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Abstract—An efficient phase-field model is proposed to study the coherent microstructure evolution in elasti-
cally anisotropic systems with significant elastic modulus inhomogeneity. It combines an iterative approach
for obtaining the elastic displacement fields and a semi-implicit Fourier–spectral method for solving the time-
dependent Cahn–Hilliard equation. Each iteration in our iterative numerical simulation has a one-to-one
correspondence to a given order of approximation in Khachatuyran’s perturbation method. A unique feature
of this approach is its ability to control the accuracy by choosing the appropriate order of approximation.
We examine shape dependence of isolated particles as well as the morphological dependence of a phase-
separated multi-particle system on the degree of elastic inhomogeneity in elastically anisotropic systems. It
is shown that although prior calculations using first-order approximations correctly predicted the qualitative
dependence of a two-phase morphology on elastic inhomogeneity, the local stress distributions and thus the
driving force for microstructure evolution such as coarsening were in serious error quantitatively for systems
with strong elastic inhomogeneity.  2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All
rights reserved.
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1. INTRODUCTION

Essentially all solid–solid phase transformations pro-
duce coherent microstructures at their early stages. In
a coherent microstructure, the lattice directions and
planes are continuous across the interfaces separating
the parent and product phases or separating different
orientation domains of the product phase. In order to
maintain this lattice continuity, the lattice mismatch
between the product and the parent phases and among
the orientation domains of the product phase is
accommodated by elastic displacements of atoms
from their equilibrium lattice positions. Therefore,
formation of coherent microstructures generates elas-
tic strain energy whose magnitude depends on the
degree of lattice mismatch, the elastic properties of
each phase, and the shape and spatial distributions of
coherent domains [1, 2].

The effect of elastic strain energy on coherent pre-
cipitate morphology and its temporal evolution has
been a subject of extensive experimental and theoreti-
cal studies, for reviews see [3, 4]. Most of the existing
theoretical analysis and numerical modeling of elastic
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effect assumed that the elastic modulus is homo-
geneous [5–22], or that the modulus inhomogeneity
is small so that first-order approximations may be
employed [23–30].

There have been a number of approaches proposed
for modeling the elastic effect on precipitate mor-
phology in coherent systems with a significant elastic
inhomogeneity. For example, Lee proposed a discrete
atom method (DAM) which allows rather arbitrary
elastic inhomogeneity and precipitate morphology
[31, 32]. Due to the discrete nature of the method,
the spatial scale of the precipitates described by this
method is atomic. Schmidt and Gross [33, 34] studied
the equilibrium shapes of a coherent precipitate using
a boundary integral method and a sharp-interface
description. In [33, 34], the temporal evolution of pre-
cipitate morphology through diffusion transport of
atoms was not considered. Jou et al. examined the
temporal evolution of precipitate shapes in elastically
inhomogeneous systems by simultaneously solving a
diffusion equation and the elasticity equation using
the boundary integral method [35]. Since the inter-
faces are considered to be sharp, it is difficult to
handle certain topological changes which take place,
e.g., during initial stage of spinodal phase separation,
and during precipitate coalescence and splitting. Leo
et al. developed a diffuse-interface model for mode-
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ling elastically inhomogeneous systems by coupling
the Cahn–Hilliard diffusion equation with an elas-
ticity equation. In this method, the elasticity equation
is numerically solved by a conjugate gradient method
(CGM) at any given moment during microstructure
evolution [36]. A similar diffuse-interface model
using CGM is proposed by Zhu et al. [37].

Recently, Khachaturyan et al. developed an ana-
lytical solution for the elastic field in an elastically
inhomogeneous system using a perturbation method
(PM) and sharp-interface description [38]. The strain
energy is expressed as a sum of multiparticle interac-
tions between finite elements of the constituent
phases, pairwise, triplet, quadriuplet and so on, the
n-particle interaction energy being related to the
(n�2)th order term in the Taylor expansion of the
Green function with respect to the elastic modulus
misfit. The order of approximation required for a
given system depends on the desired accuracy and
the degree of elastic inhomogeneity. However, direct
application of the analytical elastic energy expression
to numerical simulation of coherent microstructure
evolution in elastically inhomogeneous systems is dif-
ficult since the elastic strain energy involves multi-
dimensional integrals in both real and Fourier spaces.

The main purpose of this paper is to present an
efficient diffuse-interface phase-field model for elasti-
cally inhomogeneous systems. We used an iterative
approach for numerically solving the elastic equilib-
rium equation and employed a diffuse-interface
description. A unique feature of this method is the
fact that each iteration in our numerical method corre-
sponds to a given order of approximation in Khachat-
uryan’s perturbation method. To be consistent with
[38], we will simply call our numerical method the
“perturbation method” or PM. We will apply PM to
elastically anisotropic coherent systems with strong
elastic inhomogeneity and compare our results with
those predicted previously by others using first-order
approximations. Application of the proposed PM to
calculating effective elastic modulus of a two-phase
mixture and its temporal evolution will be discussed
in a future publication.

