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A solute atmosphere forms around a dislocation at temperatures where the diffusion of solute atoms
is comparable to or faster than the dislocation motion. The dynamic interactions between diffusive
solutes and moving dislocations were studied using a phase-field model which takes into account
both the chemical interactions in the solid solution and the elastic interactions among solutes and
dislocations. The average velocity of dislocations as a function of solute concentration, solute
mobility, dislocation mobility, and applied stresses was investigated. The dragging stress of a solute
atmosphere and the solute flow around a moving dislocation are presented and analyzed. Some
features of dynamic interactions between a single dislocation and its solute atmosphere are
observed. ©2004 American Institute of Physic§DOI: 10.1063/1.1755858

I. INTRODUCTION the chemical and elastic interactions among solute atoms
were ignored and different degrees of simplification were

Solid solution hardening is a common phenomenon ob- de. C ter simulati f the Portevin—Le Chatelier ef
served in many metallic alloy systems. It arises from variou ade. L.omputer simulation ot the Fortevin—Le L-hatelier et-
ct were carried out using a simple spatial coupling mogiel.

interactions between dislocations and solutes such as elas{f:é i M Carl hod q I | q .
interactions, chemical interactions, as well as electrid\Inétic_Monte Carlo met and molecular dynamic

8 . .
interactions-~® At low temperatures the diffusion of solute method® have also been employed for simulating the dy-

