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Abstract—A diffuse-interface field model is proposed for describing diffusional processes in coherent sys-
tems with arbitrary microstructures and arbitrary spatial distribution of structural defects such as dislocations.

It takes into account the effect of both the coherency elastic energy of a microstructure and the elastic
coupling between the coherency strains and defect strains. In this model, any arbitrary spatial distribution of
defects is described using the micromechanics concept of space-dependent “stress-free” or “eigen” strains.
As examples, the solute segregation as well as the nucleation and diffusional growth of a coherent precipitate
around an edge dislocation are considered. It is shown that coherent nucleation may become barrierless under
the influence of the local elastic field of a dislocatian.2001 Acta Materialia Inc. Published by Elsevier
Science Ltd. All rights reserved.
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1. INTRODUCTION second-phase precipitate at a dislocation was first

. . . . %onsidered by Cahn who assumed that a cylindrical
Many important processes in crystalline solids, suc . . .

AP . . nucleus replaces the dislocation core, thus providing
as diffusional phase transformations and mlcrostruc-dditional driving force for nucleation compared to
ture coarsening, involve diffusional redistribution o 9 P

atoms under the influence of stresses [1-3]. Tht at in the bulk [16]. The elastic energy of the solid

stresses may arise from, for example, a compositioﬁ?l!:t'?n.?n?f the cqherengy Str;’?ln er11(;rgy Sféhe p:f-
dependent lattice parameter, an external field, or tg%%' ate | .Sde V\éeiﬁ |gnor|e .t' 0 |rf1s [ g]an ¢ armnett
presence of internal structural defects. Recent thear- ] considered the nucleation of a coherent precipi-

etical and modeling studies have been mainly focusdgte N the presence of an edge dislocation. For coher-

on the effect of coherency stresses due to a comp%r-]t hucleation, the additional driving force for

sition-dependent lattice parameter (see for examprﬂé’deati_on results f_rom the interactions between the
[4-13]) and for a rather thorough list of reference§tre35,f'e|d of the d|slocat|on and thz?\t of the goherent
on this subject, see a recent review [14]. Cohereﬁfec'p'tat_e' In qrder to obtain analyycal solutions for
compositional stresses are shown to have significalite elastic strain energy, the elastic property of the
or sometimes dominating effects on mesoscale micrg2!id solution is assumed to be isotropic and only the
structure morphologies and the kinetics of their evolilatational stress-free strain for the precipitate was
ution [14]. considered. In addition, the compositional inhom-
It has long been recognized that structural defecfgeneity induced by the dislocation field is ignored
such as dislocations also play an important role it calculating the elastic strain energy. Xiao and
diffusional processes and phase transformations ftgssen [19] re-examined the coherent nucleation
solids. For example, the interaction between compéroblem near an edge dislocation by considering the
sition and a dislocation results in solute segregatidg#ffect of Cottrell atmosphere on coherent nucleation.
and depletion, leading to the formation of so-calledifowever, they again had to assume isotropic elastic

“Cottrell atmosphere” [15]. The nucleation of amodulus for the solid solution and a spherical shape
for the nucleus. More recently, the effect of structural

defects on nucleation during structural phase tran-
* To whom all correspondence should be addressed. Te§|_t|0ns was investigated using a Landau-type of static
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theories and to study the actual kinetic diffusionasimulations in two dimensions. Furthermore, the
processes, there have been a number of compublemogeneous modulus approximation is adopted.
simulation models proposed for studying the interac-
tions between defects and phases. For example, Wang
et al. studied the segregation profile around an edge
dislocation, and the effect of segreation on dislocation
dynamics using a discrete Monte-Carlo model [21].
The interactions between dislocations and coherentWe consider a simple binary solid solution with a
precipitates were studied by Lee using the discretmmpositional inhomogeneity described Xfr), rep-
atom method (DAM) [22] and Voorhees [23] by solv-resenting the mole or atom fractiof at positionr.
ing the diffusion equation in the presence of a dislof we assume that the variation of stress-free lattice
cation. The effect of dislocations on the morphologiparametera, with composition obeys Vegard's law,
cal evolution during spinodal decomposition washe local stress-free strain caused by compositional
investigated by Lenard and Desai who directly intro- inhomogeneity is given by
duced the analytical elastic solution of a dislocation
[24] into the Cahn-Hilliard equation [25]. €X(r) = €0X(r)d; (1)

