fig. 4. It is observed in Fig. 3(b) that
the order parameter values inside and outside the dislocation loop increase with the
magnitude of the applied stress for the case that the dislocation eigenstrain expres-
sion is a linear function of the order parameter in Eq. (3). This implies that dis-
location Burgers vector depends on applied stresses. From Fig. 4(b), we can see that
Fig. 4. Shear stress distributions along the slip plane for moving dislocations.
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an extra stress field due to the change of Burgers vector greatly reduces the effect of
the applied stress. As a result, the extra stress slows down the dislocation velocity.
However, the nonlinear eigenstrain expression (5) proposed in the present paper
eliminates this dependence. The order parameter profiles in Fig. 3(a) show that the
order parameter values away from the dislocation core do not change under applied
stresses with the new eigenstrain expression. The applied stresses affect only the
order parameter profile in the dislocation core. Therefore, the dislocation stress field
away from the dislocation core remains the same during dislocation motion under
different applied stresses, which can be seen from Fig. 4(a). These results demon-
strate that the new dislocation eigenstrain expression can provide a correct stress
field for both static and moving dislocations. It should be pointed out that the
internal stress fields produced by other crystal defects such as other dislocations and
cracks will also lead to a change in the Burgers vector if the linear eigenstrain
expression is employed. Such dependency is eliminated using the new eigenstrain
expression.

5.2. Velocities of dislocations and discretization effect

To examine the relationship between the velocity of a dislocation and the applied
stress, the motion of dislocations in two dimensions shown in Fig. 1 is simulated
under different applied stresses. The velocities (the displacement of the dislocation
within a fixed number of time steps) are calculated. Fig. 7(a) shows the velocity of
the dislocation as a function of applied stresses and grid sizes for eigenstrain
expressions (5). There are three observations. First, the dislocation velocity strongly
depends on the grid size (i.e., discretization effect). It increases as the grid size
decreases for a given applied stress. However, the velocity is convergent when the
gride size d* is less than 1.0. Second, a linear relationship between the dislocation
velocity and the applied stress exists for the convergent cases. Using phase-plane
analysis approach (Grindrod, 1991), a relationship between the dislocation velocity
V* and the applied stresses for an edge dislocation in two dimensions is derived
V
 ¼
2��
31�

dis


31Ð 1
0�

0
0 x


ð Þd�0
¼ S
��
31 ð22Þ
where �00 x

ð Þ is the solution of Eq. (21) in the absence of applied stress. Eq. (21) for

an dislocation loop in two dimensions shown in Fig. 1 reads
2�
�000 � A
�sin 2��0ð Þ þ 2�

31=�

dis
31

@f �0ð Þ

@�0
¼ 0 ð23Þ



where �31 is the stress component of the dislocation (Hu et al., in preparation). The
value S=5.3(d0/t*) calculated with Eq. (22) is in good agreement with the numerical
result S=5.1(d0/t*) for the convergent cases. Finally, the fact, that the velocity tends
to zero as the applied stress tends to zero, implies that no critical stress exists for
moving an isolated dislocation. In other words, Peierls stress is not taken into
account in this phase field model although the total energy includes the term ‘Peierls
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potential’. Any critical stress appearing in the cases with larger gride sizes comes
from discretization effect. For a comparison, the same simulations are performed by
using eigenstrain expressions (3). Similar discretization effect is observed. From
Fig. 7 (b), it can be found that the velocity obtained by using eigenstrain expressions
(3) is much smaller than that obtained by using eigenstrain expressions (5) under the
same applied stress. This is consistent with the discussion in the last section that part
of the work done by the applied stress is spent on increasing the Burgers vector of
the dislocation for the case of eigenstrain expressions (3), and hence the corre-
sponding dislocation velocity is reduced.

5.3. Effect of solutes on dislocation generation through Frank–Read source

With the new expression of dislocation eigenstrains, we examined whether it is
possible to generate dislocations from a Frank–Read source as well as the effect of
solute segregation on dislocation generation. A square dislocation loop is placed on
the slip plane

�
111�

�
in 128�128�128 simulation cell by assigning �11 (r)=1 on the

grid points in the region marked by the gray color and �11 (r)=0 on other grid
points as shown in Fig. 5. The Burgers vector of the dislocation loop is

�
1�10

�
. The

simulation parameters are set to be X0=0.1; M*=1.0 and ’=1.5. A pure shear
stress field (��
=0.06) along

