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A solute atmosphere forms around a dislocation at temperatures where the diffusion of solute atoms
is comparable to or faster than the dislocation motion. The dynamic interactions between diffusive
solutes and moving dislocations were studied using a phase-field model which takes into account
both the chemical interactions in the solid solution and the elastic interactions among solutes and
dislocations. The average velocity of dislocations as a function of solute concentration, solute
mobility, dislocation mobility, and applied stresses was investigated. The dragging stress of a solute
atmosphere and the solute flow around a moving dislocation are presented and analyzed. Some
features of dynamic interactions between a single dislocation and its solute atmosphere are
observed. ©2004 American Institute of Physics.@DOI: 10.1063/1.1755858#

I. INTRODUCTION

Solid solution hardening is a common phenomenon ob-
served in many metallic alloy systems. It arises from various
interactions between dislocations and solutes such as elastic
interactions, chemical interactions, as well as electric
interactions.1–6 At low temperatures the diffusion of solute
atoms is so slow that the solute atoms are almost at rest as
dislocations move. As a result, the solutes act as point ob-
stacles to moving dislocations. In this case, the elastic inter-
actions between immobile solutes and moving dislocations
have been studied. Statistic methods7–9 were developed for
estimating the critical resolved shear stress. Recently, a
phase-field approach10 was developed for studying the elastic
interaction between randomly distributed immobile point ob-
stacles and mobile dislocations in a two-dimensional model.

At moderate or elevated temperatures, however, solute
diffusion becomes significant and a solute atmosphere forms
quickly round moving dislocations.11 The dynamic interac-
tion between diffusing solute atoms and mobile dislocations
causes a repeated yield-point phenomenon~serrated yield-
ing! and an increase in yield strength with temperature, i.e.,
the Portevin–Le Chatelier effect, which has been observed in
many alloys. There are a number of theoretical and experi-
mental studies of the dynamic interactions between diffusing
solute atoms and mobile dislocations.12–16 For a single dis-
location in two dimensions, the critical velocity for the for-
mation of solute atmosphere, steady-state solute atmosphere
and its dragging stress on a moving dislocation were ana-
lyzed by Cottrell and Jawon,12 Lothe and Price Hirth3 and
Yoshinaga and Morozumi,13 respectively. In these analyses,

the chemical and elastic interactions among solute atoms
were ignored and different degrees of simplification were
made. Computer simulation of the Portevin–Le Chatelier ef-
fect were carried out using a simple spatial coupling model.16

Kinetic Monte Carlo method17 and molecular dynamic
method18 have also been employed for simulating the dy-
namic interactions between moving dislocations and diffus-
ing solute atoms.

Recently, we proposed a continuum diffuse-interface
field model19,20 by coupling the Cahn–Hilliard diffusion
equation21 with the elastic fields produced from coherent
compositional inhomogeneities as well as from structural de-
fects such as dislocations. The unique feature of this model is
that the structural defects are viewed as lattice distortions
described by ‘‘eigenstrain.’’ It is capable of describing de-
fects with an arbitrary spatial distribution. A recent advance
in phase-field modeling of dislocation dynamics was made
by Wanget al.22–25In their phase-field model, the dislocation
loops are viewed as misfitting platelet inclusions, and labeled
by a set of order parameter field variables. The temporal
evolution of order parameter field variables, i.e., dislocation
motion, is described by the phenomenological time-
dependent Ginzburg–Landau kinetic equation.26 It is shown
that the model can take into account not only the long-range
elastic interaction among dislocations, but also the short
range interactions such as multiplication and annihilation of
dislocations. Chen and Wang27 generalized the crystalline en-
ergy and the gradient energy in previous phase field models22

to account for dislocation reactions and simulated the forma-
tion of dislocation network. A similar phase-field model of
dislocation dynamics was developed by Rodneyet al.28 In
their model two length scales are employed to take into ac-a!Electronic mail: sxh61@psu.edu
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count the dislocation core size which is smaller than the grid
space. However, it is computationally intensive, especially
for a multidislocation system.

