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Abstract
Ferroelectrics and multiferroics have recently emerged as perspective materials for information
technology and data storage applications. The combination of extremely narrow domain wall
width and the capability to manipulate polarization by electric field opens the pathway toward
ultrahigh (>10 TBit inch−2) storage densities and small (sub-10 nm) feature sizes. The coupling
between polarization and chemical and transport properties enables applications in ferroelectric
lithography and electroresistive devices. The progress in these applications, as well as
fundamental studies of polarization dynamics and the role of defects and disorder on domain
nucleation and wall motion, requires the capability to probe these effects on the nanometer scale.
In this review, we summarize the recent progress in applications of piezoresponse force
microscopy (PFM) for imaging, manipulation and spectroscopy of ferroelectric switching
processes. We briefly introduce the principles and relevant instrumental aspects of PFM, with
special emphasis on resolution and information limits. The local imaging studies of domain
dynamics, including local switching and relaxation accessed through imaging experiments and
spectroscopic studies of polarization switching, are discussed in detail. Finally, we review the
recent progress on understanding and exploiting photochemical processes on ferroelectric
surfaces, the role of surface adsorbates, and imaging and switching in liquids. Beyond classical
applications, probing local bias-induced transition dynamics by PFM opens the pathway to
studies of the influence of a single defect on electrochemical and solid state processes, thus
providing model systems for batteries, fuel cells and supercapacitor applications.

(Some figures in this article are in colour only in the electronic version)
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1. Physics and applications of ferroelectric materials

1.1. Ferroelectric materials and applications

Ferroelectric materials have become the prototypical example
of functional oxides since the discovery of ferroelectricity in
BaTiO3 (BTO) in the mid-1940s [1, 2]. For several decades,
ferroelectric ceramics and single crystals were explored as
materials for ultrasonic transducers in SONAR systems and,
later, medical ultrasound imaging [3–7]. Correspondingly,
much of the early research in the field was driven by
the applications of ferroelectrics as electromechanically
active materials [8]. The advances in thin film synthesis
and microfabrication technologies in the last two decades
have resulted in rapid development of electromechanical
applications of ferroelectrics on the micrometer scale in
microelectromechanical systems and actuators [9–12].

The synergy between the advances in single crystal growth
and basic studies of ferroelectrics in the 1950s and 1960s
has enabled a broad spectrum of applications in electro-
optical systems and photothermal imaging [13–16]. As
with electromechanical applications, the current trend in
miniaturization of device component size resulted in multiple
applications of ferroelectric materials for tunable nanoscale
optics, nanophotonics and plasmonics [17, 18].

From the early days of ferroelectrics, much attention has
been paid to the applications of ferroelectrics in information
technologies. The presence of two or more stable polarization
states (figure 1(a)), the ease of polarization switching by
electric field and the small domain wall width suggested
extraordinarily high storage densities, while coupling between
polarization and optical and transport properties held the
promise of efficient read-out mechanisms. Since the early
1950s, a number of patents on ferroelectric memory diodes,
ferroelectric field-effect transistors and domain wall based
storage have been filed [19–21]. However, the large switching
biases (�10 V) required for polarization manipulation in
single crystals rendered these applications impractical at
that time. The advances in sol–gel film synthesis of thin

films with coercive biases well below ∼10 V in the early
1990s rendered the information technology applications of
ferroelectrics feasible [22, 23]. The first examples were the
ferroelectric random access memories (FeRAM), in which
the dielectric in a standard dynamic random access memory
(DRAM) capacitor is substituted with a ferroelectric, adding
the advantage of non-volatility. Similarly, the combination
of a semiconductor channel and a ferroelectric gate enabled
ferroelectric gate transistors. The seminal work by Ahn
et al has demonstrated the potential of ferroelectric field
effect manipulation in superconducting, semiconductor and
organic materials [24–26]. Future progress in this area
requires ferroelectric–semiconductor integration technologies
that preserve interface quality [27–29].

Advances in understanding order parameter coupling in
strongly correlated oxides and atomic-level control of film
growth in molecular beam epitaxy and pulsed laser deposition
(PLD) [30–32] have stimulated interest in magnetoelectric
and multiferroic applications [33–37]. Extensive analysis
of the potential applications and relevant fundamental
scientific issues are now available [38–41]. The recently
studied relationship between ferroelectricity and electronic
transport suggests tremendous potential for resistive memory
applications [42–44]. Extending beyond the realm of
electronic devices, the photovoltaic effect on ferroelectric
surfaces and polarization-controlled reactivity has also been
demonstrated [45–48], and ferroelectric lithography has been
used to fabricate nanostructures [49–51].

The fundamental property of ferroelectric materials
that enables their application in functional materials and
heterostructures is the presence of switchable polarization
and associated domain structures. Polarization switching
directly underpins the functionality of data storage [13, 52],
FeRAMs [30, 53] and electroresistive [42, 54] memories. The
motion of domain walls and interface boundaries enables
high electromechanical coupling coefficients in polycrystalline
ferroelectrics and relaxors. The continuous tendency
for miniaturization of electronic and optical components
necessitates the understanding of ferroelectric phase stability
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Figure 1. (a) Double well potential and ferroelectric unit cell. (b) Random bond (symmetric) and (c) random field (asymmetric) disorder in
a ferroelectric material. Curves (1) correspond to a defect-free material, (2) to the presence of a weak random bond (b) and random field (c)
defect and (3) to the limiting of a non-polar phase and polar non-ferroelectric phases, respectively. Panel (a) reproduced with permission
from [64], copyright 2002 by The American Physical Society. Panels (b), (c) reproduced from [65], copyright 2008, Nature Publishing
Group.

and particularly of polarization switching in dimensionally
confined systems, such as thin films, nanowires and
nanoparticles [55–63]. Complementary to these is the need
to understand the role of defects and long-range strain and
electrostatic fields on polarization switching. Below, we
summarize some of the relevant aspects of ferroelectric
physics.

1.2. Ferroelectrics at the nanoscale

1.2.1. Physics of low-dimensional ferroelectrics. The role
of nanoscale confinement on ferroelectric phase stability, a
necessary precondition to polarization switching, has been
explored intensively since the early 1950s. A number of
authoritative reviews [66–68] have been published recently,
addressing this issue in detail. Generally, it is believed that the
reduction in size lowers the stability of the ferroelectric phase
by decreasing the effective Curie temperature and precipitating
the transition to a cubic non-polar phase. In thin films, the
difference in boundary conditions can result in large built-
in electric fields, stimulating the transition to a polar non-
ferroelectric phase. These mechanisms can be linked to
random bond and random field disorder potential components,
as shown in figures 1(b) and (c).

The primary factors controlling ferroelectric phase
stability are depolarization field effects arising from the
termination of polarization at ferroelectric surfaces. These
effects govern domain formation and are influenced by
chemical screening, surface chemistry and size and strain
effects. At critical values of the depolarization field, toroidal
ferroelectric polarization states are expected to exist as
predicted by Ginzburg et al [69], Gorbatsevich et al [70],
and later studied on atomistic level by Naumov et al [71],
Bellaiche and Prosandeev and by several other groups [72–76].
Recently, experimental evidence consistent with the formation
of vortex domain states has been reported in circular capacitor
structures [77] and nanoferroelectric PbZrxTi1−xO3 (PZT)
arrays [78].

1.2.2. Physics of polarization reversal processes. To parallel
the understanding of fundamental aspects of ferroelectric
behavior at the nanoscale, a large number of studies have
been focused on the applied physics of ferroelectric materials,
particularly on mechanisms of polarization switching,
including domain nucleation, phase stability and domain wall
motion.

The mechanism of polarization reversal was first
addressed in the seminal paper by Landauer [79], who analyzed
the free energy of a ferroelectric nucleus and demonstrated
that experimentally observed nucleation fields correspond to
unphysically large critical nuclei and activation energies. This
study strongly suggests that polarization switching, similar to
other first order phase transitions, is controlled by defects.
In parallel, a number of authors have explored alternative
mechanisms to address the Landauer paradox, including
the lowering of the nucleation bias due to suppression of
depolarization fields by tunneling [80], the presence of built-in
electrostatic fields (which is equivalent to defects) [81] and
correlated switching [82]. The work by Kay and Dunn
(KD) has extended the Landauer model to study the thickness
dependence of the coercive bias, giving rise to the famous 2/3
power law [83]. Remarkably, despite the number of the overly
restrictive approximations underpinning the KD model, the
law has been experimentally demonstrated to be valid down to
the nanometer level [84].

The second key aspect of polarization switching processes
is domain wall motion. The seminal studies by Merz
have explored the field–velocity relationship for walls in
crystals [85]. The fundamental mechanism of wall motion
was studied by Miller and Weinreich, who predicted
that the small width of the domain wall necessitates
motion through the formation of 2D domains [86]. This
model was extended by Burtsev and Chervonobrod [87]
to include the effects of finite lattice potential and wall
width. Finally, the recent studies by the Rappe group [88]
have elucidated the atomistic mechanisms for domain wall
motion.
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Figure 2. Applications of PFM. (a) Domain imaging (b) domain patterning, (c) studies of domain dynamics, (d) phase transformations,
(e) spectroscopy and (f ) switching spectroscopy mapping. Panel (a) reproduced with permission from [102]. Panel (c) reproduced with
permission from [64] and copyright 2002, American Physical Society. Panel (d) reproduced with permission from [103]. Copyright 2007,
American Institute of Physics. Panels (e) and (f ) are reproduced from [104]. Copyright 2007, IOP Publishing.

Domain wall motion and geometry are strongly affected
by the presence of defects that can act as pinning centers. The
interplay between the driving force and disorder gives rise to a
broad spectrum of domain wall motion dynamics, including
reversible vibrations, creep and sliding. The interface
dynamics in disordered media was studied by Natterman [89]
and Giamarchi [90] and experimental studies have recently
been summarized by Kleeman [91]. Remarkably, most
statistical theories are universal and can be developed for
a given class of order parameter for cases of the pinning
controlled by single defects (strong pinning) or by fluctuations
in defect densities (weak pinning). The elementary
mechanisms of pinning and defect–domain wall interactions
were studied on a mesoscopic level by Sidorkin [92].

In most materials, the nucleation and wall motion
proceed simultaneously, resulting in complex kinetics. The
realization of the role of defects on polarization switching
led to a number of statistical theories for the description of
switching phenomena by extending the Kolmogorov–Avrami
[93, 94] theory to polarization switching [95–97]. In these
approaches, the spatial and energy distribution of defects
become the fundamental parameter describing the switching
process. Finally, a number of authors report on unusual
physical phenomena during domain nucleation, including
wall-mediated switching (see, e.g., [98]) and skyrmion
emission [99].

1.3. Local probing of ferroelectric materials

Understanding polarization reversal mechanisms and domain
wall dynamics on the nanometer scale has received a huge
impetus from the development of imaging probes capable of
addressing domain behavior locally. Since the 1950s, optical
microscopy observations [4] in polarized light, using domain
decoration or chemical etching, have been used to explore
domain structures and geometries and kinetics of wall motion
[3, 4, 100, 101]. The limiting factor has been the destructive
nature of etching and low (∼micrometers) spatial resolution
of optical methods that limited the studies to single crystals
and large (>1 µm) grain ceramics.

The revolution in nanoscale domain studies occurred
with the invention of piezoresponse force microscopy (PFM),
the primary topic of this review. The multitude of PFM
applications is illustrated in figure 2. Here, we focus on the
basic mechanism underpinning PFM operation, imaging and
resolution theory, and the theory of tip-induced polarization
switching on ideal surfaces and in the presence of defects.
Furthermore, we discuss recent applications of spectroscopic
imaging modes in PFM, including space- and time-resolved
spectroscopies, and illustrate their applications for probing
local switching behavior in nanoscale ferroelectrics. This
review complements several recent reviews addressing
phenomenological aspects of PFM imaging and applications
[105–111].
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2. Principles and instrumental aspects of PFM

2.1. Basic principles of PFM

The PFM approach for probing piezo- and ferroelectric prop-
erties at the nanoscale is based on the strong coupling between
polarization and electromechanical behavior. Correspond-
ingly, these behaviors can be addressed by applying a highly
localized electric field to the material and probing the resul-
tant minute surface displacements with ∼picometer precision.
Atomic force microscopy (AFM) [112] provides an ideal plat-
form for these studies due to intrinsically high vertical reso-
lutions, and high localization of electric fields at the junction
between the metalized tip and the surface. Hence, PFM is a
contact-mode AFM technique in which an electrically biased
conductive AFM tip is used as a probe of local electromechani-
cal coupling via the converse piezoelectric effect. Remarkably,
the basic image formation mechanism in PFM is complemen-
tary to force-based AFM methods (force is applied and the tip
deflection is measured) and scanning tunneling microscopy
(STM) [113] (bias is applied, and a current is measured).
This unique mechanism defines all aspects of PFM operation,
including resolution, quantitativeness and the potential for the
use of resonance enhancement, as discussed below.

Following the invention of STM (1982) and AFM
(1986) [112–114], the first instances of measuring bias-
induced sample deformation in piezoelectric materials by a
scanning probe came in 1991 when piezoelectric response, or
piezoresponse (PR), was measured using scanning acoustic
microscopy [115] and STM [116]. Shortly thereafter, the first
papers on piezoelectric measurements [117] and ferroelectric
domain visualization [118, 119] by AFM were reported.
Papers by Takata et al [120, 121] (using strain imaging via
tunneling acoustic microscopy), Franke et al [122], Kolosov
et al [123], Gruverman et al [124–128] and Hidaka et al
[129] followed. The work of Gruverman et al is particularly
notable for demonstrating imaging and switching in inorganic
ferroelectrics and coining the terms ‘Piezoresponse’ and
‘PFM’ which have now become standard. In the past decade
and a half, PFM has become the premier tool for studying static
and dynamic properties of ferroelectric materials, as evidenced
by a number of recent books and reviews [106–111]. PFM
has been extended beyond ferroelectric thin films, ceramics
and crystals to ferroelectric polymers [130–137], piezoelectric
semiconductors (GaN [138, 139] AlN [140, 141] and ZnO
[142–144]) and piezoelectric biopolymers, including collagen
[145–152] and chitin [153, 154].

2.1.1. Elementary theory of PFM. In PFM, a voltage is
applied to a conductive tip

Vtip = Vdc + Vaccos (ωt) (2.1)

in contact with a piezoelectric material. Here Vdc is the dc bias
(switching bias), Vac is the ac bias (probing bias) and ω is the
ac bias frequency (driving frequency).

As the sample expands and contracts due to the converse
piezoelectric effect, the tip deflection is monitored using a
lock-in amplifier so that the tip oscillation

A = A0 + A1ωcos (ωt + ϕ) , (2.2)

Figure 3. The sample deformation can be detected via a tip
deflection caused by the (a) expansion or contraction of the
piezoelectric material or via a tip torsion caused by the (b) shear
deformation of the material. The deflection and torsion signals
represent vector components of the polarization and can be
combined to determine the real space polarization orientation via (c)
vector PFM (BiFeO3 (BFO) film, topography inset). Reprinted
from [111]. Copyright 2008, Cambridge University Press.

and hence the sample deformation at the driving frequency
of the ac voltage, A1ω, is recorded simultaneously with
topography. Here A0 is the static surface displacement and ϕ is
the phase shift between the driving voltage Vac and the voltage-
induced deformation, A1ω. The PFM amplitude provides
information on the magnitude of the local electromechanical
coupling, while the PFM phase image provides information
on the ferroelectric domain orientation. Typically the imaging
resolution of PFM is less than ∼10–30 nm as determined from
half of the width of a domain wall in the mixed PFM signal,

PR = A1ω · cos (ϕ) . (2.3)

The resolution is ultimately limited by the tip–sample
contact area (nominally determined by the radius of the tip
apex), though additional mechanisms for broadening such as
electrostatic interactions and the formation of a liquid neck
in the tip–surface junction are possible. Note that PFM can
also be used to visualize the domain structure through a metal
electrode. In this case, the field is applied uniformly across
the ferroelectric capacitor, and the resolution is limited by the
thicknesses of the top electrode and ferroelectric layer [155].

In addition to the time-dependent flexural vibration
signals, the torsional oscillation of the cantilever can be
monitored in order to measure piezoelectric shear deformations
via the frictional force resulting from any in-plane component
of polarization. This in-plane PFM, commonly called lateral
PFM (LPFM) in contrast to out-of-plane PFM or vertical PFM
(VPFM), was first demonstrated by Eng et al [156, 157] and
has been applied to a number of materials systems including
films, crystals, nanostructures and capacitors [158–163]. The
in- and out-of-plane polarization information can be combined
to reconstruct the real space polarization via vector PFM [164]
(figure 3).

2.1.2. PFM versus other SPMs. The fundamental factors
underpinning the contrast formation mechanism in any
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scanning probe microscopy (SPM) method are (a) the tensorial
nature of the signal, (b) the signal dependence on contact
radius (contact) or tip–surface separation (non-contact) and
(c) the signal dependence on the cantilever spring constant.
These factors determine the strategies for instrumentation
and technique development and the potential for quantitative
measurements. The image formation mechanism in PFM
as compared with conventional current based (e.g. STM
and conductive AFM) and force-based (AFM) techniques
has been analyzed recently [110] and was shown to be
complementary to that in other SPMs. In particular,
a weak dependence of the PFM signal on the contact
area implies that electromechanical measurements are (a)
intrinsically quantitative, and do not require extensive probe
calibration and (b) the signal is relatively insensitive to
topographic cross-talk at low frequencies. On the other
hand, resonance enhancement cannot be directly employed
in PFM, since the resonance frequency is determined by
mechanical, rather than electromechanical, properties of the
material, necessitating the development of resonance-tracking
methods based on the amplitude-signal feedback [165], fast
lock-in sweeps [166], fast imaging [167] and broad-band
excitation schemes [168]. Finally, quadratic bias dependence
of electrostatic forces, as compared with linear piezoelectric
interactions, suggests that the electromechanical signal cannot
be unambiguously distinguished from the electrostatic signal
[169, 170]. These considerations suggest strategies for
improving PFM resolution and sensitivity, as discussed in
section 2.3.