In this work, we propose a continuum diffuse-inter-
face field model by coupling the Cahn—Hilliard dif-
fusion equation [25] with the elastic fields producedvhere ¢, = 1/ada/dX is the composition expansion
from coherent compositional inhomogeneities as wedloefficient of lattice parameterdX(r) = X(r)—X,
as from structural defects such as dislocations, grawith X, being the overall composition of the solid
boundaries, cracks, inclusions, etc. This model caolution, andd; is the Kronecker-delta function.
easily incorporate elastic anisotropy and allows arbi- For structure defects such as point defects, dislo-
trary distribution of composition and defects. Thecations, twin and grain boundaries, cracks, and
unique feature of this model is that the elastic fieldsthomogeneous inclusions, their spatial distributions
from structural defects and coherent compositiongian also be described by stress-free strains or eigen-
inhomogeneity are obtained within exactly the samstrains,e(r) [26].
formulation using the concept of “eigenstrains” in Let us useg;(r) to denote the total strain measured
micromechanics. As a result, not only the couplingvith respect to the homogeneous solution with com-
between the elastic fields of a composition and thogosition X,, then Hook’s law gives the local elastic
of a defect, but also the elastic interactions amorgjress,
the defects are automatically taken into account. This
feature will become particularly convenient when the o5(r) = Agalen(r)—e(r)—ed(r)] (2)
dynamics of defects such as dislocation motion are
considered in the future. Furthermore, since analytical
solutions for the elastic fields of defects are nowherely, are the elastic constants.
required, any complicated defect configurations can Since the mechanical equilibrium with respect to
be modeled. This is different from the approach otlastic displacements is established much faster than
Léonard and Desai, which requires the analytical sofny diffusional processes, for any given distribution
ution for the dislocation field [24] and the interaction®f composition, the system is always at mechanical

2. ELASTIC ENERGY OF A COHERENT
COMPOSITION INHOMOGENEITY WITH
STRUCTURAL DEFECTS

among dislocations were ignored. equilibrium,

In the following sections, we will first extend the
elastic energy calculation [1] for coherent microstruc- ai‘ﬁ' -0 3)
tures to systems with both a compositional inhom- or;

ogeneity and structural defects. In Section 2, we will

present the Cahn—Hilliard diffusion equation incorpo-

rating both the compositional coherency stress anwherer; is thejth component of the position vector,
the stresses due to structure defects. In Section 3, weFollowing Khachaturyan [1], the total stra(r)
will first discuss the numerical calculation of themay be represented as the sum of homogeneous and
stress-field around a dislocation and compare to anlaeterogeneous strains:

lytical expressions. We will then show two examples

for applying the Cahn—Hilliard diffusion equation €i(r) = € + 0¢;(r) 4
with both coherent compositional and defect stresses.

The first example is the classical problem involving

solute segregation around an edge dislocation. In théhere the homogeneous stra&, is defined so that
second example, we will demonstrate that a coherent

nucleus may be stabilized by the local elastic field of

a dislocation. Although our model is formulated for j5€ij(f)d3f =0 (®)
three dimensions, for simplicity, we perform all the v
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1( o
The homogeneous strain is the uniform macro- _zj(zjge,nio-ﬁ(g)ﬂik(n){o-gl(g)}*nl
scopic strain characterizing the macroscopic shape 9
and volume change associated with the total strain, —VAjezel(r) + VogoX(r)eg(r)
€;(r). Let us useu(r) to denote théth component of d’g .
the displacement. The heterogeneous strain and its —J(Zﬂ)z;nioﬁﬂjk(n)cﬁl(g)nléx )
corresponding displacements are related through 9