The phase-field model of dislocation dynamics in Ref.
22 has been extended into a binary alloy by incorporating
diffusing solute atoms, immobile defects such inclusions,
and elastic inhomogeneity.29 The chemical and elastic inter-
actions among solutes and dislocations are automatically
taken into consideration. The focus of the present work is on
modeling the dynamic dragging effect of the solute atmo-
sphere on moving dislocations.

II. PHASE FIELD DESCRIPTION OF A BINARY
SYSTEM WITH DISLOCATIONS

We consider a binary solid solution with a compositional
inhomogeneity and a distribution of dislocations. Two sets of
phase field variables, i.e., compositional fieldX(r ,t) and or-
der parameter fieldsh(r ,t), are employed to describe the
mole fraction of solute atoms and the discontinuous displace-
ment field of dislocations at positionr and timet. The lattice
distortions caused by solute atoms and dislocations generate
stress fields, hence, elastic energy. In the present model the
lattice distortions are described by ‘‘eigenstrain or stress-free
strain.’’ If we assume that the variation of stress-free lattice
constanta with respect to composition obeys the Vegard’s
law, then the local eigenstrain caused by compositional inho-
mogeneity can be written as

e i j
0 ~r ,t !5e0dX~r ,t !d i j , ~1!

wheree05(1/a)(da/dX) is the composition expansion co-
efficient of lattice constant,dX(r ,t)5X(r ,t)2X0 with X0

being the overall composition of the solid solution, andd i j is
the Kronecker–Delta function. It should be pointed out the
assumption of Vegard’s law is not necessary in our model.

Most structural defects such as dislocations, grain
boundaries, slip bands, and cracks can be described by their
corresponding spatially dependent eigenstrains.30 With such
a concept, an arbitrary distribution of structural defects can
be introduced to a phase-field model.19,20As a consequence,
the stress field due to defects as well as compositional and/or
structural inhomogeneity can be calculated by the microelas-
ticity theory developed by Khachaturay and Shatalor.31,32 In
order to describe the dislocation dynamics within the frame-
work of a phase-field model, an order-parameter field,
h(r ,t), which represents the magnitude of the discontinuous
relative displacements on slip planes in units of Burgers vec-
tor b5@b(1),b(2),b(3)#, i.e., u05bh(r ,t) was
introduced.22 A definition of dislocation eigenstrain is pro-
posed as29

e i j
dis~r ,t !5

1

2d0
@b~ i !n~ j !1b~ j !n~ i !# f @h~r ,t !#, ~2!

wheren5@n(1),n(2),n(3)# is the normal direction of the
slip plane,d0 is the spacing of slip planes, and

f @h~r ,t !#5h~r ,t !2
1

2p
sin@2ph~r ,t !#. ~3!

The functionf @h(r ,t)# has the following two properties:~i!
it is exactly equal toh(r ,t) whenh(r ,t) is an integer; and
~ii ! its derivatives at integer values ofh(r ,t) are zero. These
properties eliminate the dependence of dislocation Burgers
vector on the applied stress for dislocation motion and yield
correct stress fields for both static and dynamic
dislocations.29 Another important feature of the definition of
eigenstrain is that it results in a smaller effective radius of
the dislocation core and thus improves the accuracy of the
dislocation stress field. In the numerical simulation, if we
choose the grid spacing to be about the size of dislocation
core ~several lattice constants!, the calculated elastic stress
field is exactly in agreement with the analytical solution ex-
cept at the two points at the dislocation core where the elastic
solution is no longer valid.29 In addition, since the discon-
tinuous displacement at the dislocation core is described by a
smooth function, it implies that the dislocation core is spread
out within the glide plane like the Peierls–Nabarro
model.33,34 As a result, unlike the analytical solution, the
stresses at dislocation core is no longer singular. The elimi-
nation of the singularity not only leads to a stress field which
is closer to the real situation but also benefits the numerical
stability.

In a single crystal withN slip systems,N-order param-
eter field variableshab(r ,t) (N5(a51

p ma , a51,2,...,p; b
51,2,...,ma) are needed to represent the dislocation systems,
wherep andma denote the number of elementary slip planes
and elementary Burgers vectors on the related slip planea.
For instance, in a fcc single crystal, there are four slip planes:
~111!, (1̄11), (11̄1), (111̄), and three slip directions on each
slip plane, and hence it requires 12 order parameter field
variables @p54, and ma53 ~a51,2,3,4!#. Therefore, the
eigenstrain for a given dislocation distributionhab(r ,t) can
be written in the Burgers vectorbab andna as

e i j
dis~r ,t !5(

a,b

bab~ i !na~ j !1bab~ j !na~ i !