2.2. Contact mechanics of PFM

Analysis of SPM contrast requires an understanding of
fundamental tip–surface interactions. In the case of PFM, this
is equivalent to contact electromechanics, or the relationship
between indentation force, probe displacement and tip bias.
These Fc(h, Vtip) surfaces provide the 2D analog of force–
distance curves in standard force based SPMs [171].

2.2.1. Exact solution for contact electromechanics. The
rigorous solution of the piezoelectric indentation problem,
i.e. the Fc(h, Vtip) dependence, is currently available only for
the case of transversally isotropic materials in the continuum
mechanics limit [172–174]. In this case, the electric field
generated outside the contact area is neglected due to the large
difference in dielectric constants between the piezoelectric and
ambience. Karapetian et al [175, 176] have derived stiffness
relations linking the applied force, P , and the concentrated
charge, Q, with indentor displacement, w0, indentor potential,
ψ0, indentor geometry and materials properties. The solutions
for flat, spherical and conical indentor geometries have the
following phenomenological structure:

P = 2

π
θ
(
hn+1C∗

1 + (n + 1) hnψ0C
∗
3

)
, (2.4)

Q = 2

π
θ
(−hn+1C∗

3 + (n + 1) hnψ0C
∗
4

)
, (2.5)

where h is the total indentor displacement, θ is a geometric
factor (θ = a for flat indentors with contact radius a,
θ = (2/3)R1/2 for spherical indentors with curvature R and
θ = (1/π) tan α for conical indentors with conic angle α) and
the power n = 0 for flat, n = 1/2 for the spherical and n = 1
for the conical indentors, respectively.

These stiffness relations provide an extension of the
corresponding results of Hertzian mechanics [177] and
continuum electrostatics [178, 179] to the transversely
isotropic piezoelectric medium. From this analysis, the
maximum information that can be obtained from SPM
or nanoindentation experiments on transversally isotropic
materials is limited to the indentation elastic stiffness, C∗

1 , the
indentation piezocoefficient, C∗

3 , and the indentation dielectric
constant, C∗

4 . Indentation stiffnesses are complex functions of
electroelastic constants of a material, C∗

i = C∗
i (cij , eij , εij ),

where cij are elastic stiffnesses, eij are piezoelectric constants
and εij are dielectric constants. The tip–surface resonance
frequency (i.e. the signal in atomic force acoustic microscopy)
is related to C∗

1 , while electromechanical response (PFM
signal amplitude) is given by C∗

3/C∗
1 . It has been shown

that for most materials C∗
3/C∗

1 ∼ d33 (within a factor of ∼2)
and C∗

4 ≈ √
ε11ε33 (within ∼10–20%). The electroelastic

fields produced by the indentor rapidly adopt the form of a
point charge/point force at distances comparable to the contact
radius, justifying the use of this approximation for analysis
of switching dynamics at late stages. The early stages of
switching and nucleation necessitate the analysis of complete
field structure, as analyzed below.

2.2.2. Decoupling approximation in contact electromechanics.
The necessity for calculating the PFM signal for materials of
general symmetry as well as calculation of response at micro-
and nanostructural elements such as domain walls, cylindrical
domains and topographically inhomogeneous ferroelectrics
such as nanoparticles have stimulated theoretical attempts
to derive approximate solutions for position-dependent PFM
signal in inhomogeneous materials.

A general approach for the calculation of the electrome-
chanical response is based on the decoupling approximation.
In this case, (a) the electric field in the material is calculated
using a rigid electrostatic model (no piezoelectric coupling,
dijk = eijk = 0), (b) the strain or stress field is calcu-
lated using constitutive relations for a piezoelectric material,
Xij = Ekekij and (c) the displacement field is evaluated using
the elasticity theory for an isotropic or anisotropic solid. A
simplified 1D version of the decoupling model was originally
suggested by Ganpule [180] to account for the effect of 90◦

domain walls on PFM imaging. A similar 1D approach was
adapted by Agronin et al [181] to yield closed-form solutions
for the PFM signal. The 3D version of this approach was
developed by Felten et al [182] using the analytical form for
the corresponding Green’s function. Independently, Scrym-
geour and Gopalan [183] have used the finite element method
to model PFM signals across domain walls. Recently, Kalinin
et al [184], Eliseev et al [185] and Morozovska et al [186] have
applied the decoupling theory to derive analytical expressions

6
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for the PFM response of materials with low symmetry, der-
ive analytical expressions for the PFM resolution function and
domain wall profiles, and interpret PFM spectroscopy data, as
described below.

In the decoupling approximation, the PFM signal, i.e. the
surface displacement ui(x, y) at location x induced by the tip
at position y = (y1, y2) is given by

ui (x,y)=
∫ ∞

−∞
dξ1

∫ ∞

−∞
dξ2

∫ ∞

0
dξ3

∂Gij (x1 −ξ1,x2 −ξ2,ξ3)

∂ξk

×El (ξ)ckjmndlnm(y1 +ξ1,y2 +ξ2,ξ3). (2.6)

Here, coordinate x = (x1, x2, z) is linked to the indentor
apex, coordinates y = (y1, y2) denote indentor position in
the sample coordinate system, y. Coefficients dlnm(y) and
ckjmn are position dependent components of the piezoelectric
strain and elastic stiffness tensors, respectively. El(x) is
the electric field strength distribution produced by the probe.
Green’s function for a semi-infinite medium G3j (x − ξ) links
the eigenstrains dlnmckjmnEl(x) to the displacement field, and
thus allows calculating the nonlocal displacement field from
local field-induced strains. For most inorganic ferroelectrics,
the elastic properties are weakly dependent on orientation
and hence can be approximated as elastically isotropic, and
integrals in equation (2.6) can be evaluated in the closed
form. The corresponding Green’s tensor, Gij (x − ξ), for an
elastically isotropic half-plane is given by Lur’e [187] and
Landau and Lifshitz [188].

This approach is rigorous for materials with small
piezoelectric coefficients. A simple validity estimation is
based on the value of the square of the dimensionless
electromechanical coupling coefficients k2

ij = (dij )
2/(sjj εii).

For instance, for barium titanate (BTO) single crystal: k2
15 ≈

0.32, k2
31 ≈ 0.10 and k2

33 ≈ 0.31, for the ceramics
lead zirconate titanate (PZT) [PZT6B grade]: k2

15 ≈ 0.14,
k2

31 ≈ 0.02 and k2
33 ≈ 0.13 and for a quartz single

crystal: k2
11 ≈ 0.01, suggesting that the error in the

decoupling approximation does not exceed ∼30% for strongly
piezoelectric materials and is on the order of ∼1% for weak
piezoelectrics.

2.2.2.1. Approximate solution for homogeneous media. The
use of the decoupling approximation reduces an extremely
complex coupled contact mechanics problem with mixed
boundary conditions to the solutions of much simpler
electrostatic and mechanical Green’s function problems, and
numerical or analytical integration of the result. We note that
the dielectric and particularly elastic properties described by
positively defined second- and fourth-rank tensors (invariant
with respect to 180◦ rotations) are necessarily more isotropic
than the piezoelectric properties described by third-rank
tensors (anti-symmetric with respect to 180◦ rotations). Hence,
elastic and dielectric properties of a material can often
be approximated as isotropic. In this case, integrals in
equation (2.6) can be evaluated, and surface displacement
can be written in the form ui(x) = VQWijlk(x)dkjl , where
the tensor Wijlk(x) is symmetrical on the transposition of

the indices j and l. In Voigt notation, the displacements
are [184]

u1(0)=VQ(W111d11 +W121d12 +W131d13 +W153d35 +W162d26),

(2.7a)

u2(0)=VQ(W121d21 +W111d22 +W131d23 +W153d34 +W162d16),

(2.7b)

u3(0)=VQ(W313(d31 +d32)+W333d33 +W351(d24 +d15)).

(2.7c)

The non-zero elements of the tensor Wiαk are

W111 = − (13 + 4ν)/32, W121 = (1 − 12ν)/32,

W131 = −1/8, W153 = −3/8, (2.8a)

W162 = − (7 − 4ν)/32, W313 = − (1 + 4ν)/8,

W333 = −3/4, W351 = −1/8. (2.8b)

Here VQ is the electrostatic potential at the point x = (0, 0, 0)

produced by a probe represented by the set of image charges
located on a vertical line. Thus, the response is shown to be
proportional to the potential induced by the tip on the surface.
The latter fundamental result was generalized as response
theorems [185].

Response theorem 1. For a transversally isotropic piezoelec-
tric solid in an isotropic elastic approximation and an arbitrary
point charge distribution in the tip (not necessarily constrained
to a single line), the vertical surface displacement is propor-
tional to the surface potential induced by tip charges in the
point of contact.

Response theorem 2. For an anisotropic piezoelectric solid
in the limit of dielectric and elastic isotropy, the vertical and
lateral PFM signals are proportional to the potential on the
surface induced by the tip if the tip charges and the point of
contact are located on the same line along the surface normal.

Equations (2.8a) and (2.8b) thus constitute approximate
PFM contrasts for anisotropic materials in the limit of elastic
and dielectric isotropy. For lower material symmetries, the
analytical expressions of the displacement fields induced by
the point charge allow response calculations for asymmetric
tips or probes with special geometry [185].

2.2.2.2. Orientational imaging. In piezoelectric materials,
the strong orientation dependence of electromechanical
response [189–194] opens the pathway to orientation imaging
[148]. Briefly, the orientation of a 3D object in the laboratory
coordinate system is given by three Euler angles (θ, ϕ, ψ).
The relationship between the dijk tensor in the laboratory
coordinate system and the d0

ijk tensor in the crystal coordinate
system is dijk = AilAjmAknd

0
lmn, where Aij (θ, ϕ, ψ) is

the rotation matrix [195]. Experimentally, PFM measures
three components of the response vector. Hence, local
crystallographic orientation can be determined from the
solutions of equations (2.7a)–(2.7c), which can graphically
be represented as response surfaces. As an example, we
compare vertical displacement, u3, surfaces with piezoelectric
tensors, d33, and surfaces for tetragonal PbTiO3 (PTO) and
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Figure 4. The dependence of (a) displacement u3, (b) piezoelectric tensor component e33, for PbTiO3 (PTO, ν = 0.3 (Poisson’s ratio)) on
Euler’s angle θ in the laboratory coordinate system. The dependence of (c) piezoelectric tensor component e33 and (d) displacement u3 for
LiTaO3 (LTO, ν = 0.25) on Euler’s angles ϕ, θ in the laboratory coordinate system. Reproduced from [185]. Copyright 2007, American
Institute of Physics.

trigonal LiTaO3 (LTO) model systems in figure 4. Note
that while in this analysis, the dielectric properties of the
material are assumed to be close to isotropic and hence the
electric field distribution is insensitive to sample orientation,
similar analysis can be performed for full dielectric and elastic
anisotropy.

The dependence of the piezoelectric tensor component e35

versus the orientation of the crystallographic axes with respect
to the laboratory coordinate system for a LTO crystal is shown
in the upper row of figure 5. The horizontal displacement
below the tip versus the orientation of the crystallographic
axes with respect to the laboratory coordinate system for a
LTO crystal is shown in the bottom row of figure 5.

A common feature of the displacement surfaces shown in
figures 4 and 5 is that the u1 angular distribution is smoother,
much more symmetric and convex than the one for e35.
Similarly to the longitudinal components of the piezoelectric
tensors e33 and d33, the d35 surfaces are very similar to e35

surfaces.

2.3. Resolution theory in PFM

One of the basic parameters characterizing performance of
a microscope is the spatial resolution. Despite the ubiquity
of usage and ‘intuitive’ meaning, the resolution in SPM is
typically defined ad hoc. A quantitative imaging theory in
PFM (and other SPMs) is required in order to:

• define the resolution and information limits in PFM and
establish their dependence on tip geometry and materials
properties, hence suggesting strategies for high-resolution
imaging;

• develop the pathways for calibration of tip geometry in
the PFM experiment for quantitative data interpretation;

• interpret the imaging and spectroscopy data in terms of
intrinsic domain wall widths and the size of the nascent
domain below the tip;

• reconstruct the ideal image from experimental data
(deconvolute tip contribution), and establish applicability
limits and errors associated with such deconvolution
processes.

In this section, we describe the basic principles of linear
imaging theory, provide definitions of resolution and
information limit and describe instrumental and theoretical
aspects of resolution function theory in PFM.

2.3.1. Linear imaging theory: transfer function, resolution
and information limit. The definition of spatial resolution
and resolution theory have originally evolved in the context of
optical and electron microscopy (EM). In optics, the Rayleigh
criterion [196] defines the resolution as the minimum distance
by which two point scatterers must be separated in order to
be discernible for a given imaging system. A commonly
used alternative reading of the criterion postulates that for
two Gaussian-shaped image features of similar intensity to be
resolved, the dip between the two maxima should be at least
21% of the maximum. This criterion is illustrated in figure 6(a)
and shows the transition of the two features from completely
resolved to unresolved as a function of the separating distance.
Note that the criterion is not absolute. It is possible that for
a system with a sufficiently high signal-to-noise ratio, peaks
separated by less than Rayleigh’s resolution can be discernible

8
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(a) (b) (c) (d)

Figure 5. The dependence of LTO piezoelectric tensor component e35 (upper row) and displacement u1 (bottom row) Euler’s angles ϕ, θ
and ψ = 0◦, 30◦, 60◦, 90◦ in the laboratory coordinate system (a), (b), (c), (d).
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Figure 6. Definition of resolution. (a) Rayleigh criterion. The dotted lines correspond to Rayleigh two-point resolution limit and the
information limit (IL). (b) ‘25–75’ rule for resolution. (c) Definition of RTR and information limit in PFM in terms of the object transfer
function. (d) Schematic demonstrating the minimum feature size that can be determined in the presence of noise. (a) Reproduced
from [197]. Copyright 2006, IOP Publishing. (c), (d) Reproduced from [186]. Copyright 2007, American Institute of Physics.

(for example, the dashed line in figure 6(a)), or that a system
with a low signal-to-noise ratio will require larger separations.
Furthermore, while the concept of a point scatterer is applicable
in electron (nuclei) and optical microscopy, it typically
does not have direct analogs in PFM or SPM in general.
An alternative definition used in low-resolution EM is the
‘25–75’ resolution guideline, defined as the distance between
signal changing by 25% and 75% between constant signal
regions.

The unambiguous definition of spatial resolution and
information limit is possible for the case of linear imaging.

In these, the measured image I (x), where x is a set of
spatial coordinates, is given by the convolution of an ideal
image (representing material properties) I0(x − y) with the
resolution function, F(y):

I (x) =
∫

I0 (x − y) F (y) dy + N (x), (2.9a)

where N(x) is the noise function. The Fourier transform of
equation (2.9a) is

I (q) = I0 (q) F (q) + N (q) , (2.9b)
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Figure 7. Relation between ideal image and experimental image in real and Fourier spaces. Object transfer function is a Fourier transform
of resolution function. Reproduced from [197]. Copyright 2006, IOP Publishing.

where I (q) = ∫ I (x)eiqxdx, I0(q) and N(q) are the Fourier
transforms of the measured image, ideal image and noise,
respectively. The object transfer function (OTF), F(q), is
defined as a Fourier transform of the resolution function, F(y).
The object transfer function, F(q), and the resolution function,
F(y), can then be determined directly provided that the ideal
image, I0(q), is known. Alternatively, the resolution function
can be approximated assuming that some information on its
functional behavior (e.g. function is monotonic) is available
(blind reconstruction, Bayesian methods). The veracity of this
determination is limited by the noise level, N(q). Then, once
the resolution function is determined for a known calibration
standard, it can be used to extract the ideal image, I0(x),
from a measured image, I (x), for an arbitrary sample. The
relationship between the ideal image, experimental image and
resolution and object transfer functions is illustrated in figure 7.

For the PFM OTF shown in figure 6(c), two parameters
describing resolution can be introduced. The first definition
can be derived from the Rayleigh or 25–75 criteria [198].
This Rayleigh two-point resolution (RTR) establishes a
conservative definition of resolution as a characteristic object
size for which response can still be measured quantitatively. In
comparison, the information limit defines the minimum feature
size that can still be detected qualitatively in the presence of
noise, as illustrated in figure 6(d).

Beyond definition of resolution, equations (2.9a) and
(2.9b) suggest an approach to deconvolute the ideal image
assuming that the resolution function is known or can be
estimated. Note that direct deconvolution results in a spurious
increase in the noise amplitude, necessitating the use of
regularization methods that impose the constraints on the
maximum roughness of the ideal image. Detailed analysis
of the inverse imaging problem is available in the literature
[199] and a number of commercial packages are available
(MatLab, DigitalMicrograph). Furthermore, a number of
references analyzing deconvolution theory in Kelvin probe
force microscopy (KPFM), a technique closely related to PFM,
have been reported [200].

2.3.2. Phenomenological resolution theory in PFM

2.3.2.1. Determining resolution. The OTF and information
limit in PFM can be determined (a) using the analysis of the
Fourier transforms (diffractograms) of periodic structures and

(b) domain wall profiles. Periodic domain structures can be
either created by writing or occur naturally, as in lamellar
(a)–(c) domains of tetragonal ferroelectrics. Figure 8(a) shows
the template pattern used to write domains on the PZT surface
along with the corresponding diffractogram. For comparison,
shown in figures 8(c) and (d) are the resultant domain patterns
imaged by PFM and their Fourier transforms. Note that only a
few low order reflections can be observed in the diffractogram
as a consequence of finite instrumental resolution.

To illustrate the effect of imaging conditions on the
PFM resolution, it is instructive to explore the effect of
lock-in time constant, as studied in detail in [197] and is
illustrated in figures 8(b)–(e). Imaging with a low time
constant (0.5 ms) results in a sharp, but relatively noisy,
image (as seen in both the real space and FT images). On
increasing the time constant to 1 ms, the noise level decreases.
However, increasing the time constant further, to 4, 10 and
20 ms, results in characteristic streaking in real-space images
along the fast scan direction. Note the evolution of the
noise background in the corresponding diffractograms from
a rotationally isotropic noise pattern for small time constants
(figures 8(b) and (c)) to a pronounced noise band for large
time constants in figures 8(d)–(e), indicating a large anisotropy
of noise in the slow and fast scan directions. Also note that
despite the high smearing in figure 8(e) from the large time
constant (the pattern is not visually discernible in the real-
space image), the corresponding diffractogram still contains
reflections corresponding to the written pattern.