atoms is so slow that the solute atoms are almost at rest &&Mic interactions between moving dislocations and diffus-
dislocations move. As a result, the solutes act as point ofl'g solute atoms.
stacles to moving dislocations. In this case, the elastic inter- Recently, we proposed a continuum diffuse-interface
actions between immobile solutes and moving dislocation§ield modet® by coupling the Cahn-Hilliard diffusion
have been studied. Statistic methbdawere developed for equatiori* with the elastic fields produced from coherent
estimating the critical resolved shear stress. Recently, §ompositional inhomogeneities as well as from structural de-
phase-field approathwas developed for studying the elastic fects such as dislocations. The unique feature of this model is
interaction between randomly distributed immobile point ob-that the structural defects are viewed as lattice distortions
stacles and mobile dislocations in a two-dimensional modeldescribed by “eigenstrain.” It is capable of describing de-
At moderate or elevated temperatures, however, solutéects with an arbitrary spatial distribution. A recent advance
diffusion becomes significant and a solute atmosphere formis phase-field modeling of dislocation dynamics was made
quickly round moving dislocations. The dynamic interac- by Wanget al??>~2°In their phase-field model, the dislocation
tion between diffusing solute atoms and mobile dislocationdoops are viewed as misfitting platelet inclusions, and labeled
causes a repeated yield-point phenomefssrrated yield- by a set of order parameter field variables. The temporal
ing) and an increase in yield strength with temperature, i.e.evolution of order parameter field variables, i.e., dislocation
the Portevin—Le Chatelier effect, which has been observed imotion, is described by the phenomenological time-
many alloys. There are a number of theoretical and experidependent Ginzburg—Landau kinetic equafidit.is shown
mental studies of the dynamic interactions between diffusinghat the model can take into account not only the long-range
solute atoms and mobile dislocatiolfs'® For a single dis- elastic interaction among dislocations, but also the short
location in two dimensions, the critical velocity for the for- range interactions such as multiplication and annihilation of
mation of solute atmosphere, steady-state solute atmospheggsiocations. Chen and Wafigyeneralized the crystalline en-
and its dragging stress on a moving dislocation were angrgy and the gradient energy in previous phase field médels
lyzed by Cottrell and Jawolf, Lothe and Price Hirthand 15 account for dislocation reactions and simulated the forma-
Yoshinaga and Morozunt?, respectively. In these analyses, tion of dislocation network. A similar phase-field model of
dislocation dynamics was developed by Rodrmyal?® In
dElectronic mail: sxh61@psu.edu their model two length scales are employed to take into ac-
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count the dislocation core size which is smaller than the gridrhe functionf[ #(r,t)] has the following two propertiesi)
space. However, it is computationally intensive, especiallyit is exactly equal top(r,t) when »(r,t) is an integer; and
for a multidislocation system. (i) its derivatives at integer values @f{r,t) are zero. These
The phase-field model of dislocation dynamics in Ref.properties eliminate the dependence of dislocation Burgers
22 has been extended into a binary alloy by incorporatingzector on the applied stress for dislocation motion and yield
diffusing solute atoms, immobile defects such inclusionscorrect stress fields for both static and dynamic
and elastic inhomogeneity.The chemical and elastic inter- dislocations’® Another important feature of the definition of
actions among solutes and dislocations are automaticallgigenstrain is that it results in a smaller effective radius of
taken into consideration. The focus of the present work is orthe dislocation core and thus improves the accuracy of the
modeling the dynamic dragging effect of the solute atmo-dislocation stress field. In the numerical simulation, if we
sphere on moving dislocations. choose the grid spacing to be about the size of dislocation
core (several lattice constantsthe calculated elastic stress
field is exactly in agreement with the analytical solution ex-
Il. PHASE FIELD DESCRIPTION OF A BINARY cept gt th_e two points at th% disloca.ti.on core where the elastic
SYSTEM WITH DISLOCATIONS solution is no longer valid® In addition, since the discon-
tinuous displacement at the dislocation core is described by a
We consider a binary solid solution with a compositional smooth function, it implies that the dislocation core is spread
inhomogeneity and a distribution of dislocations. Two sets ofout within the glide plane like the Peierls—Nabarro
phase field variables, i.e., compositional fiX(r,t) and or- model®*3* As a result, unlike the analytical solution, the
der parameter fields(r,t), are employed to describe the stresses at dislocation core is no longer singular. The elimi-
mole fraction of solute atoms and the discontinuous displacenation of the singularity not only leads to a stress field which
ment field of dislocations at positianand timet. The lattice  is closer to the real situation but also benefits the numerical
distortions caused by solute atoms and dislocations generagability.
stress fields, hence, elastic energy. In the present model the In a single crystal withN slip systemsN-order param-
lattice distortions are described by “eigenstrain or stress-freeter field variablesy,z(r,t) (N=25_,m,, a=1,2,...p; B
strain.” If we assume that the variation of stress-free lattice=1,2,...m,) are needed to represent the dislocation systems,
constanta with respect to composition obeys the Vegard’swherep andm, denote the number of elementary slip planes
law, then the local eigenstrain caused by compositional inhoand elementary Burgers vectors on the related slip ptane
mogeneity can be written as For instance, in a fcc single crystal, there are four slip planes:
(111, (1112), (111), (111, and three slip directions on each
eﬂ(r,t)=e°5X(r,t)5ij, (@ slip plane, and hence it requires 12 order parameter field
where €°= (1/a)(da/dX) is the composition expansion co- variables[p=4, and m,=3 (a=1,2,3,9]. Therefore, the
efficient of lattice constantgX(r,t)=X(r,t)—X, with X,  €igenstrain for a given dislocation distribution,s(r,t) can
being the overall composition of the solid solution, ajdis ~ be written in the Burgers vectdr,; andn, as
the Kronecker—Delta function. It should be pointed out the _ _ _ _
assumption of Vegard’s law is not necessary in our model. B =S Pap(i)Na(j) +Dap(j)ng(i) (D]
Most structural defects such as dislocations, grain W s 2dg M\l
boundaries, slip bands, and cracks can be described by their
corresponding spatially dependent eigenstréingith such = 5w B)f[ 751 1] @
a concept, an arbitrary distribution of structural defects can a.B
be introduced to a phase-field mod&f°As a consequence,
the stress field due to defects as well as compositional and/drhe total eigenstrain associated with compositional inhomo-
structural inhomogeneity can be calculated by the microelasgeneity and arbitrary distribution of dislocations is then
ticity theory developed by Khachaturay and ShatdtéfIn  given by
order to describe the dislocation dynamics within the frame- _
work of a phase-field model, an order-parameter field,  €;(r,t)=e€}(r,t)+ejr,t). )
n(r,t), which represents the magnitude of the discontinuous

relative displacements on slip planes in units of Burgers Vel THERMODYNAMICS OF A BINARY SYSTEM
tor b=[b(1),b(2),b(3)], i.e., ug=bxy(r,t) was WITH DISLOCATIONS

introduced?? A definition of dislocation eigenstrain is pro-

posed a& The total free energ¥ in a binary system with disloca-
1 tions includeg1) the chemical free enerdy*"*™which con-
Eﬁ.is(r,t)z ﬁ[b(i)n(j)jub(j)n(i)]f[n(r,t)], 2) sists of both the_ !ocal buIlk free energy of a binary sc|>Iution
0 and the composition gradient enerdg) elastic energye®ast