(6) whereV is the total volume of the system,. rep-
resents the average of the quantity ... over the entire
_ . . volume, and {...}* denotes the complex conjugate of
Substituting equations (2), (4) and (6) into the 1 The total elastic energy given above includes
mechanical e_qumbrlum equation (3), and assuming,q homogeneous deformation energy of the system
that the elastic constants are homogeneous, one h&ﬁe first term), the total coherency strain energy of a
solid solution induced by a compositional inhom-
P 5 08X | Oeh @ ogeneity (the second and third terms), the strain
Moror, M| T Mar, o, energy of a structural defect (fourth and fifth terms),
and the interaction energies among the homogeneous
Solving the above equation in Fourier space, weeformation, the coherency strain, and the structural
have defect (the remaining three terms). The homogeneous
strain in equation (11) is determined by the boundary
u(g) = —iGy(9)[098X(g) + c(9)]g; (8) constraint. If a boundary is constrained so that the
system is not allowed to have any homogeneous
deformation, the homogeneous stradp, is equal to
whereg is the wave vectorg, is theith component Z€ro- Similar.ly, if the system is subject to an initial
of g, i = V—1, u(g) andsX(g) are the Fourier trans- a}pplleg strain,ef, and then the bqundary is helld
forms of u(r) andSX(r), G,(g) is the inverse tensor fixed, & = €f. On the other hand, if the system is
t0 (G Xg))k = PPy = G2QKN) with n = g/lg, stre.:ss.-fr.ee, the homogeneous strain is obtained by
09 = AjesSin 09(0) = Ayuel(@), and ef(g) is the Minimizing the total elastic energy. In this quk, for
Fourier transform o&(r). The corresponding hetero-Simplicity, we assume that the boundary is con-
geneous straide;(r) in Fourier space is given by ~Strained so thag; =0

_1ou0) , au0)
deulr) = 2{ ar, " or ]

i 3. DIFFUSION EQUATION IN THE PRESENCE OF
dey(9) = 5lu(9)g + u(9)gl ©) COMPOSITIONAL STRESS AND DEFECTS

) ~_ For a binary substitutional solid solution, the dif-
The total elastic energy of a system containingsjon flux is given by

coherent compositional inhomogeneities described
by 6X(r), and structural defects described by the eig- J=—-NMVu 12)
enstrain distributiongd(r), is then given by

1 whereN, is the number of atoms per unit volume,
E=2j/1ijk|eﬁ'(r)6%'(r)dv (10) is the chemical potential per atom, ard is a

Y mobility given by
Substituting the elastic solution [equation (9)] for M = X(1-X)[XM; + (1-X)M_] (13)

heterogeneous strain into the above elastic energy

expression [equation (10)] and taking into account the ) . .
whereM,; and M, are atomic mobilities of species 1

fact that j&“(r)dv =0 and j6X(r)dV =0, we and 2, respectively. They are related to the diffusivity
v v throughM; = Di/(kgT) whereD; is the diffusion coef-

have ficient of species in a dilute solution. For simplicity,
we assume that the mobilities of the two species are
v, __ |V SV7TAVE equal, and thus! = (DX(1—X))/(ksT).
= —: € + O 2| 2 q ’
B = Jhia€igi T Finad;duccloX(r)] In a compositionally inhomogeneous solid solution
1( o with composition-dependent lattice parameterjs
ij%;nioﬁﬂjk(n)oﬁlnllax(g)lz given by
g
V. o, (X
+ g0 ) u) = 2 )
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whereAt* is the time step for integration. Algorithms

with higher order int are also available [29].
wheref,,.(X) is the incoherent free energy density of
the solid solutionk is the gradient energy coefficient
[27]. In equation (14),uq = (1/N,)(de,/dX) is the
elastic potential per atom due to the coherency strain
and the presence of defects describedefr), and 4.1. Elastic field of a dislocation

4. INTERACTIONS BETWEEN A COMPOSITION
FIELD AND A DISLOCATION

is given by

Nuile = Ggﬂijklaijakl[x(r)_xo]
— €Al 0eq(r) + €o/1ijk|5ij€ﬂl(r)