2d0
f @hab~r ,t !#

5(
a,b

e i j
dis~a,b! f @hab~r ,t !#. ~4!

The total eigenstrain associated with compositional inhomo-
geneity and arbitrary distribution of dislocations is then
given by

e i j ~r ,t !5e i j
0 ~r ,t !1e i j

dis~r ,t !. ~5!

III. THERMODYNAMICS OF A BINARY SYSTEM
WITH DISLOCATIONS

The total free energyE in a binary system with disloca-
tions includes~1! the chemical free energyEchemwhich con-
sists of both the local bulk free energy of a binary solution
and the composition gradient energy;~2! elastic energyEelast

associated with solutes, defects, and applied stresses; and~3!
‘‘crystalline energy’’ which includes the local structural en-
ergy and the structural gradient energy. For a perfect dislo-
cation, the crystalline energy is associated with the disloca-
tion core energy.
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A. Chemical free energy

In a binary system with a spatial composition distribu-
tion X(r ), the chemical free energy can be described as the
sum of two contributions, i.e., the local bulk free energy and
the gradient energy. It reads

Echem5E
v
@~ f 0~X!1k~¹X!2#dv, ~6!

where the first termf 0(X) is the bulk free energy density of
a binary solution; the second term is the gradient energy
density, andk is the gradient energy coefficient. For simplic-
ity, we assume regular solution model forf 0(X) which has
the form

f 0~X!5RT@wX~12X!1X ln~X!1~12X!ln~12X!#,
~7!

whereR is the ideal gas constant,T is the absolute tempera-
ture, andw is a material constant. For an ideal solution,w is
equal to zero.

B. Elastic energy of the system

The total elastic strain energy can be calculated by~see
Refs. 19, 31, and 32 for detail!

Eelast5E
v

1

2
l i jkl e i j

elekl
eldv, ~8!

where

e i j
el5F ē i j 1de i j ~r !2e i j

0 ~r ,t !2(
a,b

e i j
dis~a,b! f @hab~r ,t !#

2e i j
de f0~r !G , ~9!

l i jkl is the elastic constant tensor,ē i j the homogeneous mac-
roscopic strain characterizing the macroscopic shape and
volume change,de i j (r ) heterogeneous strains, andekl

de f0(r )
the eigenstrain associated with other defects such as precipi-
tates.

C. ‘‘Crystalline energy’’ associated with dislocations

As a microscopic interpretation, the order parameterhab

represents the relative displacement between two atomic
planes on the slip plane. Imitating the ‘‘Peierls potential’’ in
a crystal and the gradient energy in the diffuse-interface
theory, Wanget al.22,23 constructed a ‘‘crystalline energy’’ of
dislocations

Ecryst5E
v
F (

a51

p

(
b51

ma

A~a,b!sin2@phab~r ,t !#

1
g

2 (
a151

p

(
a251

p FBi jkl ~a1 ,a2!

3
]bi~a1 ,r ,t !

]r j

]bk~a2 ,r ,t !

]r l
Gdv, ~10!

whereg is a positive constant,A(a,b) andBi jkl (a1 ,a2) are
material constants that can be fitted to the dislocation core

energy and the dislocation core size, andb(a,r ,t) is the total
Burgers vector of dislocations atr on slip planea

b~a,r ,t !5 (
b51

ma

babhab~r ,t !. ~11!

In Eq. ~10! the first term is the ‘‘Peierls potential’’~local
structural energy!, and the second term is the structural gra-
dient energy.

It should be pointed out that the ‘‘Peierls potential’’ does
not provide a Peierls stress for the dislocation motion de-
scribed by the time-dependent Ginzburg–Landau equation,
i.e., the Peierls stress is zero for an isolate dislocation in the
perfect crystal in the continuum description although the dis-
cretizing lattice may provide a pinning force on the disloca-
tion motion.29

IV. PHASE FIELD KINETIC EQUATIONS

The temporal evolution of solute compositionX is de-
scribed by the Cahn–Hilliard nonlinear diffusion equation

]X~r ,t !