The wave-vector dependence of the peak intensity of
several (hk) reflections for different lock-in time constants
is shown in figure 8(f ). The peak intensities follow an
exponential decay law, I (hk) = I0 exp(−q/G), where the
decay constant is independent of the lock-in settings, G ≈
5 µm−1, q =

√
h2 + k2/a and a is the periodicity of the lattice.

Thus, the intensity of the (1 0) peak can be used as a measure of
the overall peak-to-noise ratio of the diffractogram, and hence
of the image quality. A plot of the intensity of the (1 0) peak
as a function of lock-in settings is given in figure 8(g). The
peak intensity is virtually constant for small time constants and
rapidly becomes zero when the time constant becomes larger
than the time corresponding to the pixel acquisition rate (5 ms),
reflecting the evolution of image contrast in figure 8.

The experimental resolution function can be determined
from the diffractogram as shown in figure 9. Note that the
resolution and contrast transfer function above are defined
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Figure 8. (a) Ideal image (writing signal) (top) and corresponding FFT image (bottom) illustrating that all frequency components are
present. PFM images (top) and diffractograms (bottom) acquired with (b) 0.5 ms, (c) 1 ms, (d) 5 ms and (e) 20 ms lock-in time constants.
(f ) Wave-vector dependence of peak intensity for time constant ( ) 1 ms, (�) 10 ms and (�) 5 ms. (g) Intensity of the (1 ,1) peak as a
function of lock-in time constant. Reproduced from [197].

assuming the writing pattern is the ideal image. Hence, these
definitions provide a quantitative measure of the information
transfer from the desired template pattern to the actual image of
the resulting domain structure, and thus describe the fidelity of
ferroelectric data storage rather than reading resolution per se.

Complementary to diffractogram criterion, the PFM
imaging resolution in real space can be determined from
the measured width of the domain wall between antiparallel
domains. Given that the intrinsic width of a ferroelectric
domain wall is on the order of 1–2 unit cells (∼1 nm) [201],
the typical effective domain wall width observed in PFM
is presently on the order of 5–50 nm and therefore reflects
primarily the spatial resolution of the microscope. Due to the
symmetry properties of the dielectric, elastic and piezoelectric
constant tensors, the piezoelectric constants change sign across
a 180◦ domain wall, while the elastic and dielectric properties
do not. Hence, the relationship between the 180◦ domain
wall width and the resolution function can be established from
equation (2.6), where, after normalization, the domain wall
profile is given by

PR(x) =
∫ x

−∞
dx ′
∫ ∞

−∞
F
(
x ′, y
)

dy

−
∫ ∞

x

dx ′
∫ ∞

−∞
F
(
x ′, y
)

dy + N (x) . (2.10)

Experimentally, the width of the domain wall image can be
determined from the 25–75 criterion, or, alternatively from the
derivative at the center, x0, as wr = (PR+ + PR−)/2PR′(x0).
These definitions can also be used if the domain wall profile is
fitted using a suitable function. For example, with a Boltzmann
fit, PR(x) = PR− + (PR+ − PR−)/(1 + exp[(x − x0)/xd]), the
domain wall image width is wr = 2xd. Note that the signal
gradient at the domain wall provides an upper limit of the
‘sharpness’ of any intrinsic feature in the image.

2.3.2.2. Resolution in phase images. One of the difficulties in
defining the resolution in PFM stems from differences between
the phase and mixed signal images. While the normalized
PFM signal, pr , changes continuously between −1 and 1 on
the lengthscale of wd, the phase signal for zero noise changes
abruptly from 0◦ for pr < 0 to 180◦ for pr > 0. Thus, the
width of phase signal is effectively zero. In the presence of
noise, the evolution of a phase signal can be understood from
the schematics in figure 10(a). The phase achieves limiting
values when the mixed signal is either significantly larger or
smaller than the characteristic noise amplitude and changes
rapidly in the region where the noise amplitude is sufficiently
large to place the signal above or below the threshold value.
Hence, the width of the domain wall in the phase image is
estimated as wϕ = 〈N〉/2PR′(x0), where 〈N〉 is the average
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Figure 10. (a) Schematics of the domain wall profile and definition of domain wall width. (b) Relationship between domain wall width and
resolution in mixed signal and phase images. Reproduced from [197]. Copyright 2006, IOP Publishing.

noise amplitude. Hence, the resolution as measured from
the phase image is higher than that from the mixed signal,
wϕ = wd(PR+ + PR−)/〈N〉, since the noise level is typically
small compared with the signal. From the schematics in
figure 10(a), it follows that the effective Rayleigh resolution
for the phase signal corresponds to the information limit of the
mixed PFM signal.

Experimentally, the domain wall width determined from
the phase data is ∼0.5–1 orders of magnitude lower than that
from the mixed signal, as illustrated by the PFM mixed-signal
and phase data in figure 10(b). Given that the domain wall
width in a mixed signal can be as small as 5–10 nm, the width in
phase image can be sub-nanometer. However, since the phase
signal contains only a fraction of the information contained

in the mixed PFM image and the thresholding operation is
non-linear, the object transfer function and the true Rayleigh
resolution and material properties cannot be determined from
the phase data until a proper model of tip–surface interactions
is developed.

2.3.2.3. Image reconstruction in PFM. The experimentally
determined resolution function can be used to reconstruct an
‘ideal image’, as demonstrated in figure 11. The template
pattern and the corresponding domain pattern are shown
in figures 11(a) and (b). For deconvolution, the recorded
image diffractogram was divided by the transfer function
and the Wiener filter was used as a regularization method.
The resulting reconstructed image is shown in figure 11(c).

12



Rep. Prog. Phys. 73 (2010) 056502 S V Kalinin et al

Figure 11. (a) Writing pattern, (b) original PFM image and (c) reconstructed PFM image using the transfer function. (d) Original and
(e) reconstructed profiles along the dashed lines in (b), (c). Note the difference in domain wall width. Reproduced from [197]. Copyright
2006, IOP Publishing.

The reconstruction is successful only in region I, where the
domain size is above the information limit. Note the difference
in the image contrast and the effective wall width between the
original and the reconstructed images and the corresponding
line profiles. The minimum domain size detected by PFM
in this case is limited by the resolution of the technique,
suggesting that the reading resolution is a limiting factor
precluding experimental observation of smaller domains that
can be written by PFM.

The quality of the deconvoluted images can be
significantly improved by the use of probability-based iterative
methods such as maximum entropy reconstruction [202, 203]
or Pixon reconstruction [204], previously used extensively
for electron microscopic methods [205, 206]. Furthermore,
progress can be achieved by the use of the analytical (i.e.
independently known) resolution function, as discussed in
detail in the next section.

2.3.3. Analytical resolution theory in PFM. To complement
the experimental approach for the determination of the
resolution function, the latter can be established theoretically
and then used to deconvolute the experimental data. The
deconvolution can be performed either with a completely
known resolution function, or with a function defined down to
several experimentally established parameters (e.g. tip radius
of curvature determined from electron microscopy data or
domain wall width measurements).

The decoupling approximation discussed in section 2.2.2
can be extended to yield the analytical expressions for the
resolution function. The surface displacement ui(x, y) at

Figure 12. Coordinate systems in the PFM experiment. Reproduced
from [186]. Copyright 2007, American Institute of Physics.

location y induced by the biased tip (probe) at position x

is given by equation (2.6). Coordinate systems x and ξ

are linked to the probe, coordinates y = (y1, y2) give the
probe apex position in the sample coordinate system y (see
figure 12).

If the sample is uniform in the z-direction on the scale of
the penetration depth of the electric field, i.e. cjlmndmnk(x, z) ≈
cjlmndmnk(x), vertical PFM response, equation (2.6), can be
rewritten as

u3 (0, y) =
∫ ∞

−∞
dmnk (y − ξ)

×
(∫ ∞

z=0
cjlmnEk (−ξ1, −ξ2, z)

∂

∂ξl

G3j (ξ1, ξ2, z) dz

)
dξ1dξ2,

(2.11)
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i.e. as a convolution of a function describing the spatial
distribution of material properties, dmnk(x), and a function
related to probe parameters (integral in parentheses).
Note that equation (2.11) belongs to the linear model
(equations (2.9a) and (2.9b)), with the term in parentheses
being the resolution function and dmnk(y − ξ) an ideal
image.

Note that this analysis is rigorously valid in the point
mechanical contact approximation, i.e. the displacement
transferred to the tip is equal to the displacement at the tip–
surface contact junction. In this case, the non-uniformity of
strains within the contact area is neglected. This assumption is
expected to be valid when the electric contact area significantly
exceeds the mechanical contact area (e.g. due to the formation
of a liquid droplet at the tip–surface junction) and to provide a
good approximation when the response changes only weakly
within the contact area. Experimentally, the two can be
compared by comparing topographic resolution (e.g. width
of step edges) with the PFM resolution (domain wall width).
Approximately, this effect can be represented as a convolution
of the calculated point-contact responses with an additional
smoothing function with the half-width of the order of contact
radius.

2.3.4.1. Electrostatic field structure. Determination of
the resolution function in equation (2.11) necessitates the
knowledge of the electrostatic field structure in the material.
The detailed analysis of electric field structure for the uniform
half-plane of arbitrary symmetry of dielectric properties is
given in [185]. In particular, for symmetries of isotropic
and transversally isotropic materials the electrostatic problems
for spherical tip geometry can be solved using the image
charge method, in which the tip is represented by a set of
image charges chosen so that the corresponding isopotential
contour represents the tip geometry [207–209]. For lower
material symmetries and complex tip geometries, the image
charge method, while not being rigorous, provides a good
approximation (e.g. the line charge model for the conical part
of the tip [210]).

For the case of transversally isotropic symmetry of
dielectric properties, the potential VQ in the point charge-based
models of the tip has the form

V (ρ, z) = 1

2πε0 (εe + κ)

∞∑
m=0

Qm√
ρ2 + (z/γ + dm)2

, (2.12)

where
√

x2
1 + x2

2 = ρ and ξ3 = z are the radial and vertical
coordinates, respectively, εe is the dielectric constant of the
ambient, κ = √

ε33ε11 is the effective dielectric constant of
the material, γ = √

ε33/ε11 is the dielectric anisotropy factor,
−dm is the z-coordinate of the point charge Qm and summation
is performed over the set of image charges representing the tip.
The potential in the sphere–plane model can be obtained from
equations (2.12)–(2.14), where the summation is performed
over image charges. In the case of the rigorous sphere–plane
model of a tip of curvature R0 located at a distance �R from

the sample surface, the image charges are given by recurrent
relations

dm+1 = R0 + �R − R2
0

R0 + �R + dm

(2.13)

and

Qm+1 = κ − εe

κ + εe
· R0

R0 + �R + dm

Qm, (2.14)

where Q0 = 4πε0εeR0U , d0 = R0 +�R and U is the tip bias.
An alternative approach to describe electric fields in

the immediate vicinity of the tip–surface junction is the use
of the effective point charge model, in which the charge
magnitude and charge–surface separation are selected such that
the corresponding isopotential surface reproduces the tip radius
of curvature and tip potential. In this case, the tip is represented
by a single charge Q = 2πε0εeR0U(κ + εe)/κ located at
d = εeR0/κ [211]. Note that the intrinsic limitation of the
point-charge model is that it can approximate only two out
of three characteristic parameters—potential at the tip–surface
junction, curvature of the isopotential surface and effective
decay length of the field. However, its simplicity allows it to
be used as a zero-order approximation.

Effective point charge parameters used to describe the
spherical [211] or flattened [212] tip in the immediate vicinity
or at the contact with the sample surface, corresponding to
the typical geometry of PFM experiments, are summarized in
table 1.

In the framework of the effective point charge model the
isopotential surface curvature reproduces the tip curvature at
the point of contact. This model is appropriate for electric
field description in the immediate vicinity of the tip–surface
junction, relevant for, e.g., modeling nucleation processes. For
the film thickness h � d, the effective point charge model gives
d ≈ εeR0/κ for the spherical tip with curvature R0.

The field structure in most part of the piezoresponse
volume can be represented by the point charge model
in which the effective charge value Q is equal to the
product of tip capacitance on applied voltage. For the
film thickness h � d, it gives the effective separation as
d ≈ 2εeR0 ln((εe + κ)/2εe)/(κ − εe) for the spherical tip with
curvature R0.

Finally, for the conductive disk of radius R0 representing
contact area, d ≈ 2R0/π . The proposed model should
be clearly distinguished from the conventional capacitance
approximation (with d = R0) that describes electric field far
from the tip only.

2.3.4.2. Resolution function and materials properties effect.
In the case when x1 = x2 = 0 (the displacement directly
below the tip) and the strain piezoelectric coefficient dklj (ξ) is
independent of ξ3 (system is uniform in the z-direction), the
Fourier transformation of the surface displacement (i.e. VPFM
signal) is [186]

ũi (q) = d̃klj (q) W̃ijkl (−q) + N (q) , (2.15)

where ũi(q) = ∫
ui(x)eiqxdx, d̃klj (q) and N(q) are the

Fourier transforms of the measured image, ideal image and
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Table 1. Effective charge approach for different tip models in comparison with the capacitance approximation.

Tip model Effective charge parameters for the ferroelectric film of thickness h

Sphere–plane model
Reproduces the electric
field of a conductive
spherical tip with
curvature R0,
located near the
surface at a
distance �R � R0.

Overall charge Q(h) = C
sph
t (h)U . At �R � R0 tip capacitance is

C
sph
t (h) =


4πε0εeR0

κ + εe

κ − εe
ln

(
εe + κ

2εe

)(
1 +

γR0

h

2εeκ ln (1 − χ)

(εe − κ)2 ln

(
εe + κ

2εe

))
, h � R0

4πε0εeR0
κb + εe

κb − εe
ln

(
εe + κb

2εe

)
, h → 0

The effective distance d(h) ≈ C
sph
t (h)

2πε0 (εe + κ)

(
1 +

(
κb + εe

κ − κb
+

h

γR0

εe − κ

κln (1 − χ)

)−1
)

.

The field structure is adequately described in most of the piezoresponse volume, since
ϕ(0, 0, −�R) = U and ϕ (r � R0) ∼ Q/r .
For R0 = 10–100 nm, �R � 0.1–1 nm, κ = 50–500 and h � γR0: d = 0.02–2 nm at εe = 1;
d = 15–150 nm at εe = 81.

Effective point
charge model
Reproduces the
electric field of
a conductive
spherical tip
with curvature
R0 immediately
below the tip
apex.

Isopotential surface ϕ(x) = U has the tip curvature R0 in the point
{0, 0, x3 = −�R}. At �R � R0 Pade approximations for effective
distance and charge are valid:

d(h) ≈ εeR0

κ

2 (εe − κ) (κb − κ) κ2h2 + κγ 2R2
0ε

3
e Li2 (χ)

2 (εe − κ) (κb − κ) κ2h2 + κbγ 2R2
0ε

3
e Li2 (χ)

(Lin (χ) is the

polylogarithmic function), Q (h, d) ≈ 2πε0 (εe + κ) Ud

1 +

(
κb + εe

κ − κb
+

h

γ d

εe − κ

κ ln (1 − χ)

)−1 .

The field structure is adequately described in the immediate vicinity of the
tip–surface junction. For parameters R0 = 10–100 nm, �R � 0.1–1 nm,
κ = 50–500 and h � γR0: d = 0.2–10 nm at εe = 1;
d = 11–110 nm at εe = 81.

Disk–plane model
Reproduces the
electric field of
a conductive
flattened apex
represented by
the disk of
radius R0 that
touches the
surface.

Overall charge Q(h) = Cdisk
t (h)U . In contact (�R = 0) disk capacitance is

Cdisk
t (h) =

4ε0 (εe + κ) R0

(
1 − 2γR0

πh

κln (1 − χ)

εe − κ

)
, h � R0

4ε0 (εe + κb) R0, h → 0

Pade approximations for disk capacitance and effective distance are

Cdisk
t (h) ≈ 4ε0 (εe + κ) R0

1 +

(
κb + εe

κ − κb
+

πh

2γR0

εe − κ

κln (1 − χ)

)−1 , d(h) ≈ 2

π
R0.

The field structure is adequately described in the most part of
piezoresponse volume, since ϕ (ρ � R0, 0) ≈ U and ϕ (r � R0) ∼ Q/r .
Estimation d = 6–60 nm for R0 = 10–100 nm

Capacitance model
Reproduces the
electric field far
from the tip
apex (�R is the
tip–surface
separation)

For the case �R � R0 the tip charge Q(h) = Ct(h) U , where Cdisk
t (h) and

C
sph
t (h) are listed above. The potential ϕ (0, 0, x3 = −�R) 
= U is not fixed.

Used for electric field description far from the tip apex at distances
r � R0: ϕ(r) ∼ Q/r . Distance d is undetermined.
For the case �R > R0 the tip charge Q = Ct U , where C

sph
t ≈ 4πε0εeR0,

Cdisk
t (h) ≈ 8ε0εeR0. Distance d ≈ R0 + �R for a spherical tip, whereas

d ≈ �R for a disk.

noise, respectively. W̃ijkl(q) is the tensorial OTF, namely the
Fourier image of the resolution function:

Wijkl (ξ1, ξ2) = ckjmn

∫ ∞

0
dξ3

∂Gim (−ξ1, −ξ2, ξ3)

∂ξn

×El (ξ1, ξ2, ξ3) . (2.16)

The number of non-zero components of OTF depends on the
material symmetry and for transversally isotropic materials
(e.g. tetragonal perovskites) only the components W̃333, 313, 351

are non-zero (in Voigt representation) and contribute to the
vertical displacement, u3. The vertical response in this case is
ũ3(q) = W̃333(q)d33 +W̃313(q)d31 +W̃351(q)d15. In most cases,
the component W333 corresponding to a piezoelectric constant

d33 provides the dominant (>50%) contribution to the overall
signal [184].