�
1�10

	
is applied on the (111) plane. Fig. 6(a)–(c) shows

snapshots of dislocation generation on the (111) plane by the Frank–Read source
Fig. 5. Schematic illustration of simulation cell of Frank–Read source.
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mechanism. The light gray and dark gray surfaces in Fig. 6 (d)–(f) are the iso-surfaces
(X(r)=0.11) and (X(r)=0.09) of composition distributions, respectively. The results
show that new dislocation loops with the same Burgers vector nucleate on slip plane
(111) near the screw segment of the dislocation loop on slip plane

�
111�

�
under the

shear stress on the slip plane (111). With the increase of applied stresses, one part of
the new dislocation loop bows out on the slip plane (111), the other part annihilates
at the intersection line between (111) and

�
111�

�
slip planes because these two

screw dislocation segments have opposite Burgers vectors, and its two ends are
pinned by the edge dislocation on the

�
111�

�
plane. The Frank–Read source can

continuously emit dislocation loops as shown in Fig. 6(c). Since the lattice mis-
match of solutes is assumed to be a uniform expansion �0=0.075, the interaction
between the edge segment and solutes results in solutes segregating on the tensile
side of the edge dislocation segment. No segregation and depletion is observed
near screw dislocation segments since there is no volume change near a pure
screw dislocation. Because the dislocation segment involved in Frank–Read
source operation is mainly the screw component, solute segregation has minimal
effect on the Frank–Read source operation. The main effect of solute segregation
is the reduction in the dislocation velocity for the edge segment compared with
the case without solutes.
Fig. 6. Snapshot pictures of the dislocation generation on (111) plane by Frank–Read mechanism in solid

solution.
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Fig. 7. Average velocities of dislocations vs. applied shear stresses, (a) the effect of different eigenstrain

expressions, (b) the effect of discretization.
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5.4. Drag of dislocation motion by Cottrell atmosphere

If the sizes of solvent and solute atoms in a binary system are significantly differ-
ent, the stress field of an edge dislocation leads to a segregation of solutes around the
dislocation, i.e., the formation of the so-called Cottrell atmospheres. Solute segre-
gation partially releases the stress field of dislocations and generates resistance to
dislocation slip. The interaction between dislocations and solutes strongly depends
on solute mobilities and dislocation velocities. If the solute diffusion velocity is much
larger than the dislocation velocity, an equilibrium solute atmosphere is established
near a moving dislocation. In this case a static drag of dislocation motion by a
Cottrell atmosphere occurs. When the velocity of solute diffusion is compatible with
the dislocation velocity, Portevin LeChatelier instabilities (dynamic strain aging)
might occur, which is related to the dynamic drag of dislocation motion by a Cot-
trell atmosphere. In another extreme case, there is no Cottrell atmosphere formed if
the solute diffusion is much smaller than the dislocation velocity.

5.4.1. Static drag effect of a Cottrell atmosphere
To calculate the static drag effect of a Cottrell atmosphere, we first need to obtain

the equilibrium distribution of solute atoms near a dislocation. Since the driving
force for solute diffusion is due to the inhomogeneity of elastic and chemical
potentials, the equilibrium distribution of solutes depends on the competition
between elastic energy and chemical free energy. To examine the effect of ’ on solute
equilibrium distribution, three solid solutions with ’=0.0; 1.5 and 3.0 are con-
sidered. Their chemical free energies are plotted in Fig. 8.
A dislocation loop with R=120dx is placed at the center of a two-dimensional