]t
5M¹2

dE

dX~r ,t !
1j~r ,t !, ~12!

whereE is the total free energy of the system, andM is a
kinetic coefficient related to the solute diffusion mobility.
j(r ,t) is the noise term. Substituting the total energy into the
Cahn–Hilliard Eq.~12! and taking the first variational de-
rivatives with respect to the composition functionX(r ,t).
The composition field kinetic equation is given by

]X~r ,t !

]t
5M¹2H2l i jkl e

0d i j @ ēkl1dekl~r ,t !#

1l i jkl ~e0!2d i j dklX~r ,t !

1l i jkl e
0d i j H(

ab
ekl

dis~a,b! f @hab~r ,t !#

1ekl
de f0~r !J 1

] f 0~X!

]X
2k¹2X~r ,t !J1j~r ,t !.

~13!

The order parameter fields describing the dislocation distri-
bution are nonconserved, and their temporal evolution can be
assumed to follow the time-dependent Ginzburg–Landau
equations

]hab~r ,t !

]t
52L

]E

]hab~r ,t !
1z~a,b,r ,t !, ~14!

whereL is the kinetic coefficient characterizing the disloca-
tion mobility, andz(a,b,r ,t) is the Langevin Gaussian noise
term simulating the thermal fluctuations. Equation~14! can
be rewritten as
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]hab~r ,t !

]t
5LHl i jkl e i j

dis~a,b!
] f @hab~r ,t !#

]hab~r ,t !

3H ēkl1dekl~r ,t !2e0dklX~r ,t !

2(
ab

ekl
dis~a,b! f @hab~r ,t !#2ekl

de f0~r !J
2Ap sin@2phab~r ,t !#2

g

2

]F~r ,t !

]hab~r ,t !
J

1z~a,b,r ,t !, ~15!

where A5A(a,b) is assumed to be constant in the
simulation for simplicity, and F(r ,t)5(a151

p (a251
p

3@Bi jkl (a1 ,a2)]bi(a1 ,r ,t)/]r j]bk(a2 ,r ,t)/]r l # ~see Ref.
23, for detail!. To facilitate the computation, we introduce
the following dimensionless parameters:

r * 5
r

d0
, d* 5

dx

d0
, e05

a0

d0
,

l i jkl* 5
l i jkl

G
, e i j* 5

e i j

e0
, s i j* 5

s i j

Ge0
,

A* 5
A

Ge0
2

, g* 5
g

2Gd0
2e0

2
, t* 5LGe0

2t, ~16!

M* 5
M

Ld0
2

, k* 5
k

Gd0
2e0

2
,

f 0* ~X!5
f 0~X!

Ge0
2

, Eelas* 5
Eelas

Ge0
2

, x* 5
RT

Ge0
2

,

whereG is the shear modulus, anddx is the grid size of the
computational mesh.

V. RESULTS AND DISCUSSION

In the phase-field model formulated above, the dynamic
interaction between diffusive solutes and moving disloca-
tions can be obtained by solving the above phase-field ki-
netic Eqs.~13! and ~15!. These equations are solved using
the semi-implicit spectral method35 with periodic boundary
conditions alongx(r 1), y(r 2), andz(r 3) directions. In our
simulations the following parameters are fixed:C1153.0,
C1251.0, C4451.0, w51.5, A* 50.05, g*50.25, k*50.05,
e050.075, x*50.09, e050.25, dt* 50.2, d* 51.0, andd0

54a0 whereCi j are dimensionless elastic constants in the
Voigt’s notation, anda0 is the lattice constant. We vary the
dimensionless parametersM* , X0 , and s̄31* to study their
effect on dislocation-solute interactions.M* is the ratio of
solute mobility to dislocation mobility.X0 is the overall com-
position of the solid solution.s̄31* is the applied external
shear stress. For revealing the basic features of dislocation-
solute dynamic interactions, we only consider a single dislo-
cation loop in a two-dimensional problem in the present ar-
ticle although the model is valid for an arbitrary spatial
distribution of dislocations in three dimensions. The size of
the computational cell is 5123256 corresponding to a crystal

of 2048a031024a0 . The dislocation loop with a radiusR
580dx is introduced into the center of the computational
cell by assigning the initial valueh51 on the grid points
inside the dislocation loop on the slip plane andh50 outside
the loop as shown in Fig. 1. The Burgers vector of the dis-
location loop is artificially assumed to beb5~100! along the
x-direction, and its slip plane isn5~001! plane. We start the
simulation with a uniform solute distribution and a disloca-
tion loop under a constant applied strains̄31* .