(15)

where de,(r) is given by the inverse Fourier trans-

Since the elastic field of a single dislocation is ana-
lytically known, for comparison and validation, we
first apply the model discussed in the last section to
obtaining the stress field around a single dislocation
in the absence of compositional inhomogeneity. We
consider an edge dislocation line lying along the
[001] direction and passing through the origin with a

form of deq(g). The time-dependent Cahn—HilliardBurger’s vectorb = (0,b,,0). According to [2], the

diffusion equation is then given by [3, 28]

e

+ :u'el

dX(r) _
dt

DX(1-X)
kBT

afinc(x) _

2
axX kV2X

(16)

Although the above variable-coefficient diffusion
equation can be efficiently solved using the semi-

implicit Fourier-Spectral method [29], to avoid
unnecessary discussions on the numerical method,
make a further simplification by assuming that th
factor X(1—X) is a constant given b¥,(1—X,) where
X, is the overall composition.

Using the dimensionless unitd; = (DtX,(1—
XAX?, e = fodkeT, 15 = elkeT, V"
(AX)?V, r* = r/(Ax), and k* = k/(kgT(AX)?), we
have

dX
dt*

dfine(X)

dX

=(V*)Z[ K*(V*)waz.] (17)

Taking a Fourier-transform of both sides of equ
ation (17), we have the temporal evolution of th
composition wave amplitudes(g),

)

ol

+ k(@7)°X(g) + ﬂéu(g*)]

dx(g) _
dt*

dfi(X)

dX

(18)

whereg* is the magnitude ofg*, X(g*) and ue(g*)
are the Fourier transforms oX(r*) and ui(r*),
respectively. The above equation is most efficientl
solved using a semi-implicit method [29],
X(g*t* + At*)
X(g*,t)—At*(g*)ZK
- 1+ Atw(g)*

(19)
dféhe
%) Lt uzl(g*)]

[¢]

eigenstrain for such a dislocation is given by,

€2(r) = bod(Y)H(X) (20)

whered(y) is the Dirac delta function and(x) is the
Heaviside step function

1 x>0

21
0 x<0 (1)

H(x) = {

we
e Other components of the eigenstraif are zero.

The corresponding Fourier transform of the dislo-
cation eigenstrain in equation (20) is given by

0o

ig,V

€2(9) = (22)

whereV is the system volume. To directly use the
eigenstrain in equation (22) in a numerical simulation
is problematic since the eigenstrain of equation (20)
is defined in the whole continuum space while
numerical simulations are usually performed using

Ei)eriodic boundary conditions on a discretized grid.

However, if a periodic cell is chosen sufficiently large
so that the interactions between the dislocation and
its images in the neighboring periodic repeating cells
can be neglected, one may use equation (22) in
determining the stress-field of a dislocation with per-
iodic boundary conditions. The main problem of
directly using equation (22) is the fact that the corre-
sponding stress distributions show significant oscil-
lations [see Fig. 1(b)]. In calculating Fig. 1(b), we
placed the dislocation at the center of a computational
grid [Fig. 1(a)] with a 51X512 grid. The Burgers
ector isb, = 0.1 in units of grid sizeAx. The elastic
constants ar€,, = 300, C,, = 100, andC,, = 100,
all in units of N kg T, which provides an isotropic elas-
tic solid with a shear modulus of = C,, = 100, and
a Poisson ratio of 0.25. To get rid of the oscillations
in the stress field, we propose to use the following
two methods for describing the eigenstrain of a dislo-
cation in a numerical simulation.
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(a) (b)

g the x direction

o _alon

xx

230 240 250 260 270 280

X > Position

Fig. 1. (a) Schematic illustration of a single dislocation located at the center of a computational grid; (b) local
stresss,, as a function of position along the solid line in (a). Thick line—numerical calculation using eigenstrain
[equation (22)]; thin line—analytical solution from continuum elasticity.

One solution to the boundary condition incompatishown in Fig. 3(a). As one can see, the calculated
bility is to introduce dislocation loops on discrete latiocal pressure values agree well with the correspond-
tice points. An example of a dislocation loop in twoing analytical solution represented by open squares
dimensions is shown in Fig. 2(a). According to thend there are no oscillations. However, #ygcompo-
definition in equation (20), the grid points occupiedhent of the stress still shows significant oscillations
by the dislocation loop with Burgers vector 00) [Fig. 3(b)]. For systems involving only dilatational
are assigned the following values for the eigenstraistrains, such as compositional strains discussed

below, the dilatational strain only interacts with the
€d,(r) = b(r) (23) local pressure, and the oscillations in the shear
component are not very important.
Another way to reduce the oscillations in the dislo-
whereb, is the magnitude of the Burger’s vector anctation stress field is to describe a dislocation using a
6(r) is the shape function depicted in Fig. 2(b). Tospatial distribution of an infinite number of infini-
examine the stress distribution around such a disltesimal dislocations. In particular, one can use Gaus-
cation loop, we considered a system with 18249024 sian functions to describe the Burgers vector distri-
grid points. The dislocation loop is placed on a lindution of the infinitesimal dislocations,
of grid points between the coordinates (256,512) and
(768,512). The elastic constants and the Burgers vec-
tor are the same as those for obtaining Fig. 1(b). In
this case,ed,(g) is obtained numerically using Fast
Fourier Transforms. The calculated distribution of
local pressure,di« + 0y,)/2, along thex direction where &,Y,) is the center of the distributiony; (i
parallel to the dislocation loop but one grip point= 1,2) are coefficients which determine the degree of
below [represented by the solid line in Fig. 2(a)] ispatial localization of the dislocation distribution,

(04107
bi(xy) = by e DT T (24)

(a) (b)

1.
X —= X —=

Fig. 2. (a) Schematic representation of a dislocation loop in two dimensions and a discretization grid; (b) the
representation of a dislocation loop by the shape function on a discretization grid.
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Fig. 3. (a) Local pressure as a function of position along the solid line in Fig. 2(a); (b) shear stress as a function
of position along the same line. Solid circles—from the numerical calculation by assigning the eigenstrain on
discrete lattice points; open squares—analytical solution from continuum elasticity.

andb,, andb,, are the components of the entire Burgset to be 1.0. In Fig. 4(b), we plot the local pressure
ers vector conterib, of the dislocation. The limiting distribution along the solid line depicted in Fig. 2(a)
case,o;—o, corresponds to a dislocation describe@énd compare it with that of an analytical solution
by a singularé distribution function as in equation using continuum elasticity. The agreement between
(20). For example, for an edge dislocation with Burgthe Gaussian description and the analytical solutions
ers vectorb = (0,b,,0) along thez direction, the cor- is very good.
responding eigenstrain tensor can be written as For the following examples, we performed simula-
tions using both of these two methods for introducing
) 5 o ) the dislocation eigenstrain, equations (23) and (26).
e 1t T T (25)  The results obtained are very similar, so below we
will only present the results obtained using the Gaus-
sian description.

bgo,0c
edxy) =

O(y—yr) H(X—xq)dx, dy;

All other components of the eigenstrain tensor arg 2. Solute segregation and Cottrell atmosphere
zero. The corresponding Fourier transform of th@round an edge dislocation

above eigenstrain is given by . . ) o .
Let us first consider a simple substitutional binary

system in which the coherent chemical thermodyn-

1 . (%40 + gZIacd)
€9(01,05) = €0 " e WD (96)  amics is described by the ideal free energy of mixing

g,V

. - . . . . . f
With the Gaussian description, the oscillations in FX) = = = XInX + (1-X)IN1-X) (27)

the shear components are also essentially eliminated ke T
[Fig. 4(a)]. In the calculationg; and o, were both
0.5 - T T T
(a) _ 0 :
04 T 2
g £
k3t B 05t
g o5t >
E £
—g BRs ‘a=o of
by =}
o =
RS Q
< 5[ >
> = -05
o* 3
2l e
-1k
o
25 = ; : . : . 20 240 250 260 270 280

230 240 250 260 270 280

Position Position

Fig. 4. (a) Shear stresw() as a function of position along the horizontal line shown in Fig. 1(a). Filled

circles—numerical calculation using the Gaussian descriptionaitnd e, both equal to 1.0; open squares—

analytical solution. (b) The local pressure, the average,pfand o,,, along the same line. Solid circles—

numerical calculation using the Gaussian description wjthnde, both equal to 1.0; open squares—analytical
solution.
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0.11

Let us assume that the elastic modulus of the solid
solution is isotropic. Following Eshelby [30], the
elastic energy density of an elastically isotropic
homogeneous solution in two dimensions is 0.105

2
Crom = > X(1-X) (28)

:I_f\/e 0.1 P

composition profile

where G is the shear modulus andis the Poisson 0.095
ratio. Therefore, the incoherent free energy of the
ideal solution is given by

0.09 L L . . L L L
104 112 120 128 136 144 152
€hom

fiT]c(C) = f*(C) + m (29) position

Fig. 5. The equilibrium composition profile around the dislo-

fcation for an ideal substitutional solid solution obtained from

2 numerical calculation using Gaussian description and from
an analytical solution.

For an ideal solution, the gradient energy coe
ficient is zero. We performed a numerical simulatio
using a 256256 grid and an overall average compo-

sition of 0.10. We employed equation (25) for . . . N
describing the dislocation eigenstrain using = described by equation (30) is also plotted in Fig. 5

a, = 1.0. The dislocation is located at the CenterIabelled as “analytical solution”. As one can see that

ie.x, = 128.0.y, = 128.0 and the dislocation direc_éxcept very close to the dislocation, the agreement

tion is along the normal to the 2D domain. Webetween the analytical solution and the numerical cal-

. : - c%llation is excellent. The difference is mainly from
assumed that the composition expansion coefﬂmeme different descriptions of the dislocation and

was positive with an expansion coefficient of o'Osboundary conditions. In the analytical solution, the

The Burgers vectorb, is chosen to be (0.0,0.1) in . A . . o
. ; dislocation is described by a singul&function in an
units of Ax. The elastic constants are chosen to make

the system elastically isotropic wits (the shear infinite media while in our numerical calculation it is

modulus) andv (the Poisson ratio) equal to 100 anadescrlbed by a.Gaussllan distribution using equation
@5) in a periodic media.

0.25, respectively. It should be noted that there is n - - . .
; . o . To examine a more realistic solid solution, we con-
need to assume isotropic elasticity in our numerical. . . .
. . . sider a non-ideal solution. We use the following local
calculation and the units for the elastic constants are . .
- - : . - - coherent free energy density at a given temperature,
dimensionless as discussed in the previous section.
We solved the diffusion equation with periodic
boundary conditions using the semi-implicit Fourier
spectral method [29]. The time step for integration is
rather arbitrarily chosen to be small, 0.005, for th%o
initial 1000 time steps to maintain the stability for the
numerical integration, and then it is increased to 0.5

thereafter. For this substitutional ideal solid solution,

f(X) = (X—0.57[—1.0 + 2.5(X—0.57] (31)

It is a double-well free energy function as a func-
n of composition (Fig. 6). The equilibrium compo-

an equilibrium segregation profile along a horizontal §
line just one grid below (see Fig. 1) from the dislo- g
cation is shown in Fig. 5 labeled as “numerical simul- £ -0.02
ation”. As expected, solutes segregated to the tensil 2
side of the dislocation and depleted at the compress 2 0,04
ive side. For an isolated dislocation in an elastically g
isotropic 2D media, the equilibrium segregation pro- 3
file is analytically described by < -0.06
s
In X(X,y) _ €,Ghx (30) a;’ -0.08
1-X(xy) Nk TZ(1—Vv)(2 + y?) 2
&
0.1
wherex andy are the distances measured from the 0 012 014 016 018 1

dislocation along thex andy directions. Using the
same values for the modulus, the composition expan

sion C_OefﬁCienL an_d the Burgers Ve_C_tor as in Fh?ig. 6. The coherent chemical free energy as a function of com-
numerical calculation, the compositional profile position.

composition, X
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sitions, X, andX,, are 0.053 and 0.947, respectivelythe same parameters for the elastic modulus, compo-
The spinodal composition¥X and Xy are 0.242 and sition expansion coefficient, Burgers vector and gradi-
0.758. As in the case for the ideal solution, the correent energy coefficient as in the solute segregation
sponding incoherent free enerdy.(X) is given by  case. Temporal evolution from a homogeneous sol-
f*(X) + eom We used the same system size and disttion to nucleation and growth of a precipitate is
location configuration as in the example for the ideadhown in Fig. 8. It started with segregation of solutes
solution. The initial composition is uniform every-to the tensile side of the dislocation and depletion of
where with a value of 0.03 which is outside the cohersplutes on the compressive side. A particle with a
ent two-phase field (see Fig. 6). We used the samg@mposition close to the equilibrium composition of
values for the elastic constants, the compositiofhe precipitate phase started to form around=
expansion coefficient, the Burgers vector, and size 0§ 0. The nucleus grew by solute diffusion through
time steps as in the ideal solution case. The gradlefHe matrix. The Composition prof”e around the pre-
coefficient is 1.0. In this case, the time step size iéipitate presented in Fig. 8(f) is shown in Fig. 9. It
0.05 for the initial 1000 time steps and then it igan be seen from Fig. 8 that the presence of dislo-
increased to 5.0 (the semi-implicit spectral methogation also affects the precipitate shapes since, for a
allows a larger time step size with the gradient energy;stem with isotropic elastic modulus and isotropic
contrlbutlon)...An examp!e of templorallevquUon Ofinterfacial energy, the precipitate shape should be
the composition profile is shown in Fig. 7(a). Thespherical or circular in 2D.

c_ompositions near th(_a dislocation regc_h their equilib- The effect of dislocation on the precipitate shape
fium values very quickly from an '”'“‘?‘"y homo' depends on the lattice parameter variation with com-
geneous solution. The solute atoms simply dlffusﬁosition. For example, if the composition expansion

from the compressive side to the tensile side of th@oefﬁcient is changed to five times smaller with all

dislocation. The final equilibrium segregation profile -
is shown in Fig. 7(b). other parameters kept the same, the precipitate shape

is very close to a circle, i.e. there is no significant
4.3. Coherent precipitation near an edge dislocatioeffect of dislocation on the precipitate shape [Fig.
To examine the nucleation and growth of a Coher]-.'o.(b)]' With a smaller composﬁpn expansion coef-
rHglent, the rate of solute segregation is also reduced,

ent precipitate near a dislocation, we use the sa . 4 :
free energy model [equation (31)] as in the solute Se\%r:d hence it takes a longer time for coherent particles
nucleate.

regation example discussed above. We chose an a " .
age composition of 0.22 which is inside the coherent 1"€ Precipitate shape also depends on the elastic

two-phase field, but outside the coherent spinod@nisotropy. Figure 10(c) shows a precipitate nucleated
region (see Fig. 6). Therefore, in the absence of dis@_r_ound a dlslocatlon_ ina cubically a_1n|sotrop|c system
cations, nucleation can occur only when there arith overall composition 0.22. In this case, the shape
fluctuations introduced into the diffusion equationis close to being a rectangle. The elastic constants
Indeed, our simulation showed that a solid solutiodsed in the calculation ar€,, = 250, C,, = 150,
remains homogeneous without the presence of disl@nd Cas = 125 in units ofNkgT with all other para-
cations and thermal noise. When we introduced thHgeters including the coherent chemical free energy
same dislocation configuration as discussed in the |46 same as in the elastically isotropic case. This set
section for segregation, it is shown that the homasf elastic constants provides a negative anisotropy
geneous solution becomes unstable with respect to thith an anisotropic factor ofA = [(2C,,)/(Cy1—
nucleation of a coherent particle, i.e. nucleation do€s,,)] = 2.5 and a bulk shear modulus of = 95.

not require the presence of thermal noise. We uséflithout the presence of the dislocation, the precipi-
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Fig. 7. (a) Temporal evolution of the composition profiles along the horizontal direction one grid point below
the dislocation; (b) the equilibrium composition profile around the dislocation.
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(b) ©
e .
(d) (e) (f)
: ¢ 1 0

Fig. 8. Morphological evolution during nucleation, and growth of a precipitate near an edge dislocation. (a)
t* = 0.5; (b)t* = 10; (c)t* = 25; (d) t* = 50; (e)t* = 2050; (f)t* = 4550.

The interaction energy density between a compo-
sitional inhomogeneity and a defect field is given by

6 = X (@9)
f TN o X0

0 For a dislocation described by the singular delta
function and an elastically isotropic solid solution, the
interaction energy between a compositional field and

the dislocation field is simplified to
Fig. 9. The composition profile describing the coherent precipi-
tate in Fig. 8(f).

50 60 P 80

_ &1+ v)Gb

Bint = m(x(r)—xo) (34)

(@)

Fig. 10. (a) Precipitate morphology in an elastically isotropic media; (b) precipitate morphology in an elastically
isotropic media but with five times smaller composition expansion coefficient than in (a); (c) precipitate mor-
phology in a cubically anisotropic media.

tate shape would be a square with round corners.
Therefore, the presence of the dislocation not only From equations (32) and (34), it is easy to see that
leads to the continuous nucleation of a coherent paiie coherency strain energy density is proportional to
ticle but also significantly changes the particle shapéhe square of the composition and the interaction
The barrierless nucleation of a coherent particlenergy density is linearly proportional to compo-
around a dislocation can be understood from the elasition. Therefore, while the coherency strain energy
tic coupling between a nucleus and the dislocatiorlue to a compositional inhomogeneity depresses the
For an isotropic solid solution, the coherency straigpinodal temperature, the introduction of a dislocation
energy density is given by field does not affect the position of the spinodal line.
Interaction between dislocations and composition
simply creates a local potential inhomogeneity which

B 1+v 2 vz
€con = 2 l—v€°[x(r) Xl (32) in turn produces a stable compositional fluctuation
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(the segregation profile). The critical fluctuationsinder the influence of the local elastic field of the
which lead to coherent nucleation can, in principledislocation even in an elastically isotropic system.

be obtained using the non-classical nucleation theory

of Cahn [31]. According to Cahn, the energy barrieAcknowledgementsThe authors are grateful for the financial
for coherent nucleation becomes zero when the oveaupport from the NSF under the grant No. DMR-96-33719. The

all composition approaches the coherent spinodal.

the presence of dislocations, although the overa
composition may be outside the coherent spinodal,
the local composition may be inside the spinodal as
a result of the composition inhomogeneity caused byt
the dislocation. In our case, since the overall averag
composition is near the spinodal line, the composition

in the tensile side of the dislocation is increased taa.
such an extent that it falls inside the spinodal. As &
result, although the overall composition is outside spi->-
nodal, the maximum composition around the dislo-6
cation already exceeds the spinodal composition and
thus produces a compositional instability. Therefore,7.
nucleation and growth in this case can take place
without overcoming a nucleation barrier. Indeed, if
we choose a composition which is far away from theg
spinodal composition and perform the simulation

without thermal noise, nucleation and growth did notO.

occur. In a real system, the compositional variation

cation-induced compositional

coordinates. Although far away from the spinodal

noise, it requires a smaller fluctuation to overcome

the nucleation barrier, and thus results in an increase

in the nucleation rate in the presence of dislocation%?-
18.

19.
20.

5. SUMMARY
A diffuse-interface field model is proposed for pre21-
dicting the morphological and microstructural evol-,
ution in coherent systems with arbitrary spatial distriog.
bution of structural defects such as dislocation24.
Within this model, the elastic stresses due to a com>-
positional inhomogeneity and structural defects al
solved consistently within the same formulation. We-
also proposed a number of ways to introduce the eig-
enstrain of a dislocation in practical numerical simul28.
ations. We applied our model to solute segregation as
well as to the nucleation and diffusional growth of &9
coherent precipitate at an edge dislocation. It is showp
that the coherent nucleation may become barrierless.

ulations were performed at the San Diego Supercomputer
enter and the Pittsburgh Supercomputing Center.
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