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Abstract

A diffuse-interface phase field model is described for modeling the interactions between compositional inhomoge-

neities and structural defects. The spatial distribution of these structural defects is described by the space-dependent

eigenstrains. It takes into account the effect of the coherency elastic energy of a compositional inhomogeneity, and the

elastic coupling between the coherency strains and defect strains. The temporal evolution of composition is described by

the Cahn–Hilliard equation. Particularly, the solute segregation, and nucleation and growth around dislocation slip

bands and crack-like condensed interstitial dislocation loops are discussed. The effect of nucleated coherent precipitates

on the stress field around these defects is analyzed � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many important processes in crystalline solids, such as diffusional phase transformations and micro-
structure coarsening, involve diffusional redistribution of atoms under the influence of stresses [1–3]. The
stresses may arise from, e.g., a composition-dependent lattice parameter, an external field, or the presence
of internal structural defects. Recent theoretical and modeling studies have been mainly focused on the
effect of coherency stresses due to a composition-dependent lattice parameter, see for example [4–13], and
for a rather thorough list of references on this subject, see a recent review [14]. The interactions between
dislocations and coherent precipitates were studied by Lee [15] using the discrete atom method (DAM). The
dislocation motion in the presence of diffusing solutes were simulated using a Monte Carlo model by Wang
et al. [16]. The effect of dislocations on the morphological evolution during spinodal decomposition was
investigated by L�eeonard and Desai [17] who directly introduced the analytical elastic solution of a dislo-
cation into the Cahn–Hilliard equation [18]. Recently, we proposed a continuum diffuse-interface phase
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field model by coupling the Cahn–Hilliard equation with the elastic fields produced from coherent com-
positional inhomogeneities as well as from structural defects such as dislocations. This model can easily
incorporate elastic anisotropy, and allows arbitrary distribution of composition and defects. The unique
feature of this model is the fact that the elastic fields from structural defects and coherent compositional
inhomogeneity are obtained within exactly the same formulation using the concept of ‘‘eigenstrains’’.
Therefore, any structural defects which can be described by eigenstrains can be introduced into the model.
In addition, our model can be conveniently extended to describe redistribution of defects such as dislo-
cation motion by coupling the Cahn–Hilliard diffusion equation with the evolution equation for defect
movement. The model has been applied successfully to simulating solute atom segregation around a single
edge dislocation [19]. An excellent agreement between the simulated and theoretical solute (Cottrell) at-
mosphere was obtained. The simulation results also demonstrated that dislocation stress field induces
nucleation and growth of a coherent precipitate.

It has long been recognized stress concentrations around crystal defects such as grain boundaries, slip
bands and cracks can be the origin of new phase nucleation and local phase transitions [20–24]. New phase
formation near such defects not only results in a change in material physical properties, but also a redis-
tribution of stress field, hence may result in a remarkable change of the material damage behavior. Many
structural defects such as grain boundaries, slip bands and cracks can be described as certain types of
distributed dislocations. In this paper, we consider the interactions between a compositional inhomogeneity
and arbitrary distributed dislocations. We studied the compositional segregation, and precipitate nucle-
ation and growth near slip bands and dislocation loops. In particular, the effect of dislocation density on
compositional segregation and precipitate morphologies as well as the effect of formed coherent precipitates
on the defect stress field are studied.

The work to extend the present model to the elastically inhomogeneous systems and to incorporate the
redistribution of dislocations under applied and internal stress fields is currently underway.

2. Elastic potential due to coherency stress and defects

We consider a simple binary solid solution with a compositional inhomogeneity described by X ðrÞ,
representing the mole or atom fraction X at position r. If we assume that the variation of stress-free lattice
parameter, a, with composition obeys the Vegard’s law, the local stress-free strain caused by compositional
inhomogeneity is given by,

�oijðrÞ ¼ �odX ðrÞdij; ð1Þ

where �o ¼ 1
a

da
dX is the composition expansion coefficient of lattice parameter, dX ðrÞ ¼ X ðrÞ � Xo with Xo

being the overall composition of the solid solution, and dij is the Kronecker–Delta function. Let �dijðrÞ
denote the eigenstrain for a general structural defect distribution. Using Kachaturyan–Shatalov (KS) re-
ciprocal space theory [1,25], for a system with both a compositional inhomogeneity by dX ðrÞ and struc-
tural defects described by �dijðrÞ, the total elastic energy in the homogeneous modulus approximation is
given by [19]
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where V is the total volume of the system, kijkl are the elastic constants, g is the wave vector, gi is the ith
component of g, ���ij is the homogeneous strain, dX ðgÞ and �dklðgÞ are the Fourier transforms of dX ðrÞ and
�dklðrÞ, GikðgÞ is the inverse tensor to ðG�1ðgÞÞik ¼ g2ko

ijklnjnl ¼ g2X�1
ik ðnÞ with n ¼ g=jgj, ro

ij ¼ kijkl�odkl,
rd
ijðgÞ ¼ kijkl�

d
klðgÞ. � � � represents the average of the quantity � � � over the entire volume, and f� � �g� denotes

the complex conjugate of f� � �g.
The homogeneous strain, ���ij, in (2) is the uniform macroscopic strain characterizing the macroscopic

shape and volume change determined by the boundary constraint. If a boundary is constrained so that the
system is not allowed to have any homogeneous deformation, the homogeneous strain, ���ij, is equal to zero.
Similarly, if a system is subject to an initial applied strain, �aij, and then the boundary is held fixed, ���ij ¼ �aij.
On the other hand, if the system is stress-free, the homogeneous strain is obtained by minimizing the total
elastic energy. In this work, for simplicity, we assume that the boundary is constrained so that ���ij ¼ 0.

The total elastic energy in (2) includes the homogeneous deformation energy of the system (the first
term), the total coherency strain energy of a solid solution induced by a compositional inhomogeneity (the
second and third terms), the strain energy of a structural defect (fourth and fifth terms), and the interaction
energies among the homogeneous deformation, the coherency strain, and structural defects (the rest three
terms). The corresponding Fourier transform of the elastic potential per atom involving both composition
inhomogeneity and structural defects is given by
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where Nv is the number of atoms per unit volume.

3. Diffusion equation in the presence of compositional stress and defects

The interaction between composition and stress in general and the effect of compositional stress on
diffusion in particular were extensively discussed by Larche and Cahn [3,26]. For a binary substitutional
solid solution, the time-dependent Cahn–Hilliard diffusion equation is given by [3,26]

dX ðrÞ
dt

¼ r DX ð1� X Þ
kBT

� �
r ofincðX Þ

oX

�
� jr2X þ lel

�
; ð4Þ

where X ðrÞ is the local composition, D is the solute diffusion coefficient in a dilute solution, kB is the
Boltzmann constant, T is temperature, fincðX Þ is the incoherent-free energy density of a solid solution, j is
the gradient energy coefficient [27], and lel is the elastic potential per atom. To avoid unnecessary dis-
cussions on numerical solutions to variable coefficient Cahn–Hilliard Eq. (4), we make a further simplifi-
cation by assuming that the factor X ð1� X Þ is a constant given by Xoð1� XoÞ, where Xo is the overall
composition.

Using the dimensionless units, t� ¼ DtXoð1� XoÞ=ðDxÞ2, f �
inc ¼ finc=kBT , l�

el ¼ lel=kBT , r� ¼ ðDxÞ2r,
r� ¼ r=Dx, and j� ¼ j=kBT ðDxÞ2, we have
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Taking a Fourier transform of both sides of Eq. (5), we have the temporal evolution of the composition
wave amplitude, X ðgÞ,
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where g� is the magnitude of g�, X ðg�Þ and lelðg�Þ are the Fourier transforms of X ðr�Þ and l�
elðr�Þ, re-

spectively.

4. Eigenstrain �dijðrÞ for continuously distributed dislocations

A continuous distribution of dislocations can be described by a dislocation density tensor aij. The
components of the jth row of the tensor are numerically equal to the components of the total Burgers
vector of all dislocations crossing a unit area normal to the ith axis. Let there be nk dislocations with a
dislocation line direction hk passing through a unit area normal to hk and having Burgers vectors bk, then
the dislocation density tensor is defined as [28],

aji ¼
X

nkhk
j b

k
i ¼

X
hk
jB

k
i ; ð7Þ

where Bk ¼ nkbk is the total Burgers vector of nk dislocations with the same Burgers vector bk. Let bij

denotes the plastic distortion tensor, the eigenstrain is written as,

�dijðrÞ ¼
1

2
½bijðrÞ þ bjiðrÞ�: ð8Þ

For a given continuous distribution of dislocation aij, plastic distortion can be expressed in terms of Fourier
coefficient of the dislocation density tensor aijðgÞ [2], namely,

bmnðrÞ ¼ emlj

Z þ1

�1

vl
ig � v ajnðgÞ expðig � rÞdg; ð9Þ

where emlj is the Levi–Civita tensor, v is the direction of dislocation motion, vl is the lth component of v. It
should be pointed out that although the plastic distortion tensor bmn depends on the choice of v, the stress
caused by the dislocations is unique, independent of the choice of v. Performing the Fourier transforms of
bmnðrÞ, we get �dklðgÞ in Eq. (3) for a given dislocation distribution,

�dklðgÞ ¼
1

2
½bklðgÞ þ blkðgÞ� ¼ ekmj

vm
ig � v ajlðgÞ þ elmj

vl
ig � v aknðgÞ: ð10Þ

Dislocations in crystals tend to form an equilibrium distribution under the combined action of their mutual
interactions, the force acted on them by applied stresses, and frictional stresses. For instance, dislocations
often pile up at grain boundaries, inclusions or other crystal defects which prevent them passing through.
The model of dislocation pile-ups has been used reasonably to explain crack initiations [2] and phase
nucleations [29]. On the other hand, a number of crystal defects, such as twins, grain boundaries, interfaces
of incoherent particles, and cracks which induce deformation incompatibilities, can be described by con-
tinuously distributed dislocations. To illustrate how to construct the eigenstrain tensor for a given dislo-
cation distribution, we consider two simple examples, i.e., slip bands and crack-like condensed interstitial
dislocation loops, which can be described by a set of identical dislocations lying on the same plane ðy ¼ 0Þ
with the dislocation line direction h ¼ ð0; 0; 1Þ (see Fig. 1). Dislocations on the slip plane of slip band shown
in Fig. 1(a), which has Burgers vector b ¼ ð�b0; 0; 0Þ, move under shear stress, pile up at the grain
boundaries and form an equilibrium distribution of dislocations. By assuming the applied shear stress and
frictional stress on the slip plane to be constant, and assuming the frictional stress at grain boundaries is
large enough to hold back dislocation slipping, the equilibrium dislocation density on the slip plane ðy ¼ 0Þ
can be described as [2],

DðxÞ ¼ D0x

ðd2 � x2Þ1=2
½Hðxþ dÞ � Hðx� dÞ�; ð11Þ
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where D0 is a constant depending on the applied stress, frictional stress, elastic constant, and the Burgers
vector, d is the pile-up length, as shown in Fig. 1(a), and HðxÞ is the Heaviside step function. The Burgers
vector associated with such a dislocation distribution is Bðx; yÞ ¼ ðb0DðxÞdðyÞ; 0; 0Þ, where dðyÞ is the Di-
rac’s delta function. The total number of dislocations piled up on the slip plane in the region ð0; dÞ is
calculated by

N ¼
Z d

0

DðxÞdx ¼ D0d ð12Þ

and an equal number of negative ones piled up in the region ð�d; 0Þ. We choose the direction of dislocation
movement, v; to be (1, 0, 0). Then according to the definition of dislocation density tensor aij, we get

a31ðx; yÞ ¼
D0b0x

ðd2 � x2Þ1=2
dðyÞ½Hðxþ dÞ � Hðx� dÞ�: ð13Þ

Other components of the dislocation density tensor are zero. The corresponding eigenstrain of such a
dislocation distribution is

�12ðx; yÞ ¼ �21ðx; yÞ ¼ D0b0ðd2 � x2Þ1=2dðyÞ½Hðxþ dÞ � Hðx� dÞ�; ð14Þ

where b0 is the component of dislocation Burgers vector in x direction. The other components of eigenstrain
tensor are zero. Fig. 2 shows the distribution of dislocation density DðxÞ=D0 and eigenstrain �12=ðD0b0Þ. We
can find that the dislocation density is infinity and the eigenstrain tends to zero quickly at x ¼ �d where the
stress field is singular. Fig. 1(b) presents crack-like condensed interstitial dislocation loops [28]. Assuming
the applied stress and dislocation climbing force are constant, and choosing (1, 0, 0) as the direction of
dislocation movement, the following dislocation density tensor gives the equilibrium dislocation distribu-
tions for the defect shown in Fig. 1(b).

a32ðx; yÞ ¼
D0b0x

ðd2 � x2Þ1=2
dðyÞ½Hðxþ dÞ � ðx� dÞ�: ð15Þ

Other components of the dislocation density tensor are zero. The eigenstrains associated with such a dis-
tributed dislocation loops are

Fig. 1. Dislocation model of slip bands and dislocation loops.
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�22ðx; yÞ ¼ D0b0ðd2 � x2Þ1=2dðyÞ½Hðxþ dÞ � Hðx� dÞ�: ð16Þ
More complicated defects such as vacancy dipoles, interstitial dipoles, and cracks [2,28] can be described by
combining dislocation density tensors (14) and (16). To study the role of distributed dislocations on solute
segregation and phase transformation in real material, we need to extract a relative dislocation tensor aij

from experimental observations.

5. Examples and Discussions

In the examples discussed below, we solved the diffusion Eq. (6) using a semi-implicit method [30],

X ðg�; t� þ Dt�Þ ¼
X ðg�; tÞ � Dt�ðg�Þ2 df �

inc
ðX Þ

dX


 �
g�
þ l�

elðg�Þ
� �

1þ Dt�j�ðg�Þ4
; ð17Þ

where Dt� is the time step for integration. We use a small time step size of 0.05 for the initial 1000 time steps
and then it is increased to 5.0. The elastic constants are chosen to make the system elastically isotropic with
G (the shear modulus) and m (the poisson ratio) equal to 100 (in units of NvkBT ) and 0.25, respectively. It
should be pointed out that the same computer code can be used for elastically anisotropic systems without
any modification. We use the following local coherent-free energy density at a given temperature,

f �ðX Þ ¼ ðX � 0:5Þ2½�1:0þ 2:5ðX � 0:5Þ2�: ð18Þ
It is a double-well free energy function as a function of composition. A single homogeneous solid solution is
stable below Xa0 ¼ 0:053 or above Xa00 ¼ 0:947. The equilibrium state for intermediate compositions is a
two-phase mixture with equilibrium compositions, Xa0 ¼ 0:053 and Xa00 ¼ 0:947, respectively. The spinodal

Fig. 2. Dislocation density DðxÞ and eigenstrain �22ðxÞ ¼ �ðxÞ for dislocation loops; �12ðxÞ ¼ �ðxÞ for slip bands.

S.Y. Hu, L.Q. Chen / Computational Materials Science 23 (2002) 270–282 275



compositions, Xs0 and Xs00 are 0.242 and 0.758. The corresponding incoherent-free energy, f �
incðX Þ is given by

f �ðX Þ þ ehom=ðNvkBT Þ, where ehom is the elastic energy density of a homogeneous solid solution. For an
isotropic solid solution in 2D,

eisohom ¼ G
1� m

�2oX ð1� X Þ: ð19Þ

The gradient coefficient is 1.0. We assumed that the composition expansion coefficient is positive with
expansion coefficient 0.05. The Burgers vector, b, is chosen to be (0.1, 0.0) for slip bands and (0.0, 0.1) for
dislocation loops in unit of Dx with Dx ¼ 1:0. All the numerical calculations presented below were per-
formed in two dimensions and with the same parameters listed above.

5.1. Solute segregation around dislocation loops

As an example, solute segregation around distributed dislocation loops in 2D are considered in this
section. We performed a numerical simulation using a 512� 512 grid. The distributed dislocation loops is
placed on a line of grid points between the coordinates (128, 256) and (384, 256) as shown in Fig. 3(a), and
the dislocation line direction is along the normal to the 2D domain. The values of the eigenstrain calculated
with Eq. (16) are assigned to the grid points occupied by dislocation loops. In the present paper the
equilibrium dislocation distribution (Eq. (15)) under loading is employed, and dislocations do not move
during solute diffusion. Experimental results show that equilibrium distribution of dislocations formed
under loading usually remains the same during unloading [2]. The effect of internal stress on the equilibrium
dislocation distribution will be discussed in a separated paper. The initial composition is uniform every-
where with a value of 0.03 which is outside the coherent two-phase field. We fix the dislocation pile-up
length d ¼ 128, and change D0 to give different dislocation densities N ¼ 3, 6, 18 where N denotes the total
number of dislocations piled up in ð0; dÞ. An example of temporal evolution of the composition profile
along the horizontal line shown in Fig. 3 is plotted in Fig. 4 for the case N ¼ 18. It can been found that the
compositions near dislocation pile-ups reach their equilibrium values very quickly from an initially ho-

Fig. 3. Schematic representation of dislocation loops (a) and slip bands (b) in two dimension and a discretization grid.
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mogeneous solution driven by the strong stress inhomogeneity. The solute atoms simply diffuse from the
compressive side to the tensile side of the dislocation. Fig. 5 presents the equilibrium composition profile
around the dislocation loops at time step 8000. Different dislocation densities do not change the qualitative
profile of solute segregation, but affect the maximum equilibrium compositions. The equilibrium compo-
sition profile as a function of dislocation density is shown in Fig. 6.

5.2. Nucleation and growth of precipitates around slip bands, and condensed interstitial dislocation loops

From the equilibrium dislocation distributions, we can find that a pile up of dislocations occurs at grain
boundaries or obstacles ðx ¼ �dÞ, where the dislocation density tends to infinity. As a result, a high stress
concentration field is formed around dislocation pile-ups. As discussed in the previous section, such a high
stress results in a solute segregation and depletion. Under certain circumstances, the degree of segregation is

Fig. 4. Temporal evolution of the composition profiles along the horizontal line shown in Fig. 3 for the dislocation loops with 18

dislocations in ð0; dÞ.

Fig. 5. The equilibrium composition profile around the dislocation pile-ups ðx ¼ dÞ for the dislocation loops.
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so high that nucleation and growth of a new phase around dislocation pile-ups occurs. To examine the
nucleation and growth of a coherent precipitate induced by the stress field of slip bands and dislocation
loops, we chose an average composition of 0.22 which is inside the coherent two-phase field, but outside the
coherent spinodal region. We performed numerical simulations using the same simulation parameters as
the solute segregation case above except the average composition. The slip bands and dislocation loops are
introduced into the simulation cell by assigning grid points the eigenstrain value calculated with Eqs. (14)
and (16), respectively. For the slip band with 18 dislocations in ð0; dÞ, temporal evolution from homoge-
neous solution to nucleation and growth of precipitate is presented in Fig. 7. The black region in Fig. 7
represents the matrix with low composition while the white region represents the second-phase precipitate
with high composition. Because the composition expansion coefficient of lattice parameter, �0, is assumed to
be larger than zero, as expected, segregation of solutes takes place on the tensile side of the slip bands while
depletion of solutes on the compressive side. Several nuclei with a composition close to the equilibrium
composition started to form at time step 400 along the tensile side of the slip bands. The nucleus grow to a
thin-long precipitate. Fig. 8(a) shows the effect of dislocation intensity (N ¼ 1, 2, 3, 6, 12, 18) in the slip
band on precipitate morphology. The composition profile along the horizontal line in Fig. 3 is shown in

Fig. 6. The equilibrium composition profiles as a function of dislocation density along the horizontal line shown in Fig. 3 for the

dislocation loops.

Fig. 7. Morphological evolution during nucleation, and growth of precipitates along the slip bands with 18 dislocations in ð0; dÞ.
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Fig. 8(b). We can find from the composition profile that the stress field of slip band with only a single
dislocation causes solute segregation, but is not large enough to induce nucleation of a new phase. This is
different from the results presented in our previous paper for a single dislocation located at one point. The
reason is that the dislocation is spread out in a region ð0; dÞ in the present case which reduces the dislocation
stress field. When the total number of dislocations is larger than two, the slip band stress field leads to
precipitation of second-phase particles through a nucleation and growth mechanism. In addition, the
morphologies of precipitates are dependent on the dislocation density of slip bands. Fig. 9(a) and (b) shows
the dependence of precipitate morphology around dislocation loops on the dislocation density. In this case,
precipitates form at �d when N > 2. We can find that the precipitate morphologies are quite different for
the two cases: slip bands and dislocation loops.

As discussed above, defect stress field may induce nucleation and growth of a new phase. Similarly, the
formation of new phase may result in a change in the stress distribution and elastic properties, hence a
change of material damage behavior. The proposed model in the present paper, cannot only be employed to
simulate defect stress-induced phase transformation, but also be used to study the effect of phase trans-
formation on mechanical properties. The advantage of this model compared with continuous mechanic
models is that it avoids tracking individual dislocation segments and morphologies of phase transformation
region. The average stress distributions caused by dislocations and lattice mismatch between new phase and
parent phase along the horizontal line shown in Fig. 3 are plotted in Fig. 10. It can be found in both cases
that the formation of precipitates decreases the tensile stress concentration caused by distributed disloca-
tions. Of course, a quantitative analysis of the stress field, and precipitate nucleation and growth requires

Fig. 8. (a) Precipitate morphology along the slip bands with different dislocation densities; (b) the equilibrium composition profiles

along the horizontal line shown in Fig. 3 for the slip bands.
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real material parameters such as energetic barrier of nucleation, interface energy, mismatch eigenstrain,
elastic constant, dislocation distribution and so on.

Fig. 10. The average stress distributions along the horizontal line shown in Fig. 3 before and after the formation of precipitates. (a)

and (b) for the dislocation loops and slip bands with 18 dislocations, respectively.

Fig. 9. (a) Precipitate morphology along the dislocation loops with different dislocation densities; (b) the equilibrium composition

profiles along the horizontal line shown in Fig. 3 for the dislocation loops.
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6. Summary

A diffuse-interface field model is proposed for predicting the morphological and microstructural evo-
lution in coherent systems with arbitrary spatial distribution of structural defects such as grain boundary,
mismatch inclusions, and dislocations. Within this model, the elastic stresses due to a compositional in-
homogeneity and structural defects are solved consistently within the same formulation. We applied our
model to solute segregation as well as to the nucleation and diffusional growth of a coherent precipitate
around slip bands and condensed interstitial dislocation loops. It is shown that the coherent nucleation may
become barrierless under the influence of the local elastic field of the dislocation distribution. The mor-
phology of precipitate depends on defects and dislocation density.
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