A. Average velocity of dislocations

To investigate the macroresponses of dislocations to an
applied stress, we first study the average velocity of disloca-
tions. Figure 2 presents the average velocity of a dislocation
during 1200 simulation steps as a function ofM* , X0 , and
s̄31* . It is easy to see from Fig. 2~a! that the average velocity
V* decreases with increasingX0 for givenM* ands̄31* . The
phenomenon reflects the fact that a higher overall solute
compositionX0 causes a higher degree of solute segregation
near a moving dislocation, hence a larger dragging stress and
a lower velocity. Three characteristic velocities of disloca-
tions are observed from Figs. 2~a! and 2~b! for any givenX0

and s̄31* . One of them corresponds to the extreme case of
M* being close to zero. This implies that solute diffusion is
very slow compared to dislocation motion. As a result, solute
segregation occurs mainly in the dislocation core region
where a high driving force exists due to the large stress gra-
dient. The dislocation velocity reaches a maximum value of
V* 50.16(d0 /t* ) at s̄31* 50.04. The maximum value is al-
most independent of the overall compositionX0 , but de-
pends on the magnitude of the applied stresss̄31* @see Fig.
2~b!#.

In order to explain the constant velocity atM* 50, we
performed a phase plane analysis.36 On the slip plane shown
in Fig. 1, the evolution Eq.~15! degenerates to a one-
dimensional equation

]h0

]t*
52g*

]h0

]x* 2
2A* p sin~2ph0!

12@s̄31* 1s31* ~x* !#e31
dis*

] f ~h0!

]h0

50, ~17!

wherex* 5x/d0 , ands31* (x* ) is the stress component of the

FIG. 1. Schematic illustration of a dislocation loop located at the center of
a 2D computational cell.
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dislocation along thex-direction on the slip plane. We as-
sume that Eq.~17! has a traveling wave solutionh0(x* ),
and the velocity of the traveling wave, i.e., the dislocation
velocity, isV* . In the moving coordinate system

z5x* 2V* t* ~18!

Eq. ~17! can be rewritten as

2g*
]h0

]z2
1V*

]h0

]z
2A* p sin~2ph0!

12@s̄31* 1s31* ~z!#e31
dis*

] f ~h0!

]h0
50. ~19!

Multiply both sides with h0(z) and integrate from
~2`,`!, we get the velocityV*

V* 5

*0
12@s̄31* 1s31* ~z!#e31

dis*
] f ~h0!

]h0
dh0

*0
1h08~z!dh0

. ~20!

The existence of a traveling wave solution for Eq.~17! de-
pends on the property of the third term in the left-hand side
of the equation. It can be proved analytically that the travel-
ing wave solution always exist ifs31* (x* )50 and with the
function ~3!. Generally speaking, the traveling waveh0(z)
depends on the applied stresss̄31* . Therefore, Eq.~20! gives
a nonlinear relationship between the dislocation velocity and
applied stress. However, our numerical analysis showed that
for small applied stresss̄31* , h0(z) is close to the equilib-
rium profile determined in the absence of applied stresss̄31*
50.0. Hence, a linear relationship between the dislocation
velocity V* and the applied stresss̄31* exists for small ap-
plied stresses. Substitutings̄31* 50.04 and the equilibrium
profile h0(z), we got V* 50.18(d0 /t* ). The velocity
0.18(d0 /t* ) is slightly larger than 0.16(d0 /t* ) obtained by
the simulation. The reduction of the average velocityV* in
the simulation may be due to the dragging force resulted
from the solute segregation in the dislocation core, since we
observed solute segregation in the dislocation core even
whenM* is very small.