The approximate analytical expressions for OTF
components, W̃ijkl(q), are

W̃333(q) ≈



− Q

2πε0 (κ + εe) d

(
γ qd

2
+

(1 + γ )2

1 + 2γ

)−1

,

point charge model,

−U

(
εeγ qR0

εe + κ
+

(1 + γ )2

1 + 2γ

)−1

,

sphere–plane model.

(2.17)
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Figure 13. The half-width of OTF W̃333 (a) for the point charge model of the tip versus the dielectric anisotropy, γ . Shown are results of
exact calculations on the basis of equation (2.16) (solid curves) and Pade approximations (2.17) (dotted curves). (b), (c) The halfwidth
calculated in the sphere–plane model of the tip versus the dielectric anisotropy, γ (b) and relative permittivity, κ/εe (c). Figures near the
curves correspond to the values of the ratio κ/εe (b) and γ (c). Adapted from [186].

The dependence of dimensionless half-width qFWHM of the
W̃333 (i.e. Rayleigh resolution) on dielectric anisotropy, γ ,
and relative permittivity, κ/εe, is illustrated in figure 13. For
the point charge model, the half-width, q d, scales linearly
with dielectric anisotropy, γ , for small γ , while it saturates
for γ � 1. Hence, γ � 1 favors high-resolution imaging.
For the sphere–plane model, the half-width, q R0, decreases
with the dielectric anisotropy factor, γ , and increases with the
dielectric ratio κ/εe.

The Rayleigh resolution rmin in PFM experiments (i.e. in
r-space) is determined as rmin

∼= 1/qFWHM. Using d = εeR0/κ

in the point charge model, the relationship between resolution,
tip geometry and materials’ parameters can be derived as

rmin
∼=


γ εeR0

2κ

1 + 2γ

(1 + γ )2 , effective point charge model,

γ εeR0

εe + κ

1 + 2γ

(1 + γ )2 , sphere–plane model.

(2.18)
Thus, the functional dependence, rmin ∼ εeR0/ε11, is valid at
εe � κ for both the point charge and sphere–plane models of
the tip. Hence, it is desirable to decrease external permittivity,
εe (e.g. by imaging in dry air), and decrease tip radius, R0

(sharp tips), in order to increase the lateral resolution of PFM,
while maintaining good contact. Furthermore, the formation
of liquid necks in the tip–surface junction will decrease the
resolution due to an increase in εe (for dielectric liquid) or
effective radius R0 (conductive liquid). Note that higher lateral
resolution is possible in materials with high ε11 values.

The resolution function and OTF approach allows
approximate calculation of the piezoresponse from those
domain structures for which the Fourier image, d̃klj (q), exists
in a usual (e.g. single, multiple or periodic domain stripes,
cylindrical domains, rings, etc) or generalized (infinite plane
domain wall) sense.

2.3.4.3. The response near the flat domain wall. A natural
experimental observable in PFM is a domain wall between
antiparallel domains. Here, we apply the resolution function
equation (2.16) to determine analytically the domain wall
profile in vertical and lateral PFM, and establish the

relationship between domain wall width, tip radius and
materials properties.

The surface displacement vector below the tip located at
distance a from the infinitely thin planar domain wall located
at y1 = a0 (figure 14(a)) is given by equation (2.15) as

ui (0, a) =
∫ ∞

−∞
dξ1

∫ ∞

−∞
dξ2 Wijkl (−ξ1, −ξ2) dlkj

×sign (a − a0 − ξ1) . (2.19)

The resolution function Wijkl is given by equation (2.16). For
both the point charge and the sphere–plane models of the tip
of curvature R0 that touches the sample, the displacement
components can be derived in the analytical form as

ui (a − a0) =



Q

2πε0 (εe + κ) d
gijk

(
a − a0

d
, γ, ν

)
dkj ,

point charge model,

Ugijk

(
a − a0

f R0
, γ, ν

)
dkj ,

sphere–plane model,

(2.20)

where i = 1, 3 (since u2 ≡ 0) and f =
(2εe/(κ − εe)) ln((εe + κ)/2εe). Exact expressions of gijk and
Pade-exponential approximations gPade

ijk are derived in [186].
In the case of weak dielectric anisotropy γ ∼= 1 the signal
components are the following:

gPade
333 (s, γ, ν) = − 1 + 2γ

(1 + γ )2

s

|s| + 1/4
, (2.21a)

gPade
133 (s, γ, ν) =

(
8

3
+

(1 + γ )3

γ
|s|
)−1

, (2.21b)

gPade
351 (s, γ ) = − γ 2

(1 + γ )2 · s

|s| + 3/4
, (2.21c)

gPade
151 (s, γ ) =

(
1

2/π − 3/8
+

2 (1 + γ )3

(3 + γ ) γ 2
|s|
)−1

, (2.21d)

gPade
313 (s, γ, ν) =

(
1 + 2γ

(1 + γ )2 − 2
1 + ν

1 + γ

)
s

|s| + 1/4
, (2.21e)

gPade
113 (s, γ, ν) = −

(
8

3
+

(1 + γ )3

γ
|s|
)−1

+
(1 + ν)

1 + (1 + γ )2 |s| .

(2.21f)
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Figure 14. (a) Schematics of a PFM measurement across a 180◦ domain wall. (b) Piezoresponse calculation from cylindrical domain.
Reproduced from [186]. Copyright 2007, American Institute of Physics.
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Figure 15. (a) Vertical and (b) lateral PFM signal. Domain wall piezoresponse for sphere–plane models of the tip calculated at ν = 0.35 for
different ferroelectric materials: BTO (γ = 0.24, curves 1), PZT6B (γ = 0.99, curves 2), PTO (γ = 0.87, curves 3), LiNbO3 (LNO)
(γ = 0.60, curves 4). Reproduced from [186]. Copyright 2007, American Institute of Physics.

Here, s = (a − a0)/d for the point charge model and s =
(a − a0)/f R0 for the sphere–plane model.

When the tip is in contact, the piezoresponse signal
components across the domain walls deff

33,35 = u3,1/U are
deff

33 = d33g333 + d15g351 + d31g313 for the vertical signal and
deff

35 = d33g133 +d15g151 +d31g113 for the lateral signal. Domain
wall profiles calculated for different ferroelectric materials are
shown in figure 15.

Note, that the sphere–plane tip gives a slightly more
‘rectangular’ image of the ideal domain wall in comparison
with the sloped one given by the point charge tip for the same
values of dimensionless distance s (i.e. for d = R0) [186].
Therefore, the sphere–plane tip has a higher lateral resolution
in comparison with the point charge one for comparable
characteristic dimensions. This behavior is anticipated due
to the concentration of charges at the tip–surface junction in
the sphere–plane model.

It also follows from figure 15 that for the materials
studied, the highest lateral resolution can be achieved in BTO,
whereas the lowest corresponds to the LiNbO3 (LNO). The
behavior of the lateral PFM signal, deff

35 , is more complex. The
resolution for BTO is the highest, but the signal changes sign,
since the negative contribution of d15 dominates far from the
domain wall.

As expected from the symmetry of the problem and
in agreement with available experimental data, the surface
vertical displacement u3 (and thus vertical piezoresponse deff

35 )

is zero directly on the wall, whereas its lateral displacement
u1 (and thus lateral piezoresponse deff

35 ) is maximal. Earlier
this behavior was established using numerical methods [183].
Note that contrary to several recent reports [213, 214], the
lateral contrast at the 180◦ is an intrinsic feature of the 3D
electromechanical model and does not necessarily indicate the
presence of electrostatic interactions.

The analytical dependences in equations ((2.21a)–
(2.21f)) establish the relationship between the response
behavior, ferroelectric material properties, ambient and
tip characteristics, e.g. deff

33 ∼ (a − a0)/d and deff
33 ∼

1/(C + |a − a0|/d) near the domain wall (y1 = a0).
Moreover, the obtained analytical expressions allow unknown
parameters such as charge–surface separation d (or,
equivalently, f R0 for the spherical tip) and dielectric and
piezoelectric material constants to be reconstructed by fitting
the experimental data of the vertical and lateral piezoresponse
components from a domain wall to a selected model.
Specifically, for materials with known properties (calibration
standard) the geometric parameters of a tip can be determined
from experimentally measured domain wall profiles, as
analyzed in section 2.4.
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Figure 16. Absolute (a), (c) and normalized (b) piezoresponse deff
33 (r) versus the domain radius for the point charge (c) and sphere–plane

(a), (b) models of the tip at ν = 0.35 for BTO (1), PZT6B (2), PTO (3), LNO (4). Reproduced from [186]. Copyright 2007, American
Institute of Physics.

2.3.4.4. Response of axially symmetric cylindrical domain.
The deconvolution of PFM spectroscopy data requires analysis
of the PFM signal from a finite domain centered at the tip apex,
as shown in figure 14(b). For most ferroelectric materials,
domains form highly elongated needles extending deep into
the material, whereas the electrostatic field is concentrated in
the near-surface region. Hence, interpretation of PFM data
can be performed using a model of a semi-infinite cylindrical
domain. Hence, the response can be estimated assuming that
the domain wall is purely cylindrical and the charged tip is
located at the domain center (0,0,0). From equation (2.15),
the displacement at the center of a domain is

u3(0,r)=2π

(∫ ∞

0
ρdρW3jkl (ρ)−2

∫ r

0
ρdρW3jkl (ρ)

)
dlkj .

(2.22)
Here the resolution function, W3jkl(ρ), is given by

equation (2.16) for
√

ξ 2
1 + ξ 2

2 = ρ, while u1 = u2 = 0 as
follows from the symmetry considerations. Both for the point
charge and the sphere–plane models, the vertical displacement
can be obtained in a simple analytical form as

u3 =



Q

2πε0 (εe + κ) d
hPade

jk

( r

d
, γ, ν

)
dkj ,

point charge model,

UhPade
jk

(
r

f R0
, γ, ν

)
dkj ,

sphere–plane model.

(2.23)

Integral representations for functions hjk(s, γ, ν) are derived
in [186]. Their polynomial and exponential Pade
approximations are derived in [186]. For γ ∼= 1 and s > 0.1
the following simple approximations are obtained:

hPade
33 (s, γ ) ≈ − 1 + 2γ

(1 + γ )2 + 2
1 + 2γ

(1 + γ )2 · s

s + π/8
, (2.24a)

hPade
13 (s, γ, ν) ≈ 1 + 2γ

(1 + γ )2 − 2 (1 + ν)

1 + γ

−2

(
1 + 2γ

(1 + γ )2 − 2 (1 + ν)

1 + γ

)
s

s + π/8
, (2.24b)

hPade
51 (s, γ ) ≈ − γ 2

(1 + γ )2 + 2
γ 2

(1 + γ )2 · s2

2 γ 2

(1+γ )2 + 5πs/8 + s2
.

(2.24c)

For good tip–surface contact, the piezoresponse signal is deff
33 =

u3(r)/U and can be written as deff
33 = h13d31 +h51d15 +h33d33.

Piezoresponse deff
33 (r) versus the cylindrical domain radius

for the sphere–plane and point charge models of the tip
for different ferroelectric materials is shown in figure 16.
Similarly to domain wall imaging, the best sensitivity to small
domains formed below the tip can be achieved in BTO, whereas
the worst one corresponds to LNO independently of the tip
representation.

From the data in figure 16, the coercive bias in the PFM
hysteresis loop measurements (i.e. when the response is zero,
corresponding to equality of the PFM signal from the nascent
domain and the surrounding unswitched matrix) in the point
contact approximation corresponds to a domain size of the
order of 0.1R0 (for BTO) to 0.7R0 (for PZT6B and LNO).
This suggests that the early steps of the switching process are
local, i.e. the information is collected from the area below the
characteristic tip size. Furthermore, the significant (∼10%)

deviations of the PFM signal from constant begin for domain
sizes well below (factor of 10–30) the characteristic tip size.
Therefore, the initial nucleation stages can be probed even
when the domain is extremely small (on the order of several
nanometers (for R0 = 50 nm)). On the other hand, the
response saturates fairly slowly with the domain size, and
hence the ‘tails’ of the hysteresis loop contain information on
domain sizes well above the tip size.

To summarize, the analytical expressions equations (2.23)
and (2.24a)–(2.24c) relate the piezoresponse signal measured
at the center of the domain deff

33 (r) and the domain radius.
This allows the domain radius–voltage dependence r(U) to be
reconstructed from the experimental data of the piezoresponse
hysteresis deff

33 (U) once the tip parameters are determined using
an appropriate calibration procedure (e.g. from the domain wall
profile).
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Figure 17. (a) Surface topography and (b) amplitude and (c) phase PFM images of an etched capacitor structure. (d) Coordinate systems in
a global excitation PFM experiment. (e) Domain wall width at level η = 0.76 as a function of the top electrode thickness for ν = 0.3 and
−d33/d31 = 2, 3, 4 (curves 1, 2, 3). Solid curves represent the exact and dashed the approximate (equations (2.28a)–(2.28c)) solutions.
(a)–(c) Reproduced from [111]. Copyright 2008, Microscopy Society of America. (d), (e) Reproduced from [155] and copyright 2008 by
the American Institute of Physics.

2.3.4.5. Imaging of ferroelectric capacitors. Applications of
ferroelectric materials as non-volatile memory components
have resulted in significant interest in theoretical and
experimental studies of polarization dynamics in capacitor
structures. In PFM of capacitor structures, a periodic uniform
electric field is applied between the top and bottom electrodes,
and the resulting surface displacement is measured locally by a
SPM tip [215]. This global excitation method is different from
standard (local excitation) PFM, in which both the electric field
and the local strain are localized.

The domain wall width in PFM of capacitor structures
with uniform (in the vertical direction) domain structure, i.e.
the resolution limit in PFM with global excitation, can be
analyzed similarly to tip–electrode experiments. The vertical
PFM signal, i.e. the surface displacement u3i (x) at location
(x1, x2, 0) is given by equation (2.6) where the field is now
uniform. Considering a domain structure with two opposite
domains divided by a flat wall perpendicular to the film surface,
we obtain that for the uniform excitation, equation (2.6) can
be rewritten as follows:

u3(x1, x2, 0) = −U(W33(x1, L, H)d33

+(1 + 2ν)W31(x1, L, H, ν)d31). (2.25)

Here, U = HE3 is the potential difference between the top
and the bottom electrodes. L is the thickness of the top
electrode and H is the film thickness (see figure 17(d)). After
cumbersome integrations, functions W33 and W31 are derived
analytically as [155]

W33 (x1, L, H) = f1 (x1, L, H) + f2 (x1, L, H) , (2.26)

W31 (x1, L, H, ν) = f1 (x1, L, H) +
ν

2 (1 + 2ν)
f2 (x1, L, H) ,

(2.27)

where f1 and f2 are simple algebraic functions as analyzed
in [155]. The piezoresponse signal in a uniformly poled
capacitor is u3(x1, x2, 0)/U = −d33 − (1 + 2ν)d31 (due to
clamping). The non-zero contribution of d31 is directly related
to the mechanical conditions at the boundary between the
film and the bottom electrode, which are assumed to have
identical mechanical properties. As an example, shown in
figure 17(a)–(c) are topography, PFM amplitude and PFM
phase images of a poled capacitor. Note that details within the
capacitor are much coarser than on a free surface, indicative
of lower spatial resolution.

The generalized domain wall width is defined as the
distance between the points at which the response is saturated
to the fraction, η, of the signal at infinity. Hence, the standard
edge resolution is defined as η = 0.5. The width can be
approximated as a bilinear function, w(L, H) ∼= aH + bL,
of the film and top electrode thicknesses:

w (L, H) ∼= a

(
η, ν,

d31

d33

)
H + b

(
η, ν,

d31

d33

)
L, (2.28a)

where coefficient, a, is the solution of the transcendental
equation:

arctan
(a

2

)
+

d33 + νd31/2

d33 + (1 + 2ν) d31
ln

(
1 +

4

a2

)
a

2
= π

2
η,

(2.28b)

and coefficient b is

b = η
π

2

d33 + (1 + 2ν) d31

d33 + νd31/2
. (2.28c)

Typical values for coefficient a vary from 0.08 to 0.4 at
η = 0.76 and −d33/d31 = 2–4. The dependence of the
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Figure 18. (a) PFM profile of a periodic stripe domain structure (b) in a PTO film (κ = 121, γ = 0.87) on a STO substrate (κb = 260,
γ = 1) for different film thicknesses h/d = 0.03, 0.1, 0.3, 1 (curves 1, 2, 3, 4). (c) Maximal piezoresponse versus film thickness for
different stripe periods a/d = 0.03, 0.1, 0.3, 1, 3 (curves 1, 2, 3, 4, 5). (d) Dependence of the response on the stripe period for different
film thicknesses h/d = 0.03, 0.1, 0.3, 1 (curves 1, 2, 3, 4). Reproduced from [155]. Copyright 2007, American Institute of Physics.

domain wall width on the top electrode thickness obtained by
the numerical calculation and approximately from equations
(2.28a)–(2.28c) is shown in figure 17(e). The immediate
consequence of equation (2.28a) is that for a mechanically
uniform capacitor (no cracks, etc), the signal generation area
in PFM, even for point mechanical contact, is determined
by the total thickness of the capacitor structure. Note that
the domain wall width scales linearly with sample thickness
for thin top electrodes (W/H = 0.08–0.3 depending on
piezoelectric anisotropy), and increases rapidly with top
electrode thickness. This conclusion can readily be understood
as a consequence of the presence of the primary length
scale in the system, and similar behavior is anticipated
for, e.g., synchrotron x-ray based measurements of domain
structures.

For cases when the domain wall is also associated with the
grain boundary and the grains are mechanically decoupled, the
coefficient in equations (2.28a)–(2.28c) is a = 0. Here, the
top electrode thickness is the only relevant length scale. For
the case of intermediate coupling, the bulk contribution will be
reduced, but the top-electrode contribution is expected to be
constant. Finally, for a liquid top electrode (i.e. imaging in a
conductive solution), b = 0. Finally, for the capacitor structure
with non-uniform domain structures (e.g. in the presence of
grains, etc), the characteristic grain size will be a limiting
length scale for resolution.