512�512 simulation cell. We start the simulation with different initial average com-
position X0 marked with the vertical dash lines in Fig. 8, and stop the simulation
when the solute atoms reach equilibrium. For a solution with average composition
X0=0.05, the equilibrium solute distributions along A–A and B–B lines shown in
Fig. 1 are presented in Fig. 9 for different free energy functions. Fig. 10 shows the
equilibrium solute distributions for an ideal solution ’=0.0 with different initial
average composition X0=0.05, 0.25 and 0.50, respectively. The results demonstrate
that solute segregation and depletion are usually not symmetric with respect to the
dislocation slip plane. For example, in the case of average composition X0=0.05, the
minimum composition located on the B–B line in solute-depleted region is almost
independent of ’. However, the maximum composition located on the A–A line in
solute-enriched region increases with ’. The net increase of solute composition at the
maximum composition point is much larger than the net decrease at the minimum
composition point. From mass balance, this implies that the depleted region is larger
than the solute-enriched region. It is also true even for an ideal solution shown in
Fig. 10 except for the case with the average solute composition 0.5 at which the
chemical free energy is symmetric with respect to composition while the stress field
of dislocation is antisymmetric. Therefore, the symmetric solute distribution around
a dislocation predicted by the analytical solution (Hirth and Lothe, 1968) is only
valid for the case of an ideal solid solution with an average composition 0.5.
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To compute the interaction between a dislocation and its solute atmosphere, we
freeze the solute distribution while the dislocation is artificially displaced along the
slip plane. Since only elastic energy changes during the process of dislocation dis-
placement, the total elastic energy of the system as a function of dislocation dis-
placement is plotted in Fig. 11. The drag force exerted on the dislocation by the
Fig. 8. Chemical free energies of solid solutions.
Fig. 9. Equilibrium solute distributions, (a) along A–A, (b) along B–B line shown in Fig. 1.
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solute atmosphere at a given displacement is proportional to the gradient of elastic
energy–displacement curve. The maximum drag force occurs at the point where the
elastic energy–displacement curve reaches its maximum gradient. When external
forces are less than the maximum drag force, the dislocation cannot break away
from the solute cloud. From Fig. 11, we can see that the maximum drag force
depends on the chemical free energy function and the average solute composition.
Increases in both the average composition X0 and ’ enhance the solute segregation
as shown in Figs. 8 and 9 and hence increase the drag force of a Cottrell atmosphere
to dislocation motion.

5.4.2. Dynamic drag effect of a Cottrell atmosphere
Dynamic drag effect of a Cottrell atmosphere critically depends on the relative

velocities of solute diffusion and dislocation motion. In our simulations, we fix the
magnitude of the applied stress ��
31=0.04 and the lattice mismatch between solute
and solvent atoms �0=0.075 while varying the ratioM* of the solute mobility to the
dislocation mobility or the average composition X0. The simulation cell is chosen to
be 512�256 grid points, and the dimensionless parameters are the same as that listed
in Section 4. The initial radius of the dislocation loop is R=80dx. Fig. 12 shows the
average velocity of a dislocation as a function of M* and X0. From the results, we
can see that dislocation velocity decreases as the overall composition X0 increases
for a given M*. The reason is that the higher overall composition results in higher
degree of segregation, and thus a larger dragging force. Furthermore, three char-
acteristic velocities of dislocations can be observed from Fig. 12 for any given over-
all solute composition. One extreme case is that M* tends to zero. This implies that
solute diffusion becomes very slow compared with dislocation velocity. As a result,
solute segregation and its dragging force are negligible, and the dislocation velocity
reaches the maximum. Another extreme case is that solutes diffuse fast enough to be
able to fully catch the moving dislocation. In this case, a steady-state solute atmo-
sphere, which is close to the equilibrium distribution around a static dislocation,
Fig. 10. Equilibrium solute distributions, (a) along A–A, (b) along B–B line shown in Fig. 1.
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forms around the moving dislocation. The average dragging stress becomes con-
stant, and dislocation moves with a constant velocity. It is also seen that a proper
ratioM* of solute diffusion mobility and dislocation mobility causes the dislocation
moving with a minimum velocity. From the results it can be found that such aM* is
Fig. 11. Corresponding elastic energy Eelas*-dislocation–displacement curve, (a) for different ’, (b) for

different average compositions.
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independent of solute overall composition. In this region, solute diffusion is com-
patible with dislocation velocity. Examination of the solute distribution and dis-
location velocity as a function of time shows that the solute distribution and the
dislocation velocity change periodically during dislocation motion. In other words,
Portevin LeChatelier instabilities occur in this region. A detailed and quantitative
study of Portevin LeChatelier instabilities associated with the solute dynamic drag
effect will be presented in a future publication.
6. Conclusion

A phase field model is described for modelling the interactions between moving
dislocations and diffusive solutes. The results showed that the new expression for
dislocation eigenstrain used in the present paper is able to eliminate the dependence
of dislocation Burgers vector on applied stresses, and provide correct stress fields for
static and dynamic dislocations. Theoretical analysis and numerical simulations
demonstrate that the velocity of the dislocation is proportional to the applied stress,
Fig. 12. Average velocity of dislocations is a function of M* for different average compositions at

constant applied stresses ��31=0.04.
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and the phase field model does not take into account the Peierls stress. Although the
main simulations in the present paper are conducted in two dimensions with a single
dislocation, these simulations confirmed the potential ability of phase field models
for investigating dislocation dynamics coupling with other important physical pro-
cesses such as solute diffusion.
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