wheren=[n(1),n(2),n(3)] is the normal direction of the associated with solutes, defects, and applied stresse¢3and
slip plane,d, is the spacing of slip planes, and “crystalline energy” which includes the local structural en-
ergy and the structural gradient energy. For a perfect dislo-
_ 1 cation, the crystalline energy is associated with the disloca-
fln(r,0)]=n(r,t) = 5—si2mp(r ). ®  on core energy.
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A. Chemical free energy energy and the dislocation core size, dfe,r,t) is the total
In a binary system with a spatial composition distribu- Burgers vector of dislocations aton slip planea
tion X(r), the chemical free energy can be described as the

sum of two contributions, i.e., the local bulk free energy and
the gradient energy. It reads b(a,r,t)=ﬁgl Bap7ap(r.t). (12)

My

h 2
S L[(fO(X)""K(VX) Jdv, ® n Eq. (10) the first term is the “Peierls potential(local

structural energy and the second term is the structural gra-
where the first ternfy(X) is the bulk free energy density of gjent energy.

a binary solution; the second term is the gradient energy |t should be pointed out that the “Peierls potential” does
density, and is the gradient energy coefficient. For simplic- ot provide a Peierls stress for the dislocation motion de-
ity, we assume regular solution model fiy(X) which has  scriped by the time-dependent Ginzburg—Landau equation,
the form i.e., the Peierls stress is zero for an isolate dislocation in the
fo(X)=RT[ @X(1—X)+XIn(X)+(1—X)In(1—X)], perfect crystal in the continuum description although the dis-

(7) cretizing lattice may provide a pinning force on the disloca-

whereR is the ideal gas constari,is the absolute tempera- tion motion:

ture, andy is a material constant. For an ideal solutignis
equal to zero.
IV. PHASE FIELD KINETIC EQUATIONS

B. Elastic energy of the system The temporal evolution of solute compositidhis de-

The total elastic strain energy can be calculatedd®e scribed by the Cahn—Hilliard nonlinear diffusion equation
Refs. 19, 31, and 32 for detail

1 - ax(r,t) _MV? E
EeIaSt: fvgxijk| Eiej EE|dv, (8) &t - M 5X(I’,t) + g(rlt)l (12)

where whereE is the total free energy of the system, akidis a

kinetic coefficient related to the solute diffusion mobility.
+ 86 (1) — € (r,t) = E €15, B[ 7ap(r.0)] &(r,t) is the noise term. Substituting the total energy into the
Cahn—Hilliard Eqg.(12) and taking the first variational de-
rivatives with respect to the composition functidf(r,t).
©) The composition field kinetic equation is given by

_ defo
&; (],

\ijki is the elastic constant tensEri the homogeneous mac- (rt)
roscopic strain characterizing the macroscopic shape and

= MVZ[_MjkﬁO&ij[?lif O€(r,1)]

volume changegde;;(r) heterogeneous strains, aaﬁﬂo(r) o
the eigenstrain associated with other defects such as precipi- +7\ijk|(60)25ij SX(r,t)
tates.
: . L . +Nija €981 2, €, B) [ 7ap(r,1)]

C. “Crystalline energy” associated with dislocations ap

As a microscopic interpretation, the order parameigy def Ifo(X) )
represents the relative displacement between two atomic te )+ s kXY [+,
planes on the slip plane. Imitating the “Peierls potential” in
a crystal and the gradient energy in the diffuse-interface (13
theory, Wanget al?? constructed a “crystalline energy” of _ N . -
dislocations The order parameter fields describing the dislocation distri-

bution are nonconserved, and their temporal evolution can be

pom, . ,
cryst_ assumed to follow the time-dependent Ginzburg—Landau
E ) ;:)1 2, A(a, B)SIrPL 7 77,5(r,1)] equations