The second characteristic velocity of dislocation is asso-
ciated with the other extreme case whereM* is very large.
In this case,V* increases slowly with increasingM* for
given X0 and s̄31* . As is known, largerM* implies that the
solute diffuses much faster than the dislocation motion. An
equilibrium solute segregation profile around a dislocation is
instantaneously established. The average dragging stress ex-
erted on the dislocations by the solutes decreases and ap-
proaches to a constant which corresponds to the equilibrium
solute segregation. As a result, the dislocation velocity in-
creases and becomes a constant as well. Finally, it is shown
that there exists a certain value ofM* that leads to the mini-
mum in dislocation velocity. From the results shown in Fig. 2
it can be found that such aM* is independent ofX0 but
increases with the increase of the applied stresss̄31* . The
solute atmosphere and dragging stress at such a critical situ-
ation will be analyzed in the following sections.

B. Solute atmosphere

For a given overall solute compositionX050.15 and ap-
plied stresss̄31* 50.04, the profiles of solute atmospheres
around the moving dislocation are shown in Figs. 3~a!–3~c!
for M* 50.0005, 0.02, and 3.0, respectively. As expected,
M* affects significantly the size, shape, and composition

FIG. 2. Average velocity of a dislocation is a function ofM* 5M /Ld0 , ~a!
for different overall composition under applied stresss̄31* 50.04; ~b! for
overall compositionX050.15 under different applied stresses.
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profile of solute atmospheres. More interestingly, we found
from Figs. 3~b! and 3~c! that a higher degree of segregation
does not always lead to a larger dragging stress. The reason
is that the dragging stress is largely affected by the relative
position of the dislocation in the solute atmosphere. The ob-
vious change of the dislocation position can be observed in
Figs. 3~a!–3~c!. In Figs. 3~d!–3~f! we present the profiles of
the solute atmosphere atM* 50.5 for different applied

stresses. It is seen that the applied stress affect the size of the
solute atmosphere. A larger applied stress results in a spa-
tially smaller solute atmosphere.

C. A phenomenon of Portevin–Le Chatelier effect
and dynamic dragging stress

Portevin–Le Chatelier effect in solid solution results
from the alternating segregation of solutes toward disloca-
tions and the unlocking of the moving dislocation from its
solute atmosphere. The Portevin–Le Chatelier effect is char-
acterized by a number of experimental observations such as
the upper yield point, serration in the tensile stress versus
strain curves, and abnormal yield stress which increases and
then decreases as temperature increases in a particular tem-
perature region. As a matter of fact, the average dislocation
velocity presented in Sec. IV A exhibits a behavior similar to
the macroscopic Portevin–Le Chatelier effect. If we assume
that the dislocation mobility is constant, Fig. 2 presents a
relationship between the average dislocation velocity and the
solute mobility sinceM* is the ratio of the solute mobility to
the dislocation mobility. For substitutional solutes, its mobil-
ity strongly depends on temperature, and increases as tem-
perature increases. Therefore, the x-axes in Fig. 2 can be
regarded as temperature. All results in Fig. 2 demonstrate a
common tendency, i.e., the average dislocation velocity de-
creases and then increases as temperature increases. Such a
dependence of the dislocation velocity implies that the mac-
roscopic yield stress increases and then decreases with an
increase in temperature, i.e., the Portevin–Le Chatelier ef-
fect. Of course, for a quantitative simulation of the
Portevin–Le Chatelier effect, we need to perform a large
scale multidislocation system in three dimensions.

The origin of the Portevin–Le Chatelier effect in the
solute solution is the dynamic interaction between solutes
and dislocations. In order to examine the dynamic interac-
tion, temporal dislocation velocities and dynamic dragging
stress of solute atmosphere are calculated for the cases
shown in Figs. 3~a!–3~c! in which the dislocation has the
characteristic velocities. The temporal dislocation velocity
versus the distance of dislocation motion was plotted in Fig.
4~a!. Some features are observed from the results. First, the
formation of solute atmosphere slows down the dislocation
velocity until it reaches the characteristic average velocity.
For example, the velocity dropped from 0.45 to 0.29(d0 /t* )
after the dislocation moved about 5 – 10d0 distance for the
case ofM* 50.02. Since in our simulation we assumed there
was no solute segregation around the dislocation att* 50,
the initial velocity should be the same value of 0.45(d0 /t* )
for different M* . Second, the dynamic interaction between
the moving dislocation and its solute atmosphere causes a
periodic variation of dislocation velocity. It is found that the
strength of dynamic dragging corresponding to the amplitude
of velocity oscillation is almost independent ofM* . How-
ever, the frequency of the dislocation velocity oscillation de-
pends onM* . Finally, it is interesting to find that the average
dislocation velocity decreases as the frequency of the dy-
namic interaction increases.