2. ELASTIC ENERGY IN AN ELASTICALLY
INHOMOGENEOUS SYSTEM IN DIFFUSE-

INTERFACE DESCRIPTION

2.1. Mechanical equilibrium equation

We consider a simple binary solid solution with a
compositional inhomogeneity described by X(r), rep-
resenting the mole or atom fraction X at position r.
We assume that the local elastic modulus tensor can
be described in terms of the compositional inhom-
ogeneity through

lijkl(r,t) = lm
ijkl

(Xp
eq�X(r))

Xp
eq�Xm

eq

+ lp
ijkl

(X(r)�Xm
eq)

Xp
eq�Xm

eq

(1)

where lm
ijkl and lp

ijkl are the elastic modulus tensors for
the matrix with equilibrium composition Xm

eq and for
the precipitate with equilibrium composition Xp

eq,
respectively. It is easy to show that the local elastic
modulus tensor (1) can be rewritten as

lijkl(r) = lo
ijkl + l�

ijkldX(r) (2)

where dX(r,t) = X(r,t)�Xo, lo
ijkl is a constant rep-

resenting the elastic modulus tensor for a homo-
geneous solid solution with composition Xo, and
l�

ijkl is given by

(lp
ijkl�lm

ijkl)
(Xp

eq�Xm
eq)

.

If we assume that the variation of stress-free lattice
parameter, a, with composition obeys the Vegard’s
law, the local stress-free strain caused by compo-
sitional inhomogeneity is given by,

�o
ij(r) = �odX(r)dij (3)

where �o = (1/a)(da/dX) is the composition expansion
coefficient of the lattice parameter and dij is the
Kronecker–Delta function.

Let’s use �ij(r) to denote the total strain measured
with respect to a reference lattice and assume linear
elasticity, the Hook’s law gives the local elastic
stress,

sel
ij (r) = [lo

ijkl + l�
ijkldX(r)][�kl(r)��o

kl(r)] (4)

Since the mechanical equilibrium with respect to
elastic displacements is established much faster than
any diffusional processes, for any given distribution
of composition, the system is always at mechanical
equilibrium,

∂sel
ij

∂rj

= 0 (5)

where rj is the jth component of the position vector,
r. Following Khachaturyan [1], the total strain �ij(r)
may be represented as the sum of homogeneous and
heterogeneous strains:

�ij(r) = �̄ij + d�ij(r) (6)

where the homogeneous strain, �̄ij, is defined so that

�
V

d�ij(r)d3r = 0 (7)
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The homogeneous strain is the uniform macroscopic
strain characterizing the macroscopic shape and vol-
ume change associated with the total strain, �ij(r). Let
us use ui(r) to denote the ith component of displace-
ment. According to the relationship of strain and dis-
placement, the heterogeneous strain can be
expressed as,

d�kl(r) =
1
2�∂uk(r)

∂rl

+
∂ul(r)

∂rk
� (8)

Substituting equations (4), (8) and (6) to the mechan-
ical equilibrium equation (5), one has

�lo
ijkl

∂2

∂rj∂rl

+ l�
ijkl

∂
∂rj
�dX(r)

∂
∂rl
��uk(r) (9)

= (lo
ijkl�

o
kl�l�

ijkl�̄kl)
∂(dX(r))

∂rj

+ l�
ijkl�

o
kl

∂(dX(r))2

∂rj

The determination of the equilibrium elastic field for
an elastically inhomogeneous system is reduced to
solving the mechanical equilibrium equation (9) sub-
ject to appropriate boundary conditions.

2.2. Solution to the mechanical equilibrium equation

2.2.1. Zeroth-order approximation. Because of
the nonlinearity of the mechanical equilibrium equ-
ation (9), in general, it cannot be solved analytically.
However, if one ignores the elastic modulus inhom-
ogeneity, l�

ijkl = 0, the mechanical equilibrium equ-
ation becomes linear and is given by

lo
ijkl

∂2u0
k(r)

∂xj∂xl

= so
ij

∂dX(r)
∂xj

(10)

where uo
k denotes the kth component of the displace-

ment in the zeroth order approximation and
so

ij = lo
ijkl�

o
kl. Equation (10) can be readily solved in

the Fourier space,

n0
k(g) = �iGik(g)gjso

ijdX(g) (11)

where n0
k(g) and dX(g) are Fourier transforms of

uo
k(r) and dX(r), respectively, g is a reciprocal lattice

vector, gj is the jth component of g, and Gik(g) is the
inverse tensor to (G�1(g))ik = g2lo

ijklnjnl = g2��1
ik (n)

with n = g/�g�. The back Fourier transform of n0
k(g)

gives the real-space solution for the displacement
field in the zeroth order approximation,

u0
k(r) =

1
(2p)3�n0

k(g)eig·rd3g (12)