Y- - 97.5(r 1) 9E

23 3 [Buea el

2.4 & ijkil@g,ap ot L aﬂaﬁ(r,t) +{(a,B,r,1), (14

db, ,r,t) db it
5 i(ay ) k(ay )}dv,

T ar (10 wherelL is the kinetic coefficient characterizing the disloca-
j I

tion mobility, and{(«, B,r,t) is the Langevin Gaussian noise
wherey is a positive constanf\(a, 8) andBjj(a1,a,) are  term simulating the thermal fluctuations. Equatid4) can
material constants that can be fitted to the dislocation corbe rewritten as
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anaﬁ(r!t) _ dis 19f[7laﬁ(r't)]
— o LNkl (a,ﬂ)m n=0
X { €+ Sep(r,t) — €98, X(r,t B . B
{ o S z} -C ‘_‘_‘.F«ful?lﬁzlzm‘_k P
A A — A
-2 eﬂ.‘%a.ﬂ)f[mﬁ(r,t)]—eiff%r)] b
, y ad(r,t) ] >
—AmsiN2my,5(rt)]— 5 ——=
i r{ i B( )] 2 577a,3(r-t) X
+ {(a,,B,r,t), (15) FIG. 1. Schematic illustration of a dislocation loop located at the center of

i . a 2D computational cell.
where A=A(«,B) is assumed to be constant in the

simulation ~ for = simplicity, and ®(r,t)=3% _13{ _;  of 20481,% 1024,. The dislocation loop with a radiug

X[Bijki (a1, ap)dbi(ay,r,t)/drjob(a,,r,t)/or|] (see Ref. =80dx is introduced into the center of the computational
23, for detail. To facilitate the computation, we introduce cell by assigning the initial valug=1 on the grid points
the following dimensionless parameters: inside the dislocation loop on the slip plane a0 outside
" dx ag the loop as shown in Fig. 1. The Burgers vector of the dis-
r*=—, d*=—, €=, location loop is artificially assumed to te=(100) along the
do do do x-direction, and its slip plane is=(001) plane. We start the
. N . € . Oy simulation with a uniform solute distribution and a disloca-
KM=g S =E—O, o :G_eo’ tion loop under a constant applied strais; .
A A. Average velocity of dislocations
A*=——, ¥'= yz 5 =LGet, (16) To investigate the macroresponses of dislocations to an
Geo 2Gdyep applied stress, we first study the average velocity of disloca-
M « tions. Figure 2 presents the average velocity of a dislocation
M*=—, Kk*=——r, during 1200 simulation steps as a functionhdf, X,, and
Ldj Gdjes % . Itis easy to see from Fig.(@ that the average velocity
£(X) gelas RT V* decreases with increasing, for givenM* anda,. The
X(X) = 0 =, Eelask— — = phenomenon reflects the fact that a higher overall solute
€5 Geg Geg compositionX, causes a higher degree of solute segregation

near a moving dislocation, hence a larger dragging stress and
a lower velocity. Three characteristic velocities of disloca-
tions are observed from Figs(&2 and 2Zb) for any givenX,
and a%,. One of them corresponds to the extreme case of
M* being close to zero. This implies that solute diffusion is
In the phase-field model formulated above, the dynamia/ery slow compared to dislocation motion. As a result, solute
interaction between diffusive solutes and moving dislocasegregation occurs mainly in the dislocation core region
tions can be obtained by solving the above phase-field kiwhere a high driving force exists due to the large stress gra-
netic Egs.(13) and (15). These equations are solved usingdient. The dislocation velocity reaches a maximum value of
the semi-implicit spectral methdtwith periodic boundary v* =0.16(d,/t*) at 03,=0.04. The maximum value is al-
conditions alongx(rq), y(r,), andz(rz) directions. In our most independent of the overall compositig, but de-
simulations the following parameters are fixe@i;=3.0, pends on the magnitude of the applied stre§s [see Fig.
C12=1.0,Cyy=1.0, ¢=1.5,A*=0.05, y*=0.25, k*=0.05,  2(b)].
€°=0.075, y*=0.09, ,=0.25, dt* =0.2, d* =1.0, andd, In order to explain the constant velocity kkt* =0, we
=4a, whereC;j; are dimensionless elastic constants in theperformed a phase plane analy&i©n the slip plane shown
Voigt's notation, andg, is the lattice constant. We vary the in Fig. 1, the evolution Eq.(15) degenerates to a one-
dimensionless parametek8*, X,, and o3, to study their  dimensional equation
effect on dislocation-solute interactiongl* is the ratio of

whereG is the shear modulus, amtk is the grid size of the
computational mesh.