2.3.4.6. Extrinsic size effect in PFM of ferroelectric thin films.
The extrinsic (i.e. due to the tip size, rather than changes in
materials’ properties) size effect in PFM of ferroelectric and
piezoelectric thin films on a nonpolar dielectric substrate with
different elastic properties was analyzed in [216, 217] in the
point mechanical contact approximation. PFM profiles of
periodic stripe domain structures in a PTO film on a SrTiO3

(STO) substrate for different film thicknesses, h/d, are shown
in figures 18(a) and (b). It is clear that with a film thickness
decrease, the profile deff

33 (y1) acquires a rectangular shape,
closer to the ideal image. The sharpness of the domain stripes
image increases due to the object transfer function spectrum
broadening. At the same time, the signal strength decreases
for smaller film thicknesses, making the relative noise level
higher (see figures 18(c) and (d)).

2.4. Calibration of PFM

2.4.1. Experimental determination of tip parameters. In the
case when the electric field produced by the tip does not change
across the sample, the resolution function is invariant along the
sample surface and can be determined from the effective image
charge distribution that represents the tip. The calibration of
the tip geometry is thus equivalent to determining the set of
N charges Qi located along the surface normal at a distance
di above the surface, as illustrated in figure 19(a). The image
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Figure 19. (a) Representation of a realistic tip by a set of image charges. (b) Surface topography and (c) PFM image of domain wall in
LNO. (d) Fit of the extrapolated data set with equal weighting for all points. Reproduced from [218]. Copyright 2007, American Institute of
Physics.

Table 2. Effective image charge parameters for different ferroelectrics.

Wall R0 for R0 for
Material width (nm) Q d (nm) Rd(nm) εe = 1(µm) εe = 80 (nm)

LiNbO3 96 1000 92 58.6 4.8 60
Epitaxial PZT 107 2550 125 79.6 5 62.5
PZT in air 58 723 86.5 55.1 44 541
PZT in liquid 6 104 11.8 7.5 75

charges can be deconvoluted from the experimental domain
wall profile by minimizing the functional

F [u3] =
∫ (

PR (a) − 1

2πε0 (εe + κ)

N∑
m=0

Qm

dm

ũ3 (sm)

)2

da

(2.29)
with respect to the number, N , magnitude and charge–surface
separation of a set of image charges {Qi, di}N representing the
tip. Here PR(a) is the measured piezoresponse and integration
is performed over all available a values. The dielectric constant
of the medium can be fixed to the value of free air (εe = 1)

or water in the tip–surface junction or imaging in liquid
(εe = 80). The output of the fitting process is the set of reduced
charges qi = Qi/2πε0 and the charge surface separation, di .
Note that the charges and the dielectric constants cannot be
determined independently, since only Qm/(εe + κ) ratios enter
equation (2.29).

Shown in figures 19(b)–(d) is an example of a domain
wall profile and the corresponding fit by equation (2.29) with
N = 1 for LNO. The corresponding image charge parameters
are summarized in table 2. To improve the fit quality, more
complex fitting functions with N = 2 and N = 3 were
attempted. However, independent of the choice of the initial
values of the image charge, the fit converged to a single image
charge, i.e. di = d and

∑
Qi = Q. Similar behavior was

observed for other domain walls.
This analysis suggests that the electrostatic field produced

by the tip is consistent with a single point charge positioned
at large separation from the surface, contrary to the behavior
anticipated in contact mode imaging. The analysis was

extended to the case of the sphere–plane (radius of curvature
R0) and disk–plane (radius Rd) models. The sphere
parameters are calculated both from ambient and water
environment to account for possible capillary condensation
effects. From the data, it is clear that the use of the
sphere/air model leads to implausibly large radii. Hence,
experimental data are consistent either with the presence of
a capillary water film in the sphere model, or conductive
disk model [218].

2.4.2. Resolution for non-zero contact area. Extensive
quantitative analysis of domain wall width, taking into account
the finite contact tip–surface contact area, was reported by
the Gopalan group [183]. The geometric structure of more
than 100 SPM tips was ascertained using scanning electron
microscopy to yield effective tip sizes [212], see figures 20(a)
and (b). The domain wall width in periodically poled lithium
niobate was measured as a function of tip radius. In parallel,
the domain wall width was calculated using a numerical finite
element analysis package, figure 20.

The comparison of the experimentally measured PFM
signal and domain wall width as a function of tip radius
with numerical and analytical theory predictions is shown in
figure 21. The data clearly suggest that the PFM signal is
independent of contact area, in agreement with the theory
of Karapetian [175, 176]. At the same time, the domain
wall width saturates at ∼100 nm, corresponding to a tip-
independent domain wall width. This can be attributed both
to the effect of an ambient environment on imaging, and to
wall broadening, necessitating further studies in an ultra-high
vacuum environment.
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Figure 20. (a) Field emission (FE) SEM image of a used PFM tip with a circular disk-like end with a radius r . (b) FE-SEM image of a
sphere-like PFM tip. The radius r of the contact circle for a weak indentation (h ∼ 1–2 nm or 1 unit cell depth) is used to characterize the
radius r of the tip as shown. (h is not to scale in the figure). (c) Finite element simulations of surface potential on LN surface under a 50 nm
radius disk tip in contact with sample with 5 V applied. (d) FEM simulated piezoelectric displacements, Uz of a LNO z-surface.
Displacements for three different tip locations are shown: tip located on the wall and away from the wall on either side. Reproduced
from [212]. Copyright 2008, American Institute of Physics.

Figure 21. The maximum amplitude, |Uz|, away from the wall as a function of tip radius, r, is shown. Also shown overlapped are the
analytical theory and finite element method (FEM) predictions. (b) PFM wall width as a function of tip radius for sphere-like and disk-like
PFM tips. Also shown are analytical theory predictions for different intrinsic wall half-widths. Reproduced from [212]. Copyright 2008,
American Institute of Physics.

2.5. Implications for PFM data analysis

Below, we summarize the implications of the contrast
formation mechanism and resolution function analyses for
the interpretation of PFM imaging and spectroscopy. The
effect of finite resolution is that quantitative properties such
as domain-specific effective electromechanical response can

be measured only for domains much larger than the RTR
value. At the same time, a domain will be visible above
the information limit, but no quantitative measurements can
be obtained. A good measure of the RTR is the domain
wall width in the mixed PFM signal, while the IL can
be determined from the domain wall width in the phase
image.
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The minimum writable domain size is not necessarily
related to the information limit in PFM and can be either larger
or smaller. This follows from the fact that while the signal
generation volume in PFM is independent of the tip bias, the
written domain size, and in particular, the critical size of the
nucleated domain, has a strong bias dependence, i.e. minimum
writable domain size can be smaller than the PFM resolution.
This suggests that in some cases the resolution is a limiting
factor precluding experimental observation of smaller domains
created by PFM. Clearly, this conclusion is non-universal and
strongly depends on the material, e.g. in polycrystalline films,
the grain-by-grain switching will result in minimal writable bit
sizes being larger than the resolution.

The resolution effect will clearly affect the analysis of the
parameters such as domain size distributions in the disordered
materials or geometry of the fractal and self-affine domain
walls. For example, the structure factor will be S(q) =
S ′(q)R(q), where S ′(q) is the intrinsic structure factor of the
interface and R(q) is the transfer function defining microscope
resolution. Practically, R(q) = 1 for q � qc and R(q) =
q−n for q � qc, where power law n is determined by the
image formation mechanism. For ultrathin interfaces such
as ferroelectric walls, qc ∼ 1/wc. Correspondingly, the
fractal properties h(x) for length scales below wc are likely
dominated by the scanner noise along the slow scan axis
(which can be established from the topographic imaging of
appropriate calibration standard, e.g. step edge of a cleaved
graphite surface), and by the tails of the transfer function for
the fast scan axis, rather than the intrinsic wall geometry [219].

3. Local polarization switching in ferroelectric
materials by PFM

3.1. Polarization dynamics at the nanoscale

The key characteristic of ferroelectric materials is that the
direction of spontaneous polarization can be reversed by the
application of sufficient electric field. Not surprisingly, SPM
of ferroelectrics has attracted considerable attention due to its
potential to manipulate ferroelectric materials at the nanoscale
by creating ferroelectric domains, studying their dynamics
during growth and relaxation and mapping their interaction
with structural and morphological defects [107, 108, 110]. In
this section, we summarize the existing results on the kinetics
of domain formation and relaxation, as well as theoretical
models for the description of the domain growth process in
the rigid ferroelectric approximation.

3.2. Experimental aspects of tip-induced polarization
switching

3.2.1. Domain growth kinetics. PFM allows a
straightforward approach to study the kinetics of domain
formation and relaxation by combining the writing step of
applying a bias pulse of preselected duration and magnitude,
and the reading stage at which the size of the resulting domain
is imaged. These studies have received a significant impetus
in the context of ferroelectric data storage [25], and have been

stimulated by the availability of high-quality epitaxial thin
films that have low (below 10 V) switching voltages.

A broad range of studies of domain wall growth on sol–
gel [220–223] ferroelectric films have been reported. The
implementation of high-voltage PFM [224] has allowed studies
of domain dynamics in single crystals as well, and particularly
has enabled the kinetic studies as a function of pulse parameters
[225–232]. As an example, shown in figure 22 is the
morphology of ferroelectric domains in LNO single crystal.
While for low bias pulses the domains are nearly round, large
domains adopt well-defined crystallographic shapes, mirroring
surface tension driven rounding of nanoparticles.

The radii of domains fabricated in lithium niobate
single crystals were found to scale linearly with applied
field and approximately logarithmically with time [226].
Similar scaling was found for other materials, suggesting the
universality of this rate law.

The time dependence of domain-wall velocity was studied
by several groups [128, 233, 234] in an attempt to relate domain
growth kinetics to the dominant wall pinning mechanisms. The
first link between wall velocity and disorder was established
in the seminal papers by Tybell et al [64] and Paruch et al
[234] and since then was actively studied by several groups
[233, 235]. Domain growth in epitaxial films has also
been compared with macroscopic measurements on capacitor
structures [380].

Significant efforts have been directed at fabricating ultra-
small domains and the determination of minimal stable domain
size and associated lifetimes. Recently, 8 nm domain arrays
have been fabricated and detected using scanning nonlinear
dielectric microscopy [237, 238] (figure 23(a)). The Cho
group has also demonstrated the formation of 7 nm arrays and
2.8 nm domains (see figure 23(b)) and has written images using
the technique (figure 23(c)) [236]. This impressive result
corresponds to a density of 160 Tb inch−2 (10 Tb inch−2 for
8 nm array), approaching molecular storage level [239].

One of the key uncertainties for the characterization of
domain growth kinetics is the lack of quantitative information
on the electrostatic field structure produced by the probe. In
most studies to date, the field is approximated as a single point
charge, a model well validated for tip apex at large separations
from the contact area. On larger length scales, the conical
part of the tip provides a slow-decaying field component,
which is, however, attenuated by the dielectric gap effect.
Furthermore, the point charge model is clearly inapplicable
for small tip–surface separations of the order of the tip size
(which in turn is related to the domain wall width, as discussed
in section 2.3, on which the field is uniform). The second factor
affecting domain growth kinetics is the effect of mobile surface
charges, screening and liquid bridge formation, as discussed
in section 3.3.

3.2.2. Domain relaxation and retention. The retention
behavior of ferroelectric domains following local polarization
reversal presents obvious interest for data storage and
ferroelectric lithography applications. Retention behavior in
epitaxial and polycrystalline PZT [240], the thermal stability
[228] and the retention behavior [229] of fabricated domains
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Figure 22. (a) PFM phase image of domains written in a lithium niobate crystal by varying the voltage pulse amplitude. Plots of domain
radius versus (b) pulse amplitude and (c) pulse duration in a lithium niobate crystal. (e) Domain size as a function of pulse duration for a
370 Å thick PZT film. (d) Domain wall speed as a function of the inverse applied electric field for three PZT films of different thicknesses.
Panels (a)–(c) reproduced with permission from [226], copyright 2005, American Institute of Physics, and panels (d),(e) reproduced with
permission from [64], copyright 2002, American Physical Society.

Figure 23. (a) 8 nm array of domains, (b) 2.8 nm domain and (c) nanoscale domains written to construct an image. (a) Reproduced
from [52], copyright 2006 IOP Publishing and (b), (c) from [236], copyright 2007, Institute of Pure and Applied Physics.
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Figure 24. Piezoresponse images of (a), (d) written domains in stoichiometric lithium tantalate crystals. Domains after being heated to
100 ◦C and then cooled (b), (e) once and (c), (f ) twice. (g), (h) Illustrations of domain shrinkage due to heat treatment where dotted circles
mark domain corners and arrows show the domain shrinkage direction. Reprinted from [228], copyright 2006, American Institute of Physics.

in single crystals and even capacitors switched by external
strain [241] have been studied in detail by PFM.

Extensive studies of the written domain stability in LNO
and LTO single crystals have been performed by the Kitamura
group. For large domain sizes, the relaxation driven by
surface tension was observed at relatively low temperatures
of ∼100 ◦C, indicative of the high mobility of domain walls
in these materials [228] (figure 24). The role of surface
adsorbates and ion implantation, i.e. the creation of new
pinning centers, on domain stability has been investigated
[242, 243]. The effect of intrinsic defects in congruent LNO
and associated disorder on the domain relaxation was studied
and shown to lead to highly serrated domain walls [244].

A very elegant and detailed study of domain relaxation in
thinned lithium niobate (LNO) crystals as a function of domain
size and crystal thickness has been reported by Kan et al [231]
(figure 25). A two-step mechanism in which a slow relaxation
stage involving lateral shrinking of cylindrical domains is
followed by fast relaxation after the domain is pinched-off
from the bottom surface has been reported. This study was
later extended to abnormally switched ‘bubble’ domains, as
discussed in section 3.2.5 [245].

Note that while domain growth in the field of an SPM
probe is determined by the interplay of the probe-induced field
distribution, the field-dependent wall velocity, and the surface
charge diffusion and charge injection kinetics, the domain
relaxation in the absence of external fields is driven only by
wall tension and depolarization fields. Correspondingly it
is easier to interpret and quantify, and allows one to study
wall dynamics quantitatively. This behavior is reminiscent
of, e.g., nanoindentation experiments based on the Oliver–
Pharr method [246], where the formation of the contact during
loading is not amenable for direct interpretation, whereas
the unload curve with constant tip–surface contact offers
quantitative information on mechanical properties. That said,
while domain formation and growth can always be induced
by applying a high enough field, relaxation is controlled by

the wall pinning mechanism and driving force, and hence can
be much slower (or faster) than the experimentally accessible
time scales.

Polarization relaxation in ferroelectric polymers [247]
and ferroelectric relaxors [248, 249] merits separate mention.
While in classical ferroelectrics, relaxation occurs through
the motion of domain walls, relaxors demonstrate a gradual
fade out of contrast, consistent with slow relaxation of the
effective order parameter [250]. In ferroelectric polymers, the
dominant factor controlling slow dynamic response is chain
rotation [251]. The time-resolved relaxation measurements in
relaxors are discussed in detail in section 4.5.

3.2.3. Domain–defect interactions. The characteristic aspect
of all realistic materials is the presence of defects that serve as
nucleation sites and pinning centers for moving domain walls.
In PFM-based point switching experiments, the concentration
of the electric field in the vicinity of the probe apex typically
results in nucleation at the probe apex and the as-formed
domain grows rapidly. Hence, the observation of a defect effect
on nucleation is possible only in the spectroscopic mapping
PFM as discussed in section 4.4. At the same time, the domain
wall pinning at the defects can be observed directly from the
domain wall geometry and domain shape.

The first analysis of domain wall geometry in terms of
the pinning mechanism was performed by Paruch et al [234]
and extensively summarized in a recent review [222]. These
studies were later extended to model domain energetics in
ultrathin films [235]. The domain wall velocity in the presence
of surface defects was also investigated [252]. A similar
approach was adopted by Pertsev et al to address domain
wall dynamics [233]. The extensive effort by the group of
Kitamura [228, 242–244] has demonstrated control of pinning
by artificial defects. The domain wall geometry represents
the result of multiple defect interactions in which the effect of
individual defects cannot generally be resolved. The study by
Agronin et al [253] has addressed the pinning on macroscopic
morphological defects.
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Figure 25. (a) Domain decay dynamics. (b) Domain lifetime dependence on the initial domain radius. (c) Decay process for different initial
radii. (d) Critical initial domain radius for samples of different thicknesses. Reprinted from [231], copyright 2007, American Institute of
Physics.

Fundamental studies of pinning mechanisms require the
structure of defects to be known. Given that the width of
a typical ferroelectric domain wall is on the order of 1–3
unit cells, the defect has to be defined on the atomic level,
significantly narrowing the range of systems with known
localized defects. Ferroelastic domain walls offer an advantage
of known structure and geometry. The effect of ferroelastic
domain walls and in-plane domain twins on ferroelectric
switching and domain wall dynamics in (1 0 0) tetragonal
ferroelectric films has been studied in detail by Ganpule et al
[254, 255]. The switching in the vicinity of a 90◦ domain twin
is shown to proceed through the correlated domain motion
as illustrated in figure 26. This mechanism was recently
confirmed by in-plane observations by Aravind et al [256]. The
effect of ferroelastic domain walls on relaxation was studied on
mesoscopic and single wall levels in [255], and the walls were
found to serve as effective pinning centers. At the same time,
within the cells formed by 90◦ twins, the formation of faceted
domains was observed. These studies allowed the relaxation
rate to be related to wall curvature (figure 27).

Finally, the effect of grain boundaries, the dominant defect
type in polycrystalline films, was studied by Gruverman [128].
In many materials, the grain boundaries serve as natural
barriers for wall motion, resulting in a single-grain switching.
The analysis of the grain boundary–domain interaction is

limited by the fact that the GB structure, including both the
grain misorientation and the presence of secondary phases,
charge, etc, is generally unknown. At the same time, EM
methods such as aberration corrected EM and energy loss
spectroscopy [257–259] that have been shown to be extremely
powerful methods to analyze GB structure and charge are not
yet compatible with PFM measurements [260]. Artificially
engineered bicrystal defects offer an alternative, and the direct
observation of domain wall pinning on a well-defined GB has
recently been reported [261]. The use of well-defined defects
allows the deterministic polarization switching mechanisms to
be deciphered, as discussed in section 5.

3.2.4. Non-180◦ switching. In ferroelectric materials, the
application of electric field in most cases induces only 180◦

polarization switching, since non-uniform ferroelastic (i.e.
non-180◦) switching increases the strain state of the system and
is generally believed to be less likely. However, in multiaxial
ferroelectrics and in disordered systems, non-180◦ switching
was observed, and in some cases controlled, by PFM. In a
polycrystalline film, elastic clamping between the domains
can result in the mechanism when ferroelectric switching
of one grain triggers in-plane switching of the neighboring
grains. Similar effects were found in ferroelectric capacitors
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Figure 26. (a) Piezoresponse images of a twinned PZT film after
poling. The ‘out-of plane’ PFM signal is shown on the left and the
‘in-plane’ signal is shown on the right. The polarization directions
are shown schematically in the sketches below the PFM images.
(b) The expected scenario of polarization switching and relaxation
in polydomain PZT films: (upper left) the initial c/a/c domain state,
(upper right) the domain configuration during tip-induced 180◦

switching, (lower left) forward growth of the c domain following the
application of the field, (lower right) lateral motion of the 180◦

domain boundaries during backswitching. Reproduced from [161],
copyright 2002, American Institute of Physics.

[162, 163], in which antiparallel switching was presumably
triggered by elastic interactions [262]. Further examples of
anomalous nucleation behavior were observed and analyzed
theoretically [263].

In tetragonal (1 0 0) films, the formation of a 180◦ domain
is associated with an elastic strain due to the piezoelectric
coupling in the tip field. This strain can be compensated by the
formation of 90◦ twin domains. This behavior was observed
by Chen et al [264] as shown in figure 28. Remarkably,
both the formation of stabilizing 90◦ twins and the formation
of a surface depression after the bias is off (to compensate
for strain) are observed. These observations illustrate the
surprising ease with which non-180◦ domains can form (note
that observations in figure 28 imply that not only ferroelastic
domains are formed, but also remain stable in the zero-field
state).

Recently, much interest has been directed toward
applications of rhombohedral ferroelectrics and multiferroics,
in which the presence and motion of ferroelastic 71◦ and 109◦

domain walls lead to improved electromechanical properties
[265]. In ferroelectric–ferromagnetic heterostructures, non-
180◦ switching opens up an effective pathway for strain-
mediated multiferroic coupling [266] and strain-induced
metal–insulator transitions in the second component [267].
In materials such as BiFeO3 (BFO) enhanced conduction
at 180◦ and 109◦ domain walls has been reported, raising
the possibility for novel electronic and memory devices
[268]. Finally, given that the magnetic ordering in BFO
is ferromagnetic in (1 1 1) planes and antiferromagnetic
between the planes, control of non-180◦ switching is
crucial for the development of exchange-coupled devices
[266]. In multiferroics, the control of magnetic and strain
order parameters can be achieved by non-180◦ polarization
switching. In addition, this will allow exotic polarization
orderings such as vortex states and other topological
defects to be created directly. However, simple symmetry
considerations, namely the fact that the tip-induced field is
rotationally invariant, forbid direct field manipulation of non-
ferroelectric order parameters.

This fundamental limitation is belied by the number
of phenomenological observations of non-180◦ switching in
BFO. Cruz et al have explored domain switching in BFO using
a biased SPM tip and have shown that for BFO grown on
(1 1 0) STO, 180◦ walls are formed at lower voltages and 109◦

domain walls form at higher voltages [269]. The stability of
otherwise unstable 109◦ domains was increased by the creation
of a stack of 180◦ domain walls between a 71◦ domain wall
and a 109◦ domain wall (domain wall architecture). Zavaliche
et al have demonstrated that both ferroelectric and ferroelastic
switching is possible during area poling of BFO grown on
(0 0 1) STO; however, no further control of the switching
process was reported [270]. The first control of the in-plane
domain switching on (0 0 1) oriented BFO was done by Shafer
et al by using an in-plane electrode structure [271]. 90◦ rotation
of the stripe-like domains at the edges of the in-plane electrodes
where the electric fields are inhomogeneous was observed.
However, this approach is limited to switching between two
domain patterns, whereas BFO provides eight possible sets
of stripe domain patterns. Overall, the SPM single point,
SPM area poling, capacitor-based and in-plane electrode-based
switching experiments suggest that polarization switching can
proceed along many competing pathways in a seemingly
uncontrollable fashion. Recent studies by Balke et al [272]
have demonstrated that in-plane domain engineering can be
achieved using symmetry breaking by a moving SPM tip.

3.2.5. Anomalous local switching and ambient effects.
One of the fundamental differences between the SPM-
based and capacitor-based switching is the effect of the
environment. Even in capacitors, the poor interface quality
can result in rapid degradation, as well as significantly
affect electrostatic field distribution due to the dead layer
effect [273, 274]. In comparison, in SPM experiments, the
tip is contacted with surfaces with water layers resulting
from exposure to an ambient environment. Water layers
are known to be responsible for phenomena such as
anodic oxidation by AFM [275] and strongly affect SPM
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Figure 27. (a) Piezoresponse image of a PZT sample showing as-grown (light contrast) and reverse-poled (dark contrast) regions. (b)–(f )
Piezoresponse images from the poled region in (a), which was switched into the opposite polarization (with respect to the as-grown state)
state by scanning the surface with the tip biased at 210 V. Images taken after wait times of (b) 6.1 × 103, (c) 9.2 × 103, (d) 2.4 × 104,
(e) 1.1 × 105 and (f ) 2.8 × 105 s. Reproduced from [255], copyright 2001, American Physical Society.

Figure 28. PFM domain structure (a) before and (b) after locally poling a PZT film. (c) Plan view and (d) 3D view of domain structure.
(e) PFM domain structure image (e) before and (f ) after switching a PZT film. Reproduced with permission from [264], copyright 2004,
American Institute of Physics.

surface charge dynamics measurements [276], tip–surface
adhesion forces [277], electrostatic tip–surface interactions
[278, 279], tip-induced electrochemical reactions [280], etc.
Variable temperature measurements of the surface potential
above ferroelectric surfaces have established the fact that
polarization is screened by mobile charges in air [281]

and allow kinetic and thermodynamics parameters of the
screening process to be established [282]. These observations
have been corroborated by detailed surface studies [283].
For most perovskites, the surfaces are highly reactive
[284, 285]. Furthermore, dissociative water adsorption is one
of the favored mechanisms for the screening of ferroelectric
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Figure 29. (a) Environmental EM observations of the water meniscus at the tip–surface contact junction as a function of humidity.
(b) Hysteresis of meniscus size for increasing and decreasing humidity. (c) The kinetics of the alkanethiol drop spreading in the dip-pen
lithography experiment. The kinetic law limited by surface diffusion is strongly reminiscent of ferroelectric domain switching kinetics
observed in ambient environment. Inset shows the alkanethiol dot pattern. Panels (a), (b) reproduced from [299], copyright 2005, American
Chemical Society. Panel (c) reproduced from [300], copyright 2002, American Physical Society.

surfaces [281, 282, 286–288]. These mechanisms result in
the formation of a high-density hydroxylated layer and
interstitial protons and oxygen vacancies. The effects of
these charges have been observed by variable-temperature
surface potential measurements by KPFM of ferroelectrics
[288, 289], resulting in surface domain-related electrostatic
potential contrast retention above the Curie temperature
[281] and temperature-induced domain potential inversion
[282]. Polarization-controlled physisorption has recently been
studied by Altman and Bonnell groups [47, 290, 291] using
electron spectroscopies and KPFM. The effect of surface
charges on domain structures and stability has been studied in
detail by the Argonne group [292, 293]. Finally, the effect of
screening charges on PFM contrast [283, 294] and polarization
switching [295] has recently been studied using ultra-high
vacuum PFM.

Beyond chemisorption, for high partial pressure of water
vapor (e.g. corresponding to atmospheric conditions) the
hydrophilic surfaces develop thin (∼1–10 nm) wetting layers
stabilized by disjoining pressure. These layers can support
surface conductance through charged ion motion and have
been directly observed in SPM experiments [276, 296]. The
proximity of the tip results in the condensation of liquid at
the tip–surface junction due to capillary and electrocapillary
effects [297, 298]. Recent observations by environmental EM
have provided spectacular depiction of the water droplet at
the tip–surface junction and its slow formation and relaxation
kinetics as a function of water partial pressure [299].

The full effect of surface contamination on domain
dynamics is unclear, primarily because the charges are not
observable directly in the PFM experiment and can be detected
only by complementary measurements. The full set of

observed data suggests that in poorly conductive materials,
the surface charging and local charge injection may affect
switching dynamics. Humidity-dependent liquid necks form
at the tip–sample contact which changes the tip–sample contact
area and can affect the lateral expansion of growing domains
[301]. Interestingly, the observed nearly logarithmic kinetics
of surface diffusion is highly reminiscent of the switching
kinetics in the films, suggesting a relationship between the
two. Furthermore, charge injection and the diffusion of
charged species can lead to backswitching [302] and the
formation of bubble domains [303, 304]. The mechanism
is illustrated in figure 30. Here, the application of electric
field to the probe results in both polarization switching and
the formation of a charged surface layer on the surface, with
effective overscreening of polarization charge. On continuous
application of the bias, the charged area propagates on the
surface. Note that thermodynamical analysis of polarization
switching suggests that switching is possible only when the
polarization charge is screened on the surface; hence the
kinetics of screening charge spreading can be the controlling
factor in domain growth kinetics observed in ambient. Finally,
on switching the bias with the tip still in contact with the
surface, the screening charges directly below and in close
proximity to the tip are immediately compensated. However,
the charges far from the surface remain, resulting in an electric
field of opposite orientation to the original. This field can result
in backswitching, as shown in figure 30 [301–304].

Finally, the aspect of ambient experiments that should
be mentioned specifically is the electrochemical reactions
at the tip–surface junction. Tip-induced electrochemistry is
by now a well-developed paradigm, with multiple examples
on metals, solid ionic electrolytes and semiconductors
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Figure 30. (a) Antipoling effect observed on epitaxial PZT. (b)
Schematic representation of the effect: (left) poling at high voltage
and (right) collection of surface charges and formation of opposite
field, leading to polarization switching. The domain wall between
the upper and lower regions reduces the electrostatic energy of the
head-to-head configuration. In the center schematic the contributing
potentials from the spherical model are presented. (c) Illustrates the
surface charge distribution at the beginning and at the end of a
biasing experiment, and after the bias is turned off. (a), (b)
Reproduced with permission from [304], copyright 2005, American
Physical Society.

known by now [305–307]. While the electrochemistry
of classical ferroelectrics such as PZT and BTO in
ultrathin films and in the presence of water vapor is not
studied, experimental observations suggest that tip-induced
electrochemical processes are extremely common. Typically,
their onset is associated with the formation of ‘switched’
patterns with low contrast and highly disordered and broad
domains walls. Often the process is associated with the
formation of topographic features following the bias pattern.
For high biases and humidities, the complete breakdown of the
film and the formation of particulates are observed. Recent
measurements suggest that the onset of the electrochemical
processes is related to the leakage current flow. Note that
these processes are closely related to the transport properties
of ferroelectrics, actively studied in the context of resistive
switching [42, 267, 268, 308], and hence must be considered
in this context.

3.3. Theory of tip-induced polarization switching

The analysis of the tip-induced switching behavior by
PFM necessitates the comparison between macroscopic and
microscopic switching as a first step of theoretical analysis.
The seminal work by Landauer has demonstrated that
the experimentally observed switching fields correspond to

impossibly large (∼103–105 kT) values for the nucleation
activation energy [79]. This discrepancy is resolved by
postulating the presence of discrete switching centers initiating
low-field nucleation. The spatial and energy distribution of
the nucleation center has become the central component of all
statistical theories for polarization switching in macroscopic
ferroelectrics [66, 95]. Notably, this behavior is universal
to all first order phase transitions including solidification,
martensitic transformations and phenomena such as plastic
deformation and electrochemical reactions, in which the
formation of a new phase is always initiated at a specific
defect site or is controlled by defect dynamics. Given that
typical spacings between extended defects are on the order
of 10–100 nm, even high-quality epitaxial films will have
multiple defects within a typical device structure such as a
micrometer-sized capacitor.

In comparison, in an SPM experiment, the field is
concentrated to a small (10–30 nm) volume within a material
that may possess small number of defects or be (extended)
defect free. This opens the pathway for probing defect-
mediated switching in ferroelectrics on a single defect
level. The original work by Landauer [79] utilized the
rigid ferroelectric approximation (polarization is P or −P ,
domain walls are infinitely thin) to describe thermodynamics
of domain formation in a uniform field. This approach was
extended in a series of groundbreaking works by Molotskii
et al [309–313] to the analysis of the domain formation
induced by the inhomogeneous electric field of a biased SPM
probe. This thermodynamic analysis was further developed
by Morozovska et al to account for the finite electric field
below the probe, surface and bulk screening and presence of
defects [211, 314]. Below, we develop a general description
of switching thermodynamics in the rigid approximation.

3.3.1. General formalism of the problem. The free energy of
a nucleating ferroelectric domain is [314]

� (r, U) = �d (r) + �Dom (r, U) , (3.1a)

where the domain geometry is described by the N -dimensional
parameter vector, r (which can be, e.g., coordinates of all
points on a domain wall, or the radius and length in the semi-
ellipsoidal approximation) and U is the electric bias applied to
the local probe in the proximity of the surface. The first term
in equation (3.1a) is the contribution from the frozen disorder
(i.e. random electric fields in the material), �d(r), within the
volume of the domain. The second term in equation (3.1a) is
the thermodynamic work of switching

�Dom (r, U) = �S (r) + �p (r, U) + �D (r) . (3.1b)

It comprises the contributions of positive domain wall energy,
�S(r) = ψSS, where S is the domain surface and ψS is the
domain wall energy density, �p(r, U) is the energy density
due to the probe field and �D(r) is the depolarization energy.

The analysis of the switching process can be simplified
for a rigid piezoelectric, for which effective material constants
are independent of the electric field. In this case, the
interaction energy with the probe tip electric field, E

p
3(x),
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is �p(r, U) = − 2PS
∫
V

d3x · E
p
3(x) = U�U(r), where PS

is the magnitude of material spontaneous polarization, P =
(0, 0, PS) and V is the domain volume. The depolarization
field, Ed

3 (x), created by the uncompensated bulk and surface
polarization charges, determines the positive depolarization
energy, �D(r) = −PS

∫
V

d3x · Ed
3 (x). The corresponding

field distribution must be found self-consistently for a given
domain configuration and screening conditions. Note that the
interaction energy should be negative for domain nucleation.

The stochastic dynamics of the system described by
equations (3.1a) and (3.1b) is well-studied in the context of
chemical reactions [315] and protein unfolding spectroscopy
[316]. Typical energy barriers for polarization switching are
much higher than thermal fluctuations in perfect ferroelectric
materials (e.g. the barrier is much greater than ∼103kBT for
the plain electrode geometry). Hence, the thermal disorder and
variability of switching behavior on repetitive switching cycles
are anticipated to be negligibly small, and the equilibrium
domain growth will proceed along the lowest free energy path.

The domain nucleation can be represented as a transition
process on an N -dimensional surface of �(r, U). In the
absence of defects, �(0, U) = 0. Due to the local nature
of the electro-elastic field produced by the tip, �(∞, U) =
∞. Alternatively, the domain nucleation will proceed
spontaneously, corresponding to a different ground state of
the system (surface state).

Stable domain configuration(s) correspond to local
minima on the �(r, U) surface, where minima corresponding

to �(r, U) > 0 are metastable and the ones with �(r, U) < 0
are stable. In the case of first order phase transitions, the
minima and coordinate origin are separated by saddle point(s).
The voltage U at which the stable minima (i.e. a domain)
appear is referred to as the critical voltage, Ucr. The voltage of
the appearance of a saddle point, Usp, corresponding to domain
metastability, is usually close to Ucr. The evolution of the free
energy surface with bias for typical tip and material parameters
is illustrated in figures 31(a)–(d).

The analysis can be further extended assuming a prolate
ellipsoid geometry for the domains, as analyzed in [317].
In this case, the domain shape is described by radius, r ,
and length, l, and the corresponding free energy terms in
equations (3.1a) and (3.1b) can be evaluated analytically as
functions of r and l. For small biases U < US, the free
energy is a positively defined monotonic function of domain
sizes, corresponding to the absence of a stable domain. For
biases US < U < Ucr, the local minimum �min > 0
arises, corresponding to a metastable domain with rms and
lms. Finally, for U � Ucr, the absolute minimum �min < 0 is
achieved for req and leq, corresponding to a thermodynamically
stable domain. The value Ucr determines the point where
the homogeneous polarization distribution becomes absolutely
unstable. The minimum point (either metastable {rms, lms} or
stable {req, leq}) and the coordinate origin are separated by the
saddle point {rS, lS}. The corresponding energy �(rS, lS) =
Ea is an activation barrier for domain nucleation, while domain
parameters {rS, lS} represent the critical nucleus size. Such
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‘threshold’ domain nucleation is similar to the well-known
first order phase transition (compare figure 31(e) with the
well-known dependence of the free energy profile on the order
parameter for first order ferroelectrics).

In the thermally induced nucleation limit, the domain
nucleation process is analyzed as a thermally activated motion
in the phase space of the system along the minimum energy
path connecting the origin and one of the local minima. The
relaxation time necessary for the stable domain formation
at Ucr is maximal and the critical slowing down appears
in accordance with the general theory of phase transitions.
Within the framework of the activation rate theory, the domain
nucleation takes place at a higher activation voltage Ua

determined from the condition �(Ua) = Ea, corresponding
to the activation time τ = τ0 exp(Ea/kBT ). For instance,
the activation energy Ea = 20kBT corresponds to a relatively
fast nucleation time τ ∼ 10−3 s for phonon relaxation time
τ0 = 10−12 s, while the condition Ea � 2kBT corresponds to
‘instant’ or thermal nucleation.

The difference between the voltages corresponding to
the formation of a saddle point and a stable domain, US −
Ucr, determines the width of the thermodynamic hysteresis
loop (see figures 31(e)–(g)). More realistic models of
piezoresponse hysteresis loop formation consider domain wall
pinning effects. In the weak pinning limit, the domain
growth in the forward direction is assumed to follow the
thermodynamic energy minimum, while with decreasing bias,
the domain remains stationary due to domain wall pinning
by lattice and atomic defects. For stronger pinning, the
domain size is limited by the wall mobility in the tip field
and ferroelectric (as, e.g., studied for domain wall dynamic
by Molotskii in [311]), and the full analysis of this problem
remains the matter of future research.

3.3.2. Analytical treatment for Landauer geometry. The
integral expressions for the free energy components in
equation (3.1b) are extremely complex, and can be evaluated
analytically only for simple domain configurations. Here we
summarize the Pade approximations for the individual terms in
the free energy �(r, l, U) = �S(r, l)+�p(r, l, U)+�D(r, l) of
the semi-ellipsoidal domain for ferroelectric semiconductors
allowing for Debye screening and uncompensated surface
charges.

The domain wall energy has the form

�S (r, l) = πψSlr

(
r

l
+

arcsin
√

1 − r2/l2√
1 − r2/l2

)

≈ π2ψSlr

2

(
1 +

2 (r/ l)2

4 + π (r/ l)

)
, (3.2)

where r is the semi-ellipsoid domain radius, l is the domain
length.

The Pade approximation for the depolarization energy
of a semi-ellipsoidal domain including the effects of Debye
screening in the material is

�DL (r, l) = 4πP 2
S r2

ε0κ

RdnD (r, l)

4nD (r, l) + 3Rd (γ / l)
, (3.3a)

where

nD (r, l) = (rγ /l)2

1 − (rγ /l)2

arcth
(√

1 − (rγ /l)2
)

√
1 − (rγ /l)2

− 1


(3.3b)

is the depolarization factor, κ = √
εaεc is the effective

dielectric constant of the medium, and, γ = √
εc/εa is the

anisotropy factor. For an infinite Debye length (i.e. a rigid
dielectric), equation (3.3a) becomes the well-known Landauer
depolarization energy.

The energy of the depolarization field created by the
surface charges (σS − PS) located on the domain face has the
form

�DS (r, l) ≈ 4πr3Rd

ε0 (16κr + 3πRd (κ + εe))

×
(

(σS − PS)
2 +

2PS (σS − PS)

1 + (l/rγ )

)
. (3.4)

The surface charge density σS is −PS � σS � PS, while
σS = −PS without screening charges.

The driving force for the switching process is the
interaction energy determined by the electrostatic field
structure produced by the probe. The Pade approximation for
the interaction energy between a spherical tip and the surface
based on image charge series is

�p (r, l, U) ≈ 4πε0εeUR0

∞∑
m=0

qm (3.5)

×Rd ((σS − PS) FW (r, 0, d − rm) + 2PSFW (r, l, d − rm))

ε0

(
(κ + εe) Rd + 2κ

√
(d − rm)2 + r2

) .

The image charges qm are located at distances rm from the
spherical tip center, where

q0 = 1, qm =
(

κ − εe

κ + εe

)m sinh (θ)

sinh ((m + 1) θ)
, (3.6a)

r0 = 0, rm = R0
sinh (mθ)

sinh ((m + 1) θ)
, cosh (θ) = d

R0
. (3.6b)

Here R0 is the tip radius of curvature, �R is the distance
between the tip apex and the sample surface, so d = R0 + �R.
The function

FW (r, l, z) ≈ r2

√
r2 + z2 + z + (l/γ )

(3.7)

is the Pade approximation of a cumbersome exact expression
obtained originally by Molotskii [309].

Under the typical condition �R � R0, i.e. when
the tip is in contact with the surface, equation (3.5) can be
approximated as

�p (r, l) ≈ RdUCt/ε0

(κ + εe) Rd + 2κ
√

d2 + r2

×
(

(σS − PS) r2

√
r2 + d2 + d

+
2PSr

2

√
r2 + d2 + d + (l/γ )

)
, (3.8)
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where d is the equivalent charge–surface distance and Ct is the
effective tip capacitance.

Based on the evolution of the free energy surfaces,
like those presented in figure 34, the following scenario for
hysteresis loop formation in the thermodynamic limit emerges.
Below the bias US, domain formation is thermodynamically
impossible. On increasing the bias above US, the local
minimum corresponding to a metastable domain appears. The
domain becomes thermodynamically stable above a critical
bias Ucr. For an infinitely slow process, domain nucleation
below the tip becomes possible at this bias. Realistically,
nucleation will proceed at a higher bias when the activation
energy for nucleation becomes sufficiently low to enable
nucleation in the finite experimental time. On subsequent
increase in the tip bias, the domain size increases. However,
due to the 1/r decay of electrostatic fields, the domain size
always remains finite. On decreasing the bias, the domain
becomes metastable at Ucr and disappears at US, resulting in
intrinsic thermodynamic hysteresis in the hysteresis loop shape
(see figure 31(g)).

Shown in figure 32 are the activation energies for
nucleation (a), critical nucleus sizes (b), (c), domain energy
(d) and equilibrium domain sizes (e), (f ) calculated in the
framework of the sphere–plane, modified point-charge and
capacitance models (compare dotted, solid and dashed curves
in figure 32). Note that the critical domain shape is close to
the semi-spherical result independent of the model, whereas
equilibrium domain is always prolate (compare figures 32(b)
and (c) with figures 32(e) and (f )). From figure 32, domain
formation is impossible below a certain nucleation bias, Ucr,
while above this voltage, the nucleus sizes rapidly decrease
with bias.

The description of the thermodynamics and kinetics
of domain switching can be considerably facilitated by a
closed-form analytical expression for the bias dependence of

characteristic points on the free energy map. The approximate
parametrical dependences for hysteresis curves U(r) valid for
r < d have the form

U(r) ≈ ([3√
2fS

+
√

18fS + 8(1 − σS/PS)(3fD(1 − σS/PS)2(r/d)2 − fS)
]

×[4√
fU (1 − σS/PS)

√
r/d
]−1)2

l(r) ≈ 2γ d

(√
2fUU

fS

√
r/d − 1

) ,

(3.9)

where fS = π2ψSd
2γ , fD = 4P 2

S d3/3ε0(κ + εe), fU =
Rd(Ct/ε0)PSd/2(κ + εe)Rd + 4κd, Ct ≈ 4πε0εeR0(κ + εe/2κ)

and d = εeR0/κ . Using equations (3.9) and condition
�(r, l) = 0, the following approximate expressions for critical
voltage Ucr and sizes r(Ucr), l(Ucr) are derived:

Ucr =
√

fDfS

1 − σS/PS

1

2fU

×
(
3 +

√
9 − 4 (1 − σS/PS)

)2√
3 − (1 − σS/PS) +

√
9 − 4 (1 − σS/PS)

, (3.10)

r (Ucr) = d

√
fS

fD (1 − σS/PS)
3

×
√

3 − (1 − σS/PS) +
√

9 − 4 (1 − σS/PS), (3.11)

l (Ucr) = 2γ d

(
3 +

√
9 − 4 (1 − σS/PS)

1 − σS/PS
− 1

)
. (3.12)

Note that approximate dependences (equations (3.10)–(3.12))
cannot reflect the exact behavior of the system at σS → PS

allowing for the fact that one cannot neglect the Landauer
energy (3.3a) and (3.3b) at (1 − σS/PS) → 0. However, one
can see that domain nucleation disappears at σS → PS as
should be expected, because the interaction energy disappears.
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3.3.3. Surface screening effects. Theoretical descriptions
of nanodomain formation in the field of a local probe under
ambient conditions should take into consideration the layer
of adsorbed water located below the tip apex [277], and,
more generally, the dynamic and static surface charging and
screening phenomena.

The relevance of the specific screening mechanism on
polarization switching dynamics depends on the relationship
between the corresponding relaxation time, τS, and voltage
pulse time, τU (i.e. the recording time of the domain). ‘Fast’
screening mechanisms with τS � τU significantly affect the
switching process, whereas the ‘slow’ ones with τS � τU

can be ignored. However, these slow mechanisms can
significantly affect the domain stability after switching by
providing additional channels for minimizing depolarization
energy.

The role of environmental effects and screening
mechanisms on switching can be illustrated as follows. Shown
in figure 33 are the activation energies for nucleation (a)
and nucleus sizes (b), (c), critical voltage (d) and sizes
(e), (f ) calculated in the framework of the sphere–plane
model, the modified point charge model and the capacitance
approximation under different screening conditions on the
surface, i.e. σS values. It is clear from the figure that all
critical parameters rapidly increase under the charge density σS

increase from −PS to +PS. In particular, the activation barrier
for nucleation at the onset of domain stability (see figure 33(a))

is minimal for complete screening at σS = −PS (10 eV)
and increases up to 105 eV for σS → +PS. However, the
barrier height strongly decreases with further voltage increase
U > Ucr at all σS values. Note that the barrier calculated in the
inhomogeneous electric field of the tip is 3–5 orders lower than
the one calculated by Landauer for the homogeneous electric
field. The values obtained at σS > −PS are still too high for
thermal fluctuations to cause the domain nucleation at U ≈
Ucr. Thus the observed domains could either originate at higher
voltages in the perfect ferroelectric sample, or nucleation must
be defect-related.

This analysis suggests that environmental effects and
surface states will critically influence polarization switching
processes in PFM. In particular, the dependence of critical
voltage Ucr values over ambient conditions (if any) could
clarify the surface screening influence. As a recent example,
Terabe et al [318] have demonstrated that values of Ucr on
+Z and −Z cuts of LNO or LTO crystals differ by a factor
of 2, illustrating the effect of the surface state on the switching
mechanism.

3.3.4. Switching in the presence of defects. In the
mesoscopic models considered above, the defect can affect the
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thermodynamics of domain switching through the electric field
that directly couples to domain energy (random field defect),
as suggested by Gerra et al [81]. Note that random bond
defects, which affect the ferroelectric phase stability, cannot be
analyzed within the rigid ferroelectric approximation (since P

is not constant), and require numerical or analytical solutions to
full time-dependent Ginzburg–Landau equations, as analyzed
in section 5.

In order to take into account the influence of the defects
we added the interaction energy �d between the defect electric
field and the polarization of a nascent domain to the free energy
considered in section 3.3.1. The full energy is then

� (r, U) = �S (r) + �D(r) + �P (r, U) + �d (r) , (3.13)

where the surface, �S, and depolarization, �D, contributions
to the free energy of the defect are listed in equations (3.2) and
(3.5), respectively (here we suppose that surface charges are
completely compensated, neglect bulk screening and consider
the effective point charge model for the tip field). The defect
contribution for a field-type defect is

�d (r) = −2PS

∫
V

d3x · Ed
3 (x), (3.14)

where Ed(x) is the electric field created by the defects
and vector r describes the domain geometry (e.g. sizes and
position).

Similar to switching in the defect-free case, analytical
theory requires simplifying assumptions on the domain
geometry. Here, we assume that the semi-ellipsoidal domain is
axi-symmetric, i.e. it has radius r and length l, but allows for a
defect to influence the domain center (shifted by y0 compared
with the tip location).

In [319, 320], a model of a laterally localized surface field
defect with characteristic radius, rd, and penetration depth
hd � rd, located at the point {x01, 0, 0}, while the longitudinal
component of electric field is

Ed
3 (x) = ES exp

(
− (x − x01)

2 + x2
2

r2
d

− x3

hd

)
. (3.15)

The relevant values of the penetration depth are hd ∼ 1–2 nm,
maximal field strength ES = 108–1010 V m−1 and the defect
radius is rd ∼ 1–50 nm. For larger radius, the defect becomes
significantly larger than the PFM tip size, and hence can be
approximated by the homogeneous surface field considered
in [81]. Similarly, field strength below ∼108 V m−1 is well
below the fields at the tip–surface junction during the PFM
experiment, and hence these weak defects are unlikely to affect
the nucleation process.

For Gaussian field defect, the free energy components are

�P (r, l, y0, U) (3.16a)

= − 4πUPSdr2l/γ(√
r2 + d2 + y2

0 + d

)(√
r2 + d2 + y2

0 + d + l/γ

) ,

�d (r, l, x01, y0) = −2πr2
d hdPSES

(
1 − exp

(
− l

hd

))
×
(

1 − exp

(
− r2

r2
d

))
exp

(
− (x01 − y0)

2

r2
d

)
. (3.16b)

To describe the nucleus position analytically we performed
minimization on y0 of the free energy under the conditions
r < 2d, l � 2γ d typically valid in a saddle point(s) and
derived the set of approximate expressions for the shift y0 at
x01 
= 0:

y0(U)=
x01ESexp

(−x2
01/r

2
d

)
ESexp

(−x2
01/r

2
d

)
+Ur2

d (d +hd)/2d3hd
, UES >0,

2γ d3hdx01

r2
d (d +hd)

ES

U
exp

(
−
(

2γ
d3

r2
d

ES

U
−1

)2
x2

01

r2
d

)
, UES <0.

(3.17)

Equations (3.17) qualitatively describe the cases of nucleus
repulsion (y0 < 0) at ES < 0 and attraction (y0 > 0) at
ES > 0 as well as y0 → 0 at x01 � rd. As anticipated,
y0 → 0 at high voltages. For the stable domains with
sizes l � r and l � hd we obtained that y0 ≈ 0 for
all voltages U > γ |ES|d2hd/r

2
d . At x01 = 0 and biases

0 < U < −2
√

2(γESd
3hd/r

2
d (d + hd)), the (non-universal)

ring structure of radius rd

√
ln(−2

√
2γESd3hd/Ur2

d (d + hd))

is most probable.

For a favorable field defect (ES > 0), domain nucleation
can be either activationless at a high enough built-in field,
or the activation barrier is lowered compared with an ideal
material, rendering the process feasible at lower biases. For an
unfavorable field defect (ES < 0), or in its absence (ES = 0),
the domain formation process is always characterized by the
activation energy, Ea, determined as the free energy value in the
saddle point. Minimization of the free energy on the nucleus
sizes r and l leads to the estimation of the activation barrier
Ea(U):

Ea(U) = 2πψ3
S

3

(
3PSd · U

γ

(√
d2 + y2

0 + d

)2 − P 2
S

3ε0ε11

+
3

2
PSES exp

(
− (x01 − y0)

2

r2
d

)
F (hd)

)−2

. (3.18)

Here, the function F(hd) ∼= exp(−9ε0ψS/8hdP
2
S ). The

corresponding nucleus sizes are lS(U) ∼ rS(U) ∼=√
3Ea(U)/2πψS, r < 2d, l < 2d.

Activation voltages U 0
a (ES = 0) and U±

a (ES 
= 0)

corresponding to different polarization signs ±PS (or,
equivalently, forward and reverse switching) can be determined
numerically from the free energy using the conditions
�(U 0

a , ES = 0, ±PS, lS, rS) = Ea and �(U±
a , ES, ±PS,

lS, rS) = Ea or estimated analytically from equations (3.18).
The following expressions were derived for the defect-free
case:

U 0
a

∼= ±4

3
γ d

(√
2πψ3

S

3EaP
2
S

+
|PS|

3ε0ε11

)
(3.19a)
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and for defect-mediated switching:

U±
a

∼= ± γ

3d

(√
d2 + y2

0 + d

)2
(√

2πψ3
S

3EaP
2
S

+
|PS|

3ε0ε11

)
−�U (ES) , (3.19b)

�U (ES) = γ

2d

(√
d2 + y2

0 + d

)2

ES

× exp

(
− (x01 − y0)

2

r2
d

)
F (hd) . (3.19c)

Here, Ea is the potential barrier height chosen as a condition
for thermally induced nucleation, e.g. 2–20kBT . The lateral
domain nucleus shift, y0, can be estimated from equation (3.17)
self-consistently.

From the analysis above, the effect of a defect on the
hysteresis loop shape can be predicted as follows. In the
presence of a defect, the hysteresis loop is broadened by

the factor (

√
1 + y2

0/d2 + 1)2 − 4 compared with the defect-
free case (equation (3.19b)). Furthermore, the loop is shifted
along the voltage axis by the value �U due to domain-defect
interactions. The value �U exponentially decreases with the
distance |x01 − y0| from the defect center.

Voltage dependence of the domain activation energy Ea is
shown in figure 34(a).

Dependences of activation voltages U 0,±
a (at levels 2 and

20kBT ) on the distance x01 from the defect center are depicted
in figure 34(c) for a material with PZT-6B parameters. The
activation barrier may be extremely low in the vicinity of
the positive surface field defect with field strength ES >

108 V m−1. Curves 4 and 5 demonstrate that the surface state
disappears at U+

S ≈ −5 V. For a negative surface field defect
no surface state exists and the activation barrier drastically
increases, as follows from curves 1 and 2. For defects with
equal absolute field strength, the role of a positive defect in
facilitating nucleation is much more long range than a negative
one. This reflects the fact that the domain has a much more
preferential direction away from the defect than toward the
defect. Similar analysis for the reversed domain nucleation
with PS < 0 affected by a negative surface field ES < 0
requires the introduction of voltage U−

S corresponding to the
surface state disappearance (U−

a = 0 is possible).
We compare the influence of the defect field and location

on the voltage dependence of equilibrium domain and nucleus
sizes in figure 35. From figure 35(a), the equilibrium domain
sizes are insensitive to the defect position and the field
strength at the chosen material parameters. Only the positions
of the origins of the curves (corresponding to activation
voltage U−,0

a or U+
S ) are sensitive to the defect characteristics.

The reason for this behavior is the condition U−
a � U−

cr
(U−

a >̃20 V and U−
cr <̃3 V). The critical voltage Ucr depends on

the defect characteristics, but it governs the thermodynamic
domain formation only at a close activation barrier Ua ∼
Ucr. At voltages U � Ucr domain growth becomes almost
independent of the initial critical point. In contrast, the bias
dependence of nucleus sizes is sensitive to the surface field
defect, as demonstrated in figures 35(b) and (c). This analysis
suggests that the primary influence of the surface field effect on
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Figure 34. (a) Dependence of the energy barrier (in kBT units) on
the applied voltage U for surface field defect of rd = 4 nm,
hd = 0.8 nm, field strength ES located at position x01. Curve 0
corresponds to ES = 0. Curve 1 corresponds to the saddle y0 = 0
(corresponding to the highest barrier, see schematics (b) for Ea(y0))
at ES = −109 V m−1, x01 = 0; curve 2 corresponds to the saddle
y0 = yr 
= 0 (corresponding to the lowest barrier, see schematics (c)
for Ea(y0)) at ES = −109 V m−1, x01 = 0; curve 3 is calculated at
ES = −109 V m−1, x01 = 3rd; curve 4 is calculated at
ES = +109 V m−1, x01 = 3rd; curve 5 is calculated at
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at x01 = 2rd; 1.5rd; rd and 0.5rd nm correspondingly. (c)
Dependence of the activation voltage Ua at level 2 and 20kBT on the
distance to defect center, x01. Reproduced from [320]. Copyright
2008, American Physical Society.

the domain switching is the shift of activation energy (saddle
point on the free energy surface), while equilibrium domain
size is almost unaffected.

3.3.5. Minimum writable domain size. It is instructive to
extend the analysis in section 3.3.4 to determine the minimal
domain size that can be formed in an SPM field tip [321].
From the condition �min(rmin, U) = 0, we derived the
following expressions for Ucr and rmin(Ucr) valid for the
domain nucleation in a thin film with thickness h � √

εcεaR0:

Ucr(h) ≈
√

8ψS

3π

(κR0 (Rd + 2h) + (κ + εe) hRd)

Rd
√

ε0 (κ + εe) h

×
(

εe
κ + εe

κ − εe
ln

(
κ + εe

2εe

))−1

, (3.20)

rmin (Ucr) ≈
√

3πψSε0 (κ + εe)

2 (σS (Ucr) − PS)
2 · h. (3.21)
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It is clear from equation (3.21), that in order to obtain
domains of minimum radius, it is necessary to choose a
ferroelectric medium with a high spontaneous polarization PS,
small domain wall energy, ψS, and permittivity,

√
εaεc, and

large Debye screening radius (see denominator in equation
(3.20)). For applications it seems important to decrease the film
thickness h until ferroelectric phase exists [322]. However,
the film thickness h should not be extremely small in order
to prevent the sharp increase in rmin(Ucr) (denominator in
equation (3.21)), so the optimum h value can be calculated
numerically from the condition rmin(Ucr(h)) = min. For
the thickness-independent permittivity εa,c we derived the
approximation:

hopt ≈ (8ψS/3π)1/3

ε0
(√

εaεc + εe
) (ε0

√
εaεc
(√

εaεc − εe
)

εe ln
(√

εaεc + εe/2εe
) · 2R0

Em

)2/3

.

(3.22)

The optimization procedure based on equations (3.20)–(3.22)
proves that it is possible to obtain stable domains of radius
dmin ≈ 17 nm under the voltage Ucr ≈ 6–8 V in the
films with thickness hopt ≈ 70–130 nm (see figure 36).
Thus a nanodomain array can be written at ∼86 Gbit cm−2

information density in the thin PZT films (compare with
densities of 4–28 Gbit cm−2 reported in [64]). Note that in real
materials, pinning can stabilize even smaller domains below
the thermodynamics limit derived above.

4. Time and voltage spectroscopies in PFM

The understanding of the fundamental mechanisms for polar-
ization switching, including domain nucleation and growth,
wall pinning and the role of defects on these phenomena neces-
sitates ferroelectric domain dynamics to be probed at multiple
locations on sample surfaces. The imaging studies discussed in
section 3 provide visual images of domain formations, wall ge-
ometry and their evolution at different stages of growth. How-
ever, the primary limitation of these studies of domain growth
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Figure 36. Minimal domain radius and critical voltage versus the
thickness of a PbZr0.2Ti0.8O3 (PZT20/80) film. Reproduced
from [321]. Copyright 2006, American Physical Society.

is the large times required to perform multiple switching and
imaging steps even at a single spatial point. At the same time,
with the possible exception of single crystals, large variability
of disorder and defect densities precludes direct comparison
of data acquired at different locations.

An alternative approach to study domain dynamics in the
PFM experiment is based on local spectroscopic measure-
ments, in which a domain switching and electromechanical
detection are performed simultaneously, yielding local elec-
tromechanical hysteresis loop. The in-field hysteresis loop
measurements were first reported by Birk et al [116] using
an STM tip and Hidaka et al [129] using an AFM tip. In
this method, the response is measured simultaneously with the
application of the dc electric field. Correspondingly, the mea-
sured PFM signal contains significant (non-hysteretic) elec-
trostatic contribution to the signal. To avoid this problem, a
technique to measure remanent loops was reported by Guo
et al [323]. In this case, the response is determined after the
dc bias is turned off, minimizing the electrostatic contribution
and associated noise to the signal. However, domain relaxation
after the bias is turned off is possible.

In a parallel development, Roelofs et al [159]
demonstrated the acquisition of both vertical and lateral
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0 and Rm = R+
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s correspondingly. Adapted with permission from [328]. Copyright 2006, American Institute of Physics.

hysteresis loops. This approach was later used by
several groups to probe crystallographic orientation and
microstructure effects on switching behavior [157, 162, 324–
327]. Recently, PFM spectroscopy has been extended to
an imaging mode using an algorithm for fast (30–100 ms)
hysteresis loop measurements developed by Jesse et al [328].
In the switching spectroscopy PFM (SS-PFM), hysteresis
loops are acquired at each point of the image and analyzed
to yield 2D maps of imprint, coercive bias and work of
switching, providing a comprehensive description of the
switching behavior of the material at each point.

Below, we summarize the technical aspects of voltage and
time spectroscopy in PFM, discuss relevant theoretical aspects
and summarize recent experimental advances.

4.1. Experimental apparatus for PFS and SS-PFM

During the acquisition of a hysteresis loop piezoresponse force
spectroscopy (PFS), the tip is fixed at a given location on
the surface and the waveform Vtip = Vprobe(t) + Vac cos ωt

is applied to the tip. Vac is the amplitude of the PFM driving
signal. The probing signal, Vprobe(t), is shown in figure 37 and
is composed of a sequence of pulses with amplitude, Vi , and
length, τ1 (HIGH state) separated by intervals of zero bias lasting
for τ2 (LOW state). The measured responses yield on-field and
off-field hysteresis loops.

To generate SS-PFM maps, the hysteresis loops are
acquired over M × M point mesh with spacing, l, between
points. The hysteresis curves are collected at each point and

stored in a 3D data array for subsequent analysis. Parameters
describing the switching process such as positive and negative
coercive bias, imprint voltage and saturation response can
be extracted from the data sets and plotted as 2D maps;
alternatively, hysteresis loops from selected point(s) can be
extracted and analyzed.

An ideal hysteresis loop for electromechanical measure-
ments is shown in figure 37(d). Acquired at each point is
a hysteresis loop containing the forward, R+(V ), and reverse,
R−(V ), branches. The zero of R+(V ) defines positive coercive
bias, V +, and the zero of R−(V ) defines negative coercive bias,
V −. The imprint is defined as Im = (V + + V −)/2. The values
of R+

0 = R+(0) and R−
0 = R−(0) define positive and negative

remanent responses, while R0 = R+
0 − R−

0 is the remanent
switchable response. Finally, R+(+∞) = R−(+∞) = R+

s
and R+(−∞) = R−(−∞) = R−

s are the saturation responses
and Rs = R+

s − R−
s is the maximal switchable response. In

some cases, contributions of electrostatic signals (tip electrode)
or bimorph-like substrate bending (macroscopic capacitors)
necessitate the introduction of vertical offset to symmetrize
the loop. Finally, the forward and reverse domain nucle-
ation voltages, V +

c and V −
c , corresponding to the cross-over

between constant and rapidly changing regions of the loop,
are attributable to domain nucleation below the tip. Addition-
ally, the effective work of switching is defined as the area within
a hysteresis loop,

As =
∫ +∞

−∞

(
R+(V ) − R−(V )

)
dV. (4.1)
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Figure 38. The driving bias effect on the hysteresis loop shape. (a) Hysteresis loops for PZT thin film for ( ) 1.5 Vpp, (�) 4 Vpp, (�) 6 Vpp

and (•) 8 Vpp driving amplitudes. (b) Driving bias dependence of effective work of switching and saturation response. Reprinted
from [329]. Copyright 2006, American Institute of Physics.

These parameters provide a measure of the switching
properties of the material.

4.1.1. Effect of imaging conditions on hysteresis loops. As
in any spectroscopic method, PFS and SS-PFM are highly
susceptible to a large number of external and internal factors
that affect the veracity of spectroscopic data acquisition. The
detailed analysis of instrumental factors is reported in [329].
Below, we discuss the effect of measurement parameters
on PFS.

4.1.2.1. Probing bias and the bias window. One important
consideration in PFM and SS-PFM is the choice of driving
voltage, Vac, and bias window of measurements, Vdc ∈
(Vmin, Vmax). Ideally the measurements are performed in the
low signal limit, Vac � (V + + V −). However, practical
considerations such as maximizing the signal strength often
necessitate the use of high driving voltages, in particular for
materials with relatively low piezoelectric coupling. The effect
of a finite probing bias on the loop shape strongly depends
on the fundamental hysteresis loop formation mechanism and
bias frequency, and cannot be explained by a simple model.
Here, we summarize the experimental studies of the driving
bias effect.

Shown in figure 37(a) are experimentally observed
hysteresis loops obtained on a pulsed-laser deposition grown
PZT thin film (70 nm) for different probing biases. The loops
are normalized by bias amplitude to ensure similar units. Note
that for Vac below the coercive bias, the loop shape remains
largely unchanged—the loops slightly narrow indicating the
onset of switching, but the variation in relevant parameters
is relatively small (figure 37(b)). Conversely, modulation
amplitudes greater than the coercive bias effectively result
in a collapse of the loop to a straight line. The changes in
the effective work of switching and switchable response as a
function of Vac are shown in figure 38(b). The small variation
in relevant characteristics for small biases is presumably due
to a relatively larger noise level. Note that the behavior in
figure 38 is reproducible and the shape is regained when small
biases are used demonstrating that the collapse in the loop
shape cannot be attributed to the damage to the conductive tip

coating or the surface. Thus, for certain materials, voltages at
∼2/3 of the coercive bias level can be used to yield high-quality
loops. At the same time, for materials with small coercive bias,
e.g. ferroelectric nanodots, ultrathin films, etc, imaged at large
modulation voltages, the absence of hysteresis loops can be
erroneously interpreted as evidence for non-ferroelectric state.

The dependence of the loop parameters on the bias window
is illustrated in figure 39. The hysteresis loops become
saturated when the bias windows exceed 20 V (figure 49(a)).
The origins of the slight downward trend are unclear but can
possibly be attributed to reverse switching induced by charge
injection at the surface [304]. The bias window dependence of
switchable polarization is illustrated in figure 39(b). Note the
good agreement between the values obtained from fitting and
those measured directly from the loop. Figure 39(c) illustrates
the dependence of the positive and negative nucleation biases
on the bias window. Despite the relatively large error in the
determination of nucleation bias, the values are nearly bias-
window independent, suggesting that the loop formation is
controlled by the nucleation process. Finally, figure 39(d)
illustrates the bias window dependence of the effective work of
switching as determined from functional fitting and the direct
integration of the area below the curve. The values obtained
are in good agreement and also illustrate that the leveling-off
of hysteresis parameters at large voltages are indicative of loop
saturation.

4.1.2.2. Ambient effects. One of the well-known factors
affecting SPM measurements under ambient conditions is the
presence of wetting water layers and associated capillary tip–
surface forces as described in section 3.2.5. Here, we present
experimental evidence illustrating the possible role of ambient
conditions on hysteresis measurements by PFM.

Shown in figure 40(a) is the PFM hysteresis loop obtained
on a freshly prepared (buffered HF etch followed by O2

annealing) atomically flat STO (1 0 0) surface. Shown are
the average values and error bars corresponding to standard
deviations determined from 64 hysteresis loops acquired on
an 8×8 mesh of points separated by 100 nm. Note that
clear hysteretic behavior can be seen despite the fact that
the surface is (nominally) non-ferroelectric. We attribute
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Figure 39. (a) Evolution of PFM hysteresis loops on an epitaxial PZT film as a function of bias. (b) Bias window dependence of switchable
polarization. (c) Bias dependence of (�) positive and (�) negative nucleation bias. (d) Bias window dependence of effective work of
switching. Shown in (b) and (d) are values determined from the functional fit ( ) and by direct integration of the area below the loop (��).
Reprinted from [329]. Copyright 2006, American Institute of Physics.
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Figure 40. The effect of ambient conditions on the hysteresis loop shape. (a) Hysteresis loops for a clean insulting STO surface.
(b) Hysteresis loop for conductive SrRuO3/STO thin film. Reprinted from [329]. Copyright 2006, American Institute of Physics.

this behavior to the electrocapillary condensation of water
layers at the tip–surface junction [330, 331], resulting in
an ‘unsaturated’ electromechanical hysteresis loop. For
comparison, figure 40(b) shows hysteresis loops obtained
on a conductive SrRuO3/STO surface. This surface is
extremely stable in air and conductive (i.e. low energy electron
diffraction pattern can be observed after air exposure) [332]
and no hysteresis loops are measured, thus confirming that
the behavior observed on the STO (1 0 0) surface is not
an instrumental artifact. While this observation is not

necessarily universal, it does illustrate that spurious hysteretic
contributions to electromechanical measurements can exist
when operating under ambient conditions.

4.2. Phenomenological theory of domain loop formation

The progress in experimental methods has stimulated parallel
development of theoretical models to relate PFM hysteresis
loop parameters and materials properties. A number of such
models are based on the interpretation of phenomenological
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characteristics of PFS hysteresis loops similar to macroscopic
P –E loops, such as slope, imprint bias and vertical shift.
In particular, the slope of the saturated part of the loop
was originally interpreted as electrostriction; the later studies
have demonstrated the dominant role of linear electrostatic
contribution to the signal.

Several groups analyzed the effect of non-uniform
materials properties, including the presence of regions with
non-switchable polarization on parameters such as imprint
and vertical shift. In thin films, vertical shift of the PFM
hysteresis loops was interpreted in terms of non-switchable
layer by Saya et al [333]. Alexe et al [334] analyzed the
hysteresis loop shape in ferroelectric nanocapacitors with top
electrodes, obtaining the estimate for the switchable volume of
a nanocapacitor. Similar analysis was applied to ferroelectric
nanoparticles developed by a self-patterning method [335] by
Ma and Hesse [336]. In all cases, the results were interpreted
in terms of ∼ 10 nm non-switchable layers, presumably at the
ferroelectric–electrode interface.

A number of authors attempted to relate local PFM loops
and macroscopic P –E measurements, often demonstrating
good agreement between the two [337]. This suggests
that despite the fundamentally different mechanism in local
and macroscopic switching, there may be deep similarities
between tip-induced and macroscopic switching processes.
A framework for analysis of PFM and macroscopic loops
based on the Landau theory was developed by Ricinsi
et al [338–340], demonstrating an approach to extract local
switching characteristics from hysteresis loop shape using first
order reversal curve diagrams.

In parallel with tip-induced switching studies, a number
of groups combined local detection by PFM with uniform
switching field imposed through the thin top electrode to study
polarization switching in ferroelectric capacitor structures. In
this case, switching field is nearly uniform. Spatial variability
in switching behavior was discovered by Gruverman et al
and attributed to strain [341] and flexoelectric [241] effects.
In subsequent works, domain nucleation during repetitive
switching cycles was shown to be initiated in the same defect
regions, indicative of the frozen disorder in ferroelectric
structures [342, 343].

Finally, in a few cases, ‘abnormal’ hysteresis loops having
shapes much different from that in figure 37 have been
reported. Abplanalp et al have attributed the inversion of
electromechanical response to the onset of ferroelectroelastic
switching [344]; this behavior was later interpreted as
backswitching, as analyzed in detail in section 3.2.5. Harnagea
has attributed the abnormal contrast to the in-plane switching
in ferroelectric nanoparticles [194, 337]. Finally, a variety of
unusual hysteresis loop shapes including possible Barkhausen
jumps and fine structures associated with topographic and
structural defects have been observed by the group of Kalinin
[329, 345].

The rapidly growing number of experimental observations
and recent developments in PFS instrumentation and data
acquisition and analysis methods require understanding not
only phenomenological, but also quantitative parameters of
hysteresis loops, such as the numerical value of coercive

bias and the nucleation threshold. Kalinin et al [325] have
extended the 1D model by Ganpule et al [160] to describe
PFM loop shape in the thermodynamic limit. Kholkin
[346] has postulated the existence of nucleation bias from
PFM loop observations, in agreement with theoretical studies
by Abplanalp [344], Kalinin et al [347], Molotskii [348],
Emelyanov [349], Morozovska and Eliseev [321]. Finally,
Jesse et al [328] have analyzed hysteresis loop shape in
kinetic and thermodynamic limits for domain formation.
However, in all cases, the model was essentially 1D, ignoring
the fundamental physics of domain switching. Below,
we summarize the approaches for data acquisition and
interpretation of PFM spectroscopy.

4.3. Hysteresis loop formation

Analytical theory of PFM hysteresis loop formation is
required to understand the underlying mechanisms behind loop
formation and extract material properties from spectroscopic
data. Below, we summarize the results of 3D approaches in the
rigid ferroelectric approximation. A detailed analysis of the
hysteresis loop formation in the phase-field models is presented
in section 5.

The tip-induced domain growth process during hysteresis
loop measurements in semi-infinite material comprises the
stages of domain nucleation, and subsequent forward and
lateral domain growth. On reverse bias, both (a) shrinking
of the formed domain and (b) nucleation of the domain of
opposite polarity are possible. The analysis of the domain
dynamics in