2.2.2. First-order approximation. With the zer-
oth-order solution, one can analytically obtain the sol-
ution for the displacement field with a first-order
approximation. To do this, we replace the displace-
ment in the nonlinear term in equation (9) using the
zeroth order solution and move it to the right-hand
side,

lo
ijkl

∂2u1
k(r)

∂rj∂rl

= (so
ij

�l�
ijkl�̄kl)

∂(dX(r))
∂rj

+ l�
ijkl�

o
kl

∂(dX(r))2

∂rj

(13)

�l�
ijkl

∂
∂rj
�dX(r)

∂u0
k(r)

∂rl
�

where u1
k(r) represents the kth component of displace-

ment in the first-order approximation. Equation (13)
has essentially the same structure as equation (10)
except for a slightly more complicated right-hand side
in equation (13). Therefore, the solution u1

k(r) can also
be analytically obtained using Fourier transforms, i.e.

n1
k(g) = �iGik(g)gj�(so

ij

�l�
ijlm�̄lm)dX(g) + l�

ijlm�o
lm{(dX(r))2}g (14)

�l�
ijlm�dX(r)

∂uo
l (r)

∂rm
�

g
�

A significant difference between equation (10) and
equation (13) is the fact that the homogeneous strain,
�̄ij enters equation (13). As a result, with a first-order
approximation, an applied strain or stress will affect
the heterogeneous elastic displacements.

2.2.3. High-order approximations. Higher order
solutions for uk(r) can be derived using a similar
approach as the first-order approximation. For
example, the nth order solution for displacement,
un

k(r), can be obtained from the following equation,

lo
ijkl

∂2un
l (r)

∂rj∂rk

= (lo
ijkl�

o
kl

�l�
ijkl�̄kl)

∂(dX(r))
∂rj

+ l�
ijkl�

o
kl

∂(dX(r))2

∂rj

(15)

�l�
ijkl

∂
∂rj
�dX(r)

∂un�1
l (r)
∂rk

�
where un�1

k (r) is the solution from a lower-order
approximation. Again the elastic displacement in the
nth order approximation can be obtained from equ-
ation (15) using Fourier transforms. Each of the suc-
cessive orders of the approximation has a one-to-one
correspondence to the order of approximation dis-
cussed by Khachaturyan et al. for elastically inhomo-
geneous systems with a sharp-interface description
[38].
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2.2.4. Elastic energy in an elastically inhomo-
geneous system. The coherency elastic strain
energy density for a given compositional distribution
in an elastically inhomogeneous and anisotropic sys-
tem is given by

eel =
1
2
lijkl�

el
ij �

el
kl

=
1
2

[lo
ijkl + l�

ijkldX(r)]�o
ij�

o
kl(dX(r))2

+
1
2

[lo
ijkl + l�

ijkldX(r)]d�ijd�kl (16)

�[lo
ijkl + l�

ijkldX(r)]�o
ijd�kldX(r)

+
1
2

[lo
ijkl + l�

ijkldX(r)]�̄ij�̄kl

+ [lo
ijkl + l�

ijkldX(r)][d�ij��o
ijdX(r)]�̄kl

The total coherency strain energy is given by

Eel = �
V

eeld3r (17)

In equation (16), d�ij(r) is given by

d�ij(r) =
1

(2p)3� i
2

[ni(g)gj + nj(g)gi]eig·rd3g (18)

where ni(g) is the ith component of the displacement.
The corresponding elastic stress is given by equation
(4). The homogeneous strain in equation (16) and
equation (4) is determined by the boundary constraint.
If the boundary is constrained so that the system is
not allowed to have any homogeneous deformation,
the homogeneous strain, �̄ij, is equal to zero. In this
case, the whole system is stressed. Similarly, if the
system is subject to an initial applied strain, �a

ij, then
the boundary is held fixed, �̄ij = �a

ij. On the other hand,
if the system is stress-free, i.e., the system is allowed
to deform so that the average stress in the system is
zero, the homogeneous strain is obtained by minimiz-
ing the total elastic energy with respect to the homo-
geneous strain. In this work, we consider the simple
case that the boundary is constrained so that the
homogeneous strain is zero. The cases of constant
applied strain and applied stress will be discussed
elsewhere.