V. RESULTS AND DISCUSSION

soIqt_e mobility to diglocation m_oPiIit;b.(o is the qverall com- 5710 P ﬂ_ A* 7 sin(27 )

position of the solid solutiono 3, is the applied external at Ix*2

shear stress. For revealing the basic features of dislocation-

solute dynamic interactions, we only consider a single dislo- [0+ oy (x* )]l 9t (o)

cation loop in a two-dimensional problem in the present ar- s1o st 3 am

ticle although the model is valid for an arbitrary spatial _0 (17

distribution of dislocations in three dimensions. The size of
the computational cell is 522256 corresponding to a crystal wherex* =x/dy, ando,(x*) is the stress component of the
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FIG. 2. Average velocity of a dislocation is a functionMf* =M/Ld,, (a)
for different overall composition under applied stras§=0.04; (b) for

overall compositionX,=0.15 under

dislocation along the-direction on the slip plane. We as-
sume that Eq(17) has a traveling wave solutiopy(x*),

different applied stresses.
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Jd J
x 710 4 \yx 0 s sin( 277 o)

2y ar? 24

af(m0)

r2loft okl — -

=0. (19

Multiply both sides with 7y({) and integrate from
(—o,%), we get the velocity/*

_ - of

Jo2l a3+ Ugl(f)kgllsk#%)d??o

VE = — 0 . (20)
fo’?o(g)dﬂo

The existence of a traveling wave solution for Efj7) de-
pends on the property of the third term in the left-hand side
of the equation. It can be proved analytically that the travel-
ing wave solution always exist if3,(x*)=0 and with the
function (3). Generally speaking, the traveling wavg({)
depends on the applied stras$ . Therefore, Eq(20) gives
a nonlinear relationship between the dislocation velocity and
applied stress. However, our numerical analysis showed that
for small applied stress;, 70({) is close to the equilib-
rium profile determined in the absence of applied stigls
=0.0. Hence, a linear relationship between the dislocation
velocity V* and the applied stress?; exists for small ap-
plied stresses. Substituting;=0.04 and the equilibrium
profile 7({), we got V*=0.18(d,/t*). The velocity
0.18(d/t*) is slightly larger than 0.1&{,/t*) obtained by
the simulation. The reduction of the average velodity in
the simulation may be due to the dragging force resulted
from the solute segregation in the dislocation core, since we
observed solute segregation in the dislocation core even
whenM* is very small.

The second characteristic velocity of dislocation is asso-
ciated with the other extreme case whié is very large.
In this case,V* increases slowly with increasingl* for
given X, ando3;. As is known, largeM* implies that the
solute diffuses much faster than the dislocation motion. An
equilibrium solute segregation profile around a dislocation is
instantaneously established. The average dragging stress ex-
erted on the dislocations by the solutes decreases and ap-
proaches to a constant which corresponds to the equilibrium
solute segregation. As a result, the dislocation velocity in-
creases and becomes a constant as well. Finally, it is shown
that there exists a certain valueldf* that leads to the mini-
mum in dislocation velocity. From the results shown in Fig. 2
it can be found that such BlI* is independent oK, but
increases with the increase of the applied stre$s The
solute atmosphere and dragging stress at such a critical situ-

and the velocity of the traveling wave, i.e., the dislocationation will be analyzed in the following sections.

velocity, isV*. In the movin

gIX* —\V*t*

Eqg. (17) can be rewritten as

g coordinate system

B. Solute atmosphere

For a given overall solute compositioty=0.15 and ap-
plied stresso3;=0.04, the profiles of solute atmospheres
around the moving dislocation are shown in Fig&)33(c)
for M*=0.0005, 0.02, and 3.0, respectively. As expected,
M* affects significantly the size, shape, and composition
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0.11 stresses. It is seen that the applied stress affect the size of the
solute atmosphere. A larger applied stress results in a spa-
tially smaller solute atmosphere.

C. A phenomenon of Portevin—Le Chatelier effect

0.07
0.142 0.14 and dynamic dragging stress

Portevin—Le Chatelier effect in solid solution results
from the alternating segregation of solutes toward disloca-
tions and the unlocking of the moving dislocation from its
solute atmosphere. The Portevin—Le Chatelier effect is char-
acterized by a number of experimental observations such as
0.19 the upper yield point, serration in the tensile stress versus
d) strain curves, and abnormal yield stress which increases and

then decreases as temperature increases in a particular tem-
perature region. As a matter of fact, the average dislocation
velocity presented in Sec. IV A exhibits a behavior similar to
the macroscopic Portevin—Le Chatelier effect. If we assume
0.07 that the dislocation mobility is constant, Fig. 2 presents a

0.13 relationship between the average dislocation velocity and the
01 @ solute mobility sinceM* is the ratio of the solute mobility to
R
022>
o;

0.158 0.16

~—
QO

~—

_—

the dislocation mobility. For substitutional solutes, its mobil-
ity strongly depends on temperature, and increases as tem-
perature increases. Therefore, the x-axes in Fig. 2 can be
regarded as temperature. All results in Fig. 2 demonstrate a
common tendency, i.e., the average dislocation velocity de-
creases and then increases as temperature increases. Such a
0.19 dependence of the dislocation velocity implies that the mac-
(e) roscopic yield stress increases and then decreases with an
increase in temperature, i.e., the Portevin—Le Chatelier ef-
fect. Of course, for a quantitative simulation of the
0.11 Portevin—Le Chatelier effect, we need to perform a large
scale multidislocation system in three dimensions.
The origin of the Portevin—Le Chatelier effect in the
0' solute solution is the dynamic interaction between solutes
and dislocations. In order to examine the dynamic interac-
tion, temporal dislocation velocities and dynamic dragging
stress of solute atmosphere are calculated for the cases
0.23™ shown in Figs. 8)-3(c) in which the dislocation has the
characteristic velocities. The temporal dislocation velocity
019 versus the distance of dislocation motion was plotted in Fig.
4(a). Some features are observed from the results. First, the
formation of solute atmosphere slows down the dislocation
(f) velocity until it reaches the characteristic average velocity.
For example, the velocity dropped from 0.45 to 0@9(t*)
FIG. 3. Solute atmospheres around moving dislocations in a solid solutio@fter the dislocation moved about 5-di0distance for the
with overall composition iX,=0.15. (a), (b), and(c) under applied stress  case ofM* =0.02. Since in our simulation we assumed there
05;=0.04 andM* =0.0005, 0.02, and 3.0, respectivelgh, (), and(f) for  \ya5 no solute segregation around the dislocatiott at0,
3’\'/;; _0'5 and different applied stresses;=0.06, 0.1, and 0.14, respec- 4 jnitia| velocity should be the same value of 0@g(t*)
for different M*. Second, the dynamic interaction between
the moving dislocation and its solute atmosphere causes a
periodic variation of dislocation velocity. It is found that the
profile of solute atmospheres. More interestingly, we foundstrength of dynamic dragging corresponding to the amplitude
from Figs. 3b) and 3c) that a higher degree of segregation of velocity oscillation is almost independent bf*. How-
does not always lead to a larger dragging stress. The reasawver, the frequency of the dislocation velocity oscillation de-
is that the dragging stress is largely affected by the relativpends orM™*. Finally, it is interesting to find that the average
position of the dislocation in the solute atmosphere. The obdislocation velocity decreases as the frequency of the dy-
vious change of the dislocation position can be observed imamic interaction increases.
Figs. 3a)—3(c). In Figs. 3d)—3(f) we present the profiles of In continuum mechanics, the dragging stress of the sol-
the solute atmosphere @1*=0.5 for different applied ute atmosphere is defined as the stress at the dislocation line.

0.1
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FIG. 4. (a) Dislocation velocity under applied stres§;=0.1; (b) dynamic
dragging stress of solute atmosphere under applied siss0.1.

Figure 4b) presents the dragging stress of solute atmosphere
at dislocation ling #=0.5) during the dislocation motion for
the three cases in Fig(@. As expected, the dragging stress
changes periodically during the dislocation motion. The
change frequency of the dragging stress is consistent with
that of the dislocation velocity. In our phase field model, the
dislocation core is spread out within the glide plane. There-
fore, the stress at the dislocation lite=0.5) is not exactly

the total dragging stress of the solute atmosphere. However,

itis found that the average value of the dragging stress dl'"i:IG. 5. Dislocation and solute atmosphere move concurrently during the

ing a periodic variation of the dislocation velocity might re- period marked by the dash lines in Figasfor the caseM* =0.02 and
flect a total dragging stress. applied stress;=0.1.
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