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Abstract

Phase field approach is applied to modeling the spinodal decomposition process in a thin film with periodically distributed arrays

of interfacial dislocations. The elastic stress field in the simultaneous presence of interfacial dislocations, substrate constraint, and

compositional strains is obtained by solving the mechanical equilibrium equations using an iteration method. It is shown that the

periodic stress field associated with the array of interfacial dislocations leads to a directional phase separation and the formation of

ordered mesoscale microstructures. It is demonstrated that when the periodicity of the dislocation is small, the wavelength of the

ordered microstructure tends to be the same periodicity as the dislocation array. The results have important practical implications

that an ordered nanostructures could be produced by controlling the interfacial dislocation distribution.

� 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The translational symmetry in bulk materials is bro-

ken due to the presence of a surface and an interface in a

thin film on a substrate [1]. As a result, the kinetics of

phase transition in a film may differ dramatically from
that in bulk materials. For example, quasi-two dimen-

sional diffusion may occur in a very thin film, and results

in the formation of cylindrical particles perpendicular to

the surface during spinodal decomposition. For a thick

film, the stress relaxation at surface or stress gradient

along the film thickness causes an inhomogeneous de-

composition rate and the development of alternating

layers of the phases lying parallel to the surface [2–4].
Experiments demonstrated that a regular network of

pure edge-type dislocations with a spacing of several

nanometers could be formed directly at the heteroin-

terface, which has extremely large lattice mismatches
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between the film and substrate [5–7]. The effects of dis-

locations on spinodal decomposition [8] and morpho-

logical instability [9] were studied. Like a surface,

interfacial dislocations and a strained or patterned

substrate break the translational symmetry in the film

plane, which can be used to control the wave length of
spinodal decomposition and thus the resulting nano-

structures [1,7,10–14]. Romanov et al. [12] investigated

the possibility of using such dislocation arrays to control

the nucleation of self-assembled quantum dots. Johnson

et al. [1,10,11] performed two-dimensional simulations

of phase decomposition in a film on a patterned sub-

strate. Greaney et al. [14] studied the effect of a rigid,

periodically strained substrate on spinodal decomposi-
tion in a film. A linear stability analysis [14] showed that

a film will undergo spinodal decomposition with the

dominant wavelength determined by the periodicity of

the substrate strain. The purpose of the present work is

to develop a three-dimensional (3D) phase field model

for simulating the spinodal decomposition in a film with

periodically distributed interfacial dislocations and sub-

ject to an elastically substrate constraint. The iteration
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method proposed for solving mechanical equilibrium

equations in elastically inhomogeneous bulk solids [15]

is extended to thin films in the simultaneous presence of

dislocations, compositional strains, and a substrate

constraint. Although the surface instabilities of the film
can also be taken into account, in the present work, we

assume that the film has a flat surface. The formation of

self-assembled quantum dots due to surface instabilities

will be reported in a coming paper.
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2. Phase-field model

We consider a cubic thin film grown heteroepitaxially

on a cubic substrate at high temperature. We assume

that a periodically dislocation array is formed at the

interface. The Burgers’ vectors of dislocations are as-

sumed to be along 1
2
½110� and 1

2
½�110�, respectively. For

simplicity, we assume the film is a binary solid solution,

which is unstable with respect to spinodal decomposi-

tion at the temperature of interest. In the phase-field
framework, the composition cðx; tÞ, which represents the

mole or atom fraction at position x and time t, is chosen
as the phase variable. If we ignore the microstructural

evolution of the substrate and the dislocation core en-

ergy, then the total energy of the system includes the

chemical free energy, gradient energy due to composi-

tion inhomogeneity, and elastic energy

E ¼
Z
v
½f ðcðx; tÞÞ þ a2

2
ðrcðx; tÞÞ2

þ 1

2
kijklðx; tÞeijðx; tÞeklðx; tÞ�d3x; ð1Þ

where f ðcÞ is the chemical free energy density, a is the
gradient energy coefficient. The third term in (1) is the

elastic energy density. kijklðx; tÞ is the elastic modulus

tensor, which is, in general, spatially dependent. For

evolving microstructures, it might be time dependent.

eijðx; tÞ is the elastic strain tensor, which is obtained by

solving the mechanical equilibrium equations.

2.1. Chemical free energy

The chemical free energy density, f ðcÞ, is arbitrarily

chosen as a double well function which has minima at

equilibrium compositions of 0.053, and 0.947 as follows:

f ðcÞ ¼ f0ð�ðc� 0:5Þ2 þ 2:5ðc� 0:5Þ4Þ; ð2Þ
where f0 is a scaled constant.
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Fig. 1. Schematic drawing of an elastically inhomogeneous system.
2.2. Elastic energy

We assume that the variation of stress-free lattice

parameter, a, with composition obeys Vegard’s law, the

local stress-free strain tensor or eigenstrain tensor

caused by compositional inhomogeneity is given by
ecijðx; cðx; tÞÞ ¼ e0dcðx; tÞdij; ð3Þ

where e0 ¼ ð1=aÞðda=dcÞ is the composition expansion
coefficient of lattice parameter, dcðx; tÞ ¼ cðx; tÞ � c0
with c0 being the overall composition of the solid solu-

tion, and dij is the Kronecker-delta function.

Dislocations are viewed as one kind of lattice dis-

tortions. The eigenstrain tensor related to a dislocation

loop on slip plane p with a Burgers vector b, can be

described as [16–19]

edis0ij ðxÞ ¼ 1

2d0
ðbðiÞnðjÞ þ bðjÞnðiÞÞdðx� x0Þ; ð4Þ

where n is the unit vector normal to the slip plane, d0 is
the interplanar distance of the slip planes. dðx� x0Þ is

the Dirac delta function and x0 is a point inside the

dislocation loop on the slip plane. For a spatial distri-

bution of many dislocation loops, the total eigenstrain
edisij ðxÞ can be obtained by adding the eigenstrain tensor

of individual dislocation loops. Hence, the total eigen-

strain tensor associated with the composition inhomo-

geneity and dislocations can be written as

e0ijðxÞ ¼ ecijðxÞ þ edisij ðxÞ: ð5Þ

In a bulk system with periodic boundary conditions,
several methods were developed for finding the elastic

solution in an elastically inhomogeneous system [15,20–

22]. In the present work, the iteration method in [15] is

extended to thin films. To do this, we artificially add a

gas phase above the film as shown in Fig. 1. By applying

periodic boundary conditions to the film system in x-, y-
and z-directions, a 3D bulk system is constructed. The

iteration method can be directly employed to find the
elastic solution in the film by assigning a zero elastic

constant in the gas phase. The eigenstrain and elastic

modulus tensors are defined as

e0ijðxÞ ¼
edisij ðxÞ in the gas phase;

ecijðxÞ þ edisij ðxÞ in film and substrate;

�
ð6Þ

and



Fig. 3. (a) rxxðzÞ=G and (b) rzzðzÞ=G along A–A line shown in Fig. 2.
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kijklðxÞ ¼ k0ijkl þ k0ijklðxÞ

¼ 0:0 in the gas phase;
k0ijkl þ k0ijklðxÞ in film and substrate;

�
ð7Þ

where k0ijklðxÞ is the elastic constant of one of the phases
in the system, k0ijklðxÞ is the change in elastic constants

with respect to k0ijklðxÞ. Notice that the elastic constant is
zero in the gas phase, so all stress components are zero

in the gas phase. From the continuity of stresses at the

interface between the gas phase and the solid phase, the

elastic solution obtained satisfies the stress-free bound-

ary conditions at the surface of the film (z ¼ hf ), and the

bottom of the substrate (z ¼ hs). In the present work, we

assume the film and substrate are elastically homoge-

neous, i.e., k0ijklðxÞ ¼ 0.
To verify the iteration method in the film system, we

consider a single edge dislocation below the surface as

shown in Fig. 2, which has analytical solutions [23]. The

simulation cell is 512� 1� 256, where h ¼ 40 and l ¼ 1.

The dislocation below the surface and its image dislo-

cation in the gas phase form a dislocation loop. The

nonzero eigenstrain associated with such a dislocation

loop is

edis11 ðxÞ ¼ b=d0dðx� x0Þ; ð8Þ
where b is the magnitude of the Burgers vector of the

dislocation, d0 is the grid spacing. x0 is the point within

the dislocation loop on the slip plane. Distributions of

stress components r11ðzÞ and r22ðzÞ along A–A line

shown in Fig. 2 are plotted in Fig. 3(a) and (b) for dif-

ferent iteration numbers. The analytical solutions are
also included for comparison. It is found that the nu-

merical solution with eight iterations agrees very well

with the analytical solution. In the numerical simulation

of spinodal decomposition, the elastic solution at time t
is used as the zeroth order solution for t þ Dt, and hence,

three iterations is sufficient for obtaining the elastic

solution.
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Fig. 2. The image dislocation in the gas phase and the real dislocation

below the surface form a dislocation loop.
2.3. Evolution equation

Since the composition is a conserved field variable, its

evolution is described by the Cahn–Hilliard-type diffu-

sion equation [24]

ocðx; tÞ
ot

¼ rMr dE
dcðx; tÞ þ nðx; tÞ; ð9Þ

where dE=dcðx; tÞ denotes the variational derivative, the
function nðx; tÞ is a statistically defined Gaussian white

noise source with mean zero

hnðx; tÞi ¼ 0; ð10Þ
where M is chemical mobility. If we assume that the
atomic mobilities of species 1 and 2 are equal, the mo-

bility, M , is given by

M ¼ Dcðx; tÞð1� cðx; tÞÞ
kBT

; ð11Þ

where D is the chemical diffusion coefficient, kB is the
Boltzmann constant and T is the absolute temperature.
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The variation of the total free energy (1) with respect

to composition cðx; tÞ gives
ocðx; tÞ

ot
¼ r � Dcðx; tÞð1� cðx; tÞÞ

kBT
r of ðcðx; tÞÞ

ocðx; tÞ

��

� ar2cðx; tÞ þ lelðx; tÞ
��

þ nðx; tÞ; ð12Þ

where lel is the elastic potential which is the derivative of

the elastic energy with respect to composition.

Using reduced variables we have the dimensionless

form of the evolution equation

ocðr�; t�Þ
ot�

¼ r�ð Þ2 of �ðcðr�; t�ÞÞ
ocðr�; t�Þ

�
� a� r�ð Þ2cðr�; t�Þ

þ l�
elðr�; t�Þ

�
þ nðr�; t�Þ; ð13Þ

where r� ¼ x=d0, t� ¼ Dtc0ð1� c0Þ=d2
0 , r� ¼ d0r,

f � ¼ f =ðkBT Þ, a� ¼ a=ðkBTd2
0 Þ and l�

el ¼ lel=ðkBT Þ,
where d0 is the grid spacing.

In the present work, we ignore the morphological
instabilities in the film surface, and assume the compo-

sition flux at the surface of the film and interface be-

tween the film and the substrate are zero. Therefore, the

temporal evolution of the composition field is obtained

by solving the Eq. (13) together with the initial condi-

tions and the following boundary conditions

ocðx; tÞ
oz

����
z¼�hf

¼ 0 and
ocðx; tÞ

oz

����
z¼0

¼ 0: ð14Þ

To numerically solve this evolution equation, a

Fourier-spectral method is used in x- and y-directions
[4,25]. Since the zero-flux boundary conditions at film

surface and film/substrate interface cannot be satisfied

by a Fourier expansion, a second-order finite difference

method with fast Fourier transform (FFT) is used in the

z-direction.
Fig. 4. Temporal morphological evolution during spinodal decompo-

sition in a thin film under a uniform substrate constraint.
3. Results and discussion

In the simulation, 128� 128� 32 discrete grid points

are used. The thickness of the substrate is hs ¼ 18. In

order to study the effect of film thickness on the mi-

crostructural pattern, three different film thickness

hf ¼ 3, 5 and 9 are considered. The dimensionless grid
spacing is chosen to be Dx1=d0 ¼ Dx2=d0 ¼ Dx3=d0 ¼ 1:0
and Dt� is chosen to be 0.05. The interfacial energy is

assumed to be isotropic, and the dimensionless gradient

energy coefficient, a�, is taken to be 0.5. The overall

reduced composition used in this study is 0.5 which is

inside the spinodal decomposition region. Isotropic

elastic constants are assumed for both film and sub-

strate, C11 ¼ 300, C12 ¼ 100, C44 ¼ 100, in the unit of
NVkBT where NV is the number of atoms per unit vol-

ume. Considering that the linear elasticity theory is only
valid outside the dislocation core region, the character-

istic length d0 is taken to be 10b, where b is the magni-

tude of the Burgers’ vector of the dislocation.

In the present work, our main focus is on the effect of

nonuniform lattice mismatches at the film/substrate in-
terface on morphological evolution during spinodal

decomposition. The nonuniform interface lattice mis-

matches are related to interfacial dislocations. Assume

nx edge dislocations and ny edge dislocations are uni-

formly distributed in x- and y-directions, respectively.
The nonzero components of the eigenstrain tensor re-

lated to such a dislocation distribution can be described

as

edis11 ðrÞ ¼
Xnx
n1¼1

b
d0

d x
�

� 128

nx

�
� 0:5

��
;

edis22 ðrÞ ¼
Xny
n2¼1

b
d0

d y
�

� 128

ny

�
� 0:5

��
;

if z < hf :

ð15Þ

First, let us compare the composition evolution in

two cases. In case I, the lattice mismatch is uniform,

edis11 ¼ edis22 ¼ 0:00165. And in case II, the total lattice

mismatch is the same as that in case I, but the uniform

lattice mismatch is replaced by two dislocations in both

x- and y-directions. The thickness of the film is 3d0. We
start the simulation with a very small composition

fluctuation. Fig. 4 shows the snapshots of composition

evolution in the course of spinodal decomposition. The

red color denotes solute rich region while white color

solvent rich region. It is clearly seen that two intercon-

nected phases gradually formed in case I. Since the film

is very thin, and the diffusion fluxes normal to the sur-

face and the interface are zero, diffusion occurs pri-
marily on the plane parallel to the interface. As a result,

each phase has a columnar morphology perpendicular
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to the interface. Our previous results [4] show that as the

film thickness increases, the morphology of each phase

becomes a 3D network similar to that of bulk materials.

For case II, the interaction between stress fields from

interfacial dislocations and compositional strains dom-
inates the spinodal decomposition process and causes a

directional spinodal decomposition. Fig. 5 presents the

morphological evolution during spinodal decomposition

in the film. To see more clearly the composition wave
Fig. 5. Temporal morphological evolution during spinodal decompo-

sition in a thin film with two interfacial dislocations in both x- and

y-directions.
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Fig. 6. Composition profile along A–A line show
evolution, Fig. 6 plots the temporal composition evo-

lution along A–A line at z ¼ 2 shown in Fig. 5. We can

see that at the initial stage the local stress results in the

formation of composition waves near the dislocation

along the direction perpendicular to the dislocation line
on the film plane as well as along the thickness direction.

The composition wave along thickness is transient. As

time increases, such a composition wave disappears. The

composition wave along the direction perpendicular to

the dislocation line on the film plane propagates direc-

tionally as time increases. Finally, a mesoscopically

ordered microstructure is formed.

To illustrate the effect of the wavelength of disloca-
tion distributions on the microstructure pattern, four

different dislocation distributions (nx ¼ ny ¼ 2, 4, 8 and

16) are simulated. Fig. 7 presents the microstructure

patterns at simulation step t ¼ 1000. It can be seen that

with the increase of the dislocation density or the de-

crease of their periodicity, the morphology of two de-

composed phases changes dramatically from

interconnected to isolated particles. The results dem-
onstrate that a nanostructure can be obtained by de-

creasing the wavelength of dislocation distributions.

Fig. 8 illustrates how the thickness of the film affects the

microstructure patterns. The microstructures at simu-

lation step t ¼ 1000 are shown for three different simu-

lations corresponding to three different film thickness

hf ¼ 3, 5 and 9 for the case with eight dislocations

(nx ¼ ny ¼ 8). The left figure presents the morphology
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Fig. 7. Microstructural patterns formed during spinodal decomposi-

tion with different interfacial dislocation arrays.

Fig. 8. Effect of film thickness on microstructural patterns with eight

interfacial dislocations in both x- and y-directions.
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of the solute rich phase. It is clearly seen that as the

thickness increases, the composition wave along the

thickness direction starts to form. With sufficient

thickness, a microstructure with two alternating layers
of the phases is developed. In addition, the morphology

of the phases in each layer is different from that in the

thin films (hf ¼ 3).
4. Conclusion

We developed a phase-field model to simulate the

effect of a periodically distribution of interfacial dislo-

cations on spinodal decomposition in an elastically

constraint film. The iteration method is shown to be

efficient in obtaining the elastic solutions. Simulation

results demonstrate that the dislocation stresses induce a
directional spinodal decomposition. Periodically dis-

tributed interfacial dislocations can be used to create

self-assembled nanostructures. The nanostructure can

be changed by varying the film thickness and the

wavelength of the interfacial dislocation distribution.
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