3. DIFFUSION EQUATION IN ELASTICALLY
INHOMOGENEOUS SYSTEMS

For a binary substitutional solid solution, the dif-
fusion flux (in unit of atoms per unit area per unit
time) is given by

J = �NvM�m (19)

where Nv is the number of atoms per unit volume,
M is a mobility given by

M = X(1�X)[XM1 + (1�X)M2] (20)

where X is the composition of species 2 (mole or
atom fraction), M1 and M2 are atomic mobilities of
species 1 and 2, respectively. They are related to the
diffusivity through

Mi =
Di

kBT

where kB is the Boltzmann constant, T is the tempera-
ture, and Di is the diffusion coefficient of species i in
a dilute solution. For simplicity, we assume that the
mobilities of the two species are equal, and thus

M =
DX(1�X)

kBT
.

In a compositionally inhomogeneous solid solution
with composition-dependent lattice parameter, m is
given by

m(r) =
∂f(X)
∂X

�a�2X + mel (21)

where f(X) is the incoherent free energy density of
the solid solution, a is the gradient energy coefficient
[39], and

mel =
1

Nv

deel

dX

is the elastic potential due to the coherency strain,
and is given by

Nvmel = �lo
ijkl(�̄ij + d�ij(r))�o

kl + lo
ijkl�

o
ij�

o
kldX(r) +

1
2
l�

ijkl(�̄ij + d�ij)(�̄kl + d�kl) (22)

�2l�
ijkl(�̄ij + d�ij)�o

kldX(r) +
3
2
l�

ijkl�
o
ij�

o
kl(dX(r))2

where d�kl(r) is given by (18).
The time-dependent diffusion equation is then

given by

dX(r)
dt

= ��DX(1�X)
kBT ���df(X)

dX
�a�2X + mel�

(23)
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Although the above variable–coefficient diffusion
equation can be efficiently solved using the semi-
implicit Fourier–Spectral method [40], to avoid
unnecessary discussions on the numerical method, we
make a further simplification by assuming that the
factor X(1�X) is a constant given by Xo(1�Xo)
where Xo is the overall composition.

Using the dimensionless units,

t∗ =
DtXo(1�Xo)

(�x)2 , f∗ =
f

kBT
,

m∗
el =
mel

kBT
, �∗ = (�x)2�,

r∗ =
r

�x
, and �∗ =

�

kBT(�x)2,

we have

dX
dt∗

= (�∗)2�df∗(X)
dX

�a∗(�∗)2X + m∗
el� (24)

Taking a Fourier-transform of both sides of equ-
ation (24), we have the temporal evolution of the
composition wave amplitude, X(g),

dX(g∗)
dt∗

= �(g∗)2 (25)

��df∗(X)
dX �

g∗
+ a∗(g∗)2X(g∗) + m∗

el(g∗)�
where g∗ is the magnitude of g∗, X(g∗) and mel(g∗) are
the Fourier transforms of X(r∗) and m∗

el(r∗), respect-
ively. The above equation is most efficiently solved
using a semi-implicit method [40],

X(g∗,t∗ + �t∗) = (26)

X(g∗,t∗)��t∗(g∗)2��df∗(X)
dX �

g∗
+ m∗

el(g∗)�
1 + �t∗a∗(g∗)4

where �t∗ is the time step for integration. Algorithms
with higher order in t are also available [40].

4. DISCUSSION

4.1. Convergence of the proposed method

In principle, the convergence and accuracy of the
proposed perturbation method for a given order of
approximation can be tested against analytical sol-
utions which are available for certain special precipi-
tate shapes [2]. However, the analytical solutions are
available only for systems with a sharp-interface
description whereas the interfaces in our numerical
calculation are diffuse. Therefore, to examine the

accuracy, we compare the results from the proposed
method with those obtained from an independent cal-
culation using a conjugate gradient method (CGM)
with the same diffuse-interface description [37]. In
CGM, the elastic equation is numerically solved until
the results converge.

For discussion, we consider a model binary alloy
with its chemical thermodynamics described by the
following local incoherent free energy density,

f∗(X) = �(X�0.5)2 + 2.5(X�0.5)4 (27)

where X is composition. The equilibrium compo-
sitions determined from equation (27) are 0.053 and
0.947, respectively. We introduce a circular precipi-
tate with composition 0.947 and a radius of R = 10
in a square domain of matrix (256×256) with compo-
sition 0.053. Periodic boundary conditions are applied
along both Cartesian axes. The initially sharp compo-
sition profile describing the precipitate is allowed to
relax for a certain number of time steps by solving
the Cahn–Hilliard diffusion equation with a gradient
energy coefficient, 1.5, but without including the
stress effect. The resulting two-dimensional diffuse
compositional profile is then used to calculate the
stress distributions using the proposed perturbation
method with different orders of approximation and
the CGM [37]. For comparing the results, the number
of time steps to relax the profile is not particularly
important since we use the same profile for the two
independent calculations. Both calculations employed
the spectral method for the spatial dicretization of the
elasticity equation. The composition expansion coef-
ficient, �o is chosen to be 0.05. The elastic constants
used are Co

11 = 300, Co
12 = 100, Co

44 = 100, and
C�

11 = 150, C�
12 = 50, C�

44 = 50 for a hard precipitate
and C�

11 = �150, C�
12 = �50, C�

44 = �50 for a soft
precipitate, all in units of NvkBT. This set of elastic
constants produce more than 50% difference in the
elastic constants between the precipitate and matrix,
which is artificially large compared to the typical
elastic inhomogeneity in most of the practical two-
phase alloys.