In continuum mechanics, the dragging stress of the sol-
ute atmosphere is defined as the stress at the dislocation line.

FIG. 3. Solute atmospheres around moving dislocations in a solid solution
with overall composition isX050.15. ~a!, ~b!, and~c! under applied stress
s̄31* 50.04 andM* 50.0005, 0.02, and 3.0, respectively;~d!, ~e!, and~f! for
M* 50.5 and different applied stressess̄31* 50.06, 0.1, and 0.14, respec-
tively.
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Figure 4~b! presents the dragging stress of solute atmosphere
at dislocation line~h50.5! during the dislocation motion for
the three cases in Fig. 4~a!. As expected, the dragging stress
changes periodically during the dislocation motion. The
change frequency of the dragging stress is consistent with
that of the dislocation velocity. In our phase field model, the
dislocation core is spread out within the glide plane. There-
fore, the stress at the dislocation line~h50.5! is not exactly
the total dragging stress of the solute atmosphere. However,
it is found that the average value of the dragging stress dur-
ing a periodic variation of the dislocation velocity might re-
flect a total dragging stress.

FIG. 5. Dislocation and solute atmosphere move concurrently during the
period marked by the dash lines in Fig. 4~a! for the caseM* 50.02 and
applied stresss̄31* 50.1.

FIG. 4. ~a! Dislocation velocity under applied stresss̄31* 50.1; ~b! dynamic
dragging stress of solute atmosphere under applied stresss̄31* 50.1.
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D. Solute flow around the moving dislocation

Solutes diffuse down along the gradient of total chemical
potential which depends on the distribution of solute atoms
and elastic interaction energy. A simple model13 was used to
predict the solute flow around a stationary dislocation, which
has a constant velocity. In the model, the hydrostaic interac-
tion between a solute atom and an edge dislocation, and the
convection of solute atoms to the moving dislocation were
considered. However, the effect of the chemical free energy
of the solid solution, elastic interactions among solutes, the
solute atmosphere around the dislocation on the solute flow
were ignored. The phase field model in the present work
takes all these effects into account. Figure 5 presents a snap-
shot of the solute flow during the period marked by the dash
lines in Fig. 4~a!. The white arrows show the directions of
the solute flow, and the length of the arrows denotes the
strength of the solute flow. The lighter region below the slip
plane and darker regions above the slip plane indicate the
solute segregation and depletion regions, respectively. In
fact, the solute flow around a moving dislocation can be
separated into two parts. The first part is described by the
model in Ref. 13. The second part is related to the disappear-
ance of the solute atmosphere left by the moving dislocation.
It can be seen that the second part results in the flow lines of
the solute atoms that are totally different from that predicted
by the analytical calculation.13

VI. SUMMARY

The dynamic interactions between moving dislocations
and diffusive solutes are studied by a phase-field model.
Both the chemical interaction in the solute solution and elas-
tic interactions among solutes and dislocations have been
taken into consideration. The simulation results reveal some
features of dynamic interactions between a single dislocation
and its solute atmosphere. The temporal dragging stress of
the solute atmosphere changes periodically, leading to a pe-
riodically varied velocity of the dislocation. The average ve-
locity of the dislocation has three characteristic values which
depends on the overall composition, the ratio of solute mo-
bility and dislocation mobility, and the applied stress. The
dragging stress depends not only on the degree of solute
segregation but also the position of the dislocation in the
solute atmosphere. Although the simulations are carried out
in a solute solution with a single dislocation in two dimen-
sions, the model can be directly applied in a general case of
three-dimensional multidislocations. In order to study the
PLC effect, however, strain rate, dislocation reactions, and
the interaction between moving dislocations and immobile
defects have to be incorporated into the model.
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