Examples of equilibrium stress distributions, sxx

and syy, as a function of position along a line cut
through the center of the precipitate in the x direction
are shown in Fig. 1 for a hard precipitate, and Fig. 2
for a soft precipitate. The shear component, sxy, is
zero along that line, so it is not shown. In both Figs
1 and 2, the squares and circles represent the results
from the proposed perturbation method and the
crosses and pluses represent those from the CGM. It
can be seen that for both hard and soft precipitates,
the results from two calculations agree very well for
both stress components. Both calculations converge
to essentially the same results although the two calcu-
lations were performed using two entirely inde-
pendent computer codes. It is shown that although the
stresses in the matrix are similar for both the hard
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Fig. 1. Stress distributions along the x-direction across the
center of a hard precipitate. The open squares and circles rep-
resent the xx and yy components obtained from the proposed
perturbation method (PM). The crosses and pluses represent
the corresponding results from a conjugate gradient method

(CGM).

Fig. 2. Stress distributions along the x-direction across the
center of a soft precipitate. The open squares and circles rep-
resent the xx and yy components obtained from the proposed
perturbation method (PM). The crosses and pluses represent
the corresponding results from a conjugate gradient method

(CGM).

and soft precipitates, the absolute magnitude within
the hard precipitate is significantly higher than that
within the soft precipitate. It is easily understandable
since we used exactly the same two-dimensional
compositional profile for the hard and soft precipitates
and the larger elastic constants for the hard precipi-
tates would produce larger stresses. To examine the
convergence of the elastic solution as a function of
iteration number, or the order of approximation, the

Fig. 3. The xx component of the elastic stress along the x-
direction across the center of the hard precipitate as a function
of iteration numbers (or the order of approximations) from the

perturbation iterative method.

stress components, sxx and syy, as a function of pos-
ition for a given composition profile are plotted for
different iteration numbers in Figs 3–6 for both hard
and soft precipitates. We used the same materials
parameters as in Figs 1 and 2. In calculating the stress
distributions, the elastic displacements and thus the
elastic strains were obtained using various orders of
approximations, with the stress calculated using equ-
ation (4). For example, in the legends for the figures,
the number “0” represents the case that the elastic
solution, �ij(r), was obtained using the zeroth-order
approximation (11), but the elastic constants used in

Fig. 4. The yy component of the stress along the x-direction
across the center of the hard precipitate as a function of iter-
ation numbers (or the order of approximations) from the iterat-

ive method.



1885HU and CHEN: PHASE-FIELD MODEL

Fig. 5. The xx component of the stress along the x-direction
across the center of the soft precipitate as a function of iteration
numbers (or the order of approximations) from the iterative

method.

Fig. 6. The yy component of the stress along the x-direction
across the center of the soft precipitate as a function of iteration
numbers (or the order of approximations) from the iterative

method.

calculating the stress distributions in equation (4) are
not homogeneous. Therefore, even with the zeroth
order of approximation, some degree of elastic
inhomogeneity has been taken into account in the
elastic energy calculation. As a matter of fact, the
level of approximation used in Koyama’s simulation
for elastically inhomogeneous systems [27] corre-
sponds to our zeroth order approximation. As one can
see from Figs 3–6, even with such a large elastic
inhomogeneity, �50%, considered in the calcu-
lations, the elastic stress essentially converges after
three to four iterations, indicating a third or fourth

order approximation will be sufficient for the elastic
energy calculations with a similar degree of elastic
inhomogeneity assumed in this calculation. The zer-
oth order approximation overestimates the stress
within the hard precipitate and underestimates the
stress within the soft precipitate by about 25–30%.
The error is reduced to 10% with a first order approxi-
mation. Table 1 shows the required iteration numbers
or order of approximation to get converged elastic
solution for a given ratio of elastic constants between
precipitate and matrix. As expected, the number of
iterations increases with the degree of elastic inhom-
ogeneity. For a 10% elastic inhomogeneity, it is suf-
ficient to use the first order approximation. Even with
inhomogeneities as large as 100%, it requires only
about five iterations.

4.2. Efficiency of the proposed method

Since each order of the approximation for the elas-
tic solution is obtained analytically (see equations
(11) and (14)), the proposed algorithm is extremely
efficient. Table 2 lists the relative computation time
required for each order of approximation as compared
to the zeroth order approximation. As one can see, a
first-order approximation requires about only 50%
more time than the homogeneous approximation.
Even for the extremely large inhomogeneity case, the
computation time required is about 4 times that for
the zeroth-order or homogeneous approximation. A
CGM for the same problem will typically take 5–6
times longer than the proposed perturbation method
[37]. Furthermore, since we solve both the elastic
equation and the Cahn–Hilliard diffusion equation in
Fourier space, it is straightforward to implement a
semi-implicit algorithm for numerical integration
with respect to time. We found that with the semi-
implicit algorithm, time steps as much as 500 times
larger can be used as compared to the explicit Euler
method [40]. Therefore, our proposed combination of
iterative perturbation method for the elastic equation
and the semi-implicit spectral algorithm for the dif-
fusion equation is very efficient for modeling micro-
structure evolution in elastically inhomogeneous sys-
tems.

4.3. Morphological dependence on elastic inhom-
ogeneity

4.3.1. Shapes of isolated precipitates. The
shapes of a single coherent precipitate in elastically
inhomogeneous systems have been studied previously
[32, 34, 35]. As an example of applying the proposed
iterative perturbation algorithm, we study the shape
evolution of a single precipitate and examine the
shape dependence of a precipitate on elastic inhom-
ogeneity. The shape evolution of an isolated particle
towards equilibrium is obtained by solving the Cahn–
Hilliard diffusion equation with elastic stress. We
used a 256×256 grid. The initial composition within
the precipitate is assigned the equilibrium value
determined from the local incoherent free energy den-



1886 HU and CHEN: PHASE-FIELD MODEL

Table 1. Convergence of the iterative method

0.19 0.37 0.55 0.73 0.91 1.0 1.09 1.27 1.45 1.63 1.99CP
ij

CM
ij

Iterations 5 4 3 2 1 0 1 2 3 4 5

Table 2. Computational time required for a given number of iterations normalized by the time required for the zeroth order approximation

Iterations 0 1 2 3 4 5 6
Time 1.0 1.5 2.1 2.6 3.1 3.7 4.3

sity function, X = 0.947, whereas X = 0.06 in the
matrix which is higher than the incoherent equilib-
rium composition, 0.053. The coherent equilibrium
compositions are not known in advance and will be
automatically achieved during the temporal evolution
towards equilibrium. The time step for integrating the
Cahn–Hilliard equation is 0.5 and the gradient energy
coefficient is 1.5. The composition expansion coef-
ficient is 0.05. We consider a cubically anisotropic
system. We choose a set of elastic constants which
provide an elastic anisotropy typical of those Ni-
based superalloys. In particular, we use the following
values for the elastic constants in reduced units:
C11 = 232, C12 = 153 and C44 = 117 [41]. To examine
the effect of elastic inhomogeneity, we artificially
keep the bulk modulus (B = C11 + C12 for the plane
problem) and the ratio of anisotropy (d = 2C44/(C11

�C12)) the same in the matrix and precipitate, while
changing the ratio of shear modulus � = CP

44/CM
44 in

which P and M denote the precipitate and matrix,
respectively. As an example, the temporal evolution
of a soft precipitate with � = 0.3 from the initially
circular precipitate (R = 40) is shown in Fig. 7. The
composition distributions along the x-direction and
the diagonal direction passing through the center of
the precipitate are plotted as a function of time in Fig.

Fig. 7. The particle shape as a function of time for a soft pre-
cipitate (� = 0.3, R = 40).

8. It is well known that the shape of the particle is
controlled by the total of interfacial energy and elastic
strain energy. In this particular example, the interfa-
cial energy is assumed to be isotropic, so the develop-
ment of anisotropic particle shape is entirely due to
the anisotropic elastic interactions caused by the lat-
tice mismatch and elastic inhomogeneity. The soft-
ness of the precipitate and the cubic anisotropy result
in the elongation of the particle along the [11] and [
11̄] directions. A very similar shape change was
observed by Lee using the discrete atom method [31,

Fig. 8. Evolution of compositional profiles as a function of time
for a soft precipitate (� = 0.3, R = 40), (a) along the x-direc-

tion, (b) along the diagonal direction.
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32]. The coherent composition within the precipitate
is lower than the initially assigned value (the incoher-
ent equilibrium composition of the precipitate)
whereas in the matrix the composition is higher than
the initial incoherent equilibrium composition. The
composition distribution inside the precipitate is
highly inhomogeneous due to the presence of coher-
ent stress. There is no significant change in the shape
of the precipitate and the composition distribution
inside the precipitate after about t = 16,500. However,
due to the application of the periodic boundary con-
ditions and the slow solute redistribution towards
equilibrium, the last morphology shown in Fig. 7 is
close to, but not exactly the equilibrium shape of an
isolated precipitate. Precipitate shape as a function of
elastic inhomogeneity (� = 1.70, 1.35, 1.00, 0.60,
0.45 and 0.30) is shown in Fig. 9. They all started
with an initially circular precipitate with radius 40.
For an elastically homogeneous precipitate, the equi-
librium shape is cubic with rounded corners. With the
decrease in �, i.e., when the precipitate becomes
softer than the matrix, the boundaries of the cuboid
along the [100]/[010] directions become concave,
whose curvature strongly depends on the ratio of
shear modulus �. The hard precipitate has convex
boundaries, but the dependence of equilibrium shape
on � is rather weak compared to the elastically soft
precipitate. Existing studies using other compu-
tational approaches predicted similar results [31, 32,
34].

4.3.2. Dependence of a two-phase morphology on
elastic inhomogeneity. In order to characterize the
elastic inhomogeneity of a two-phase cubic system,
we use three quantities, the bulk modulus
(B = C11 + C22), the shear modulus (G = 2C44), and
the anisotropy (d = 2C44/(C11�C12)). We examined
the inhomogeneity effect of each of these three quan-
tities by holding the other two constant. In the first
case, the bulk and shear moduli are homogeneous
while the bulk modulus is a function of composition.
As an example, the moduli are set to be C11 = 300,

Fig. 9. The shape of an isolated precipitate as a function of
elastic inhomogeneity ((a) � = 1.70, (b) � = 1.35, (c)

� = 1.00, (d) � = 0.60, (e) � = 0.45, (f) � = 0.3).

C12 = 160 and C44 = 70. We use the same bulk modu-
lus (B = 460) and the shear modulus (G = 140) for
the two phases, and change their anisotropy
ratio (dP = 1.00, 1.14, 1.34, 1.63, 2.05, 2.80, dM =
1.00, 0.89, 0.79, 0.72, 0.66, 0.61). The angular-
dependent Young’s moduli as a function of direction
for the precipitate, the matrix and a uniform solid sol-
ution are plotted in Fig. 10(a) for the case of
dP = 2.80 and dM = 0.61. For cubic systems, Young’s
modulus E(q) is given by

E(q) =
1
4

(3C11 + C12 + 2C44) + (C11�C12 (28)

�2C44 cos (4q))

where q is the angle with respect to the elastic main
axis. It is easy to see from Fig. 10(a) that the Young’s
moduli along [11] and [11̄] directions are the same
for both phases while the precipitate has larger modu-
lus than the matrix along the [01] and [10] directions.

The morphological dependence of a phase-separ-
ated two-phase system on the anisotropy ratio is
shown in Fig. 11. In the simulations, the gradient
energy coefficient, composition expansion coefficient,
and the time increment for integration are the same
as in the last example for a single precipitate evol-
ution. The simulations were started with an average
concentration of 0.5 with a small random concen-
tration fluctuation. The white regions in Fig. 11 stand
for the phase with larger Young’s moduli along the
[10] and [01] directions than the black regions. It is
shown that with an increase in difference in the mod-
uli between the two phases, the phase with larger
moduli becomes disconnected and forms isolated
cuboidal composition domains. It is worth pointing
out that although the elastically soft direction for the
precipitate phase in Fig. 11(f) is along [11] and
[11̄] directions, the overall spatial distribution of the
isolated domains displays alignment along the [10]
and [01] directions. As expected, when the anisotropy
for both the precipitate and matrix is rotated by 45°,
the hard phase still appears as isolated precipitates but
the alignment is now along the [11] and [11̄] direc-
tions.

In the second case, the bulk modulus and the ani-
sotropy are the same for the precipitate and matrix
phases while the shear modulus is a function of com-
position. In the numerical example, we use
C11 = 300, C12 = 200 and C44 = 100, B = 500 and
d = 2. The ratios of shear modulus between the two
phases are � = 1.0, 1.2, 1.5, 1.9, 2.6, 3.6. The
Young’s moduli as a function of direction for the pre-
cipitate, the matrix and a uniform solid solution are
plotted in Fig. 10(b) for the case of � = 3.6. In this
case, one phase is harder than the other in all direc-
tions. Figure 12 presents the morphological depen-
dence on elastic inhomogeneity for this case. The
result is quite similar to the first case. At large inhom-
ogeneity, the harder phase consists of isolated par-
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Fig. 10. Young’s modulus as a function of direction: dot-dashed line—matrix; dashed line—precipitate; and
solid line—a homogeneous solution. (a) Homogeneous bulk and shear moduli but inhomogeneous anisotropy;
(b) homogeneous bulk modulus and anisotropy but inhomogeneous shear modulus; (c) homogeneous shear

modulus and anisotropy but inhomogeneous bulk modulus.

Fig. 11. Two-phase morphology as a function of elastic inhom-
ogeneity caused by different degrees of elastic anisotropy in
the matrix and precipitate (dP, dM): (a) (1.00, 1.00), (b) (1.14,
0.89), (c) (1.34, 0.79), (d) (1.63, 0.72), (e) (2.05, 0.66), (f)
(2.80, 0.61). Both the bulk and shear moduli are homogeneous.

Fig. 12. Two-phase morphology as a function of elastic inhom-
ogeneity caused by different shear moduli in the two phases
((a) � = 1.0, (b) � = 1.2, (c) � = 1.5, (d) � = 1.9, (e) � = 2.6,
(f) � = 3.6. The precipitate and matrix have the same bulk mod-

uli and the same degree of elastic anisotropy.

ticles and the softer phase is a connected matrix wrap-
ping the hard phase. The particles are aligned along
the elastically soft directions, [10] and [01]. The tem-
poral morphological evolution during phase separ-
ation of a homogeneous solid solution to a two-phase
mixture is shown in Fig. 13. The morphology [Fig.
13(a)] during the initial stage of phase separation is
very similar to spinodal phase separation without
elastic interactions. As the phase separation process
progresses, morphological alignment along the elasti-
cally soft directions developed. With further coarsen-
ing, the initially interconnected hard phase breaks into
isolated particles.

In the third case, the shear modulus and anisotropy
are independent of composition while the bulk modu-
lus varies with composition. Figure 10(c) shows the
Young’s moduli as a function of direction for the hard
and soft phases. In this case, the degree of elastic
inhomogeneity has essentially no effect on the mor-
phology. Figure 14 shows morphologies with two dif-
ferent ratios of bulk moduli between the two phases.

It should be emphasized that although previous
computer simulations [25, 26, 27, 30] using first-order
approximations predicted similar morphological
dependence on elastic inhomogeneity as shown
above, there are a number of differences between
prior first-order simulations and the present work
using high-order approximations. First, in prior simul-
ation using first-order approximations, the degree of
elastic inhomogeneity is not clear whereas in the
present work it is shown that it requires more than
about 50% difference in modulus in the two phases
(see Fig. 12) to yield a two-phase morphology which
is significantly different from the homogeneous case.
Secondly, although the first-order approximations
predict the qualitatively correct two-phase mor-
phology, the local stress distributions described by a
first-order approximation for a system with large elas-
tic inhomogeneity can be in serious error. As a result,
the elastic energy contribution to the driving force for
microstructure evolution such as coarsening for two-
phase systems is not accurately determined in a first-
order approximation. Furthermore, if one is interested



1889HU and CHEN: PHASE-FIELD MODEL

Fig. 13. Temporal evolution during phase separation of a homogeneous solid solution into a two phase mixture
for the case of elastic inhomogeneity caused by different shear moduli in the two phases, � = 2.6. The precipi-

tate and matrix have the same bulk moduli and the same degree of elastic anisotropy.

Fig. 14. Two-phase morphology as a function of elastic inhom-
ogeneity caused by different bulk moduli in the two phases
((a) BP/BM = 1.0, (b) BP/BM = 1.5. The precipitate and matrix
have the same shear moduli and the same degree of elastic

anisotropy.

in calculating the effective modulus of a two-phase
mixture, a first-order approximation will result in
inaccurate results except for systems with small elas-
tic inhomogeneity (��10%).

5. SUMMARY

A diffuse-interface field model is proposed for pre-
dicting the morphological and microstructural evol-
ution in elastically anisotropic systems with strong
elastic inhomogeneities. Within this model, the elastic
solutions are obtained using an iterative method with
each iteration corresponding to a given order of
approximation in Khachaturyan’s perturbation
method. Highly accurate results can be obtained using
various orders of approximations for different degrees
of elastic inhomogeneity. We compared the results
with various orders of approximation with those
obtained from a conjugate gradient method. It is
shown that first-order approximation is reasonable if
the elastic inhomogeneity is less than about 10%.
Even for systems with extremely large elastic inhom-
ogeneities (100%), the proposed method requires less
than five iterations. A combination of the iterative
perturbation method for the mechanical equilibrium
equation and a semi-implicit spectral method for the
Cahn–Hilliard equation results in an extremely
efficient model for studying morphological evolution
in coherent systems with large elastic inhomogen-
eities. We conclude that for strong elastic inhomogen-
eity (>�20%), first-order approximations predicted

qualitatively correct two-phase morphologies whereas
the local stress distributions and thus the driving force
for coarsening of such a two-phase system can be in
serious error. We also showed that it requires a rather
strong elastic inhomogeneity (>�50%) to produce
precipitate morphologies that are dramatically differ-
ent from elastically homogeneous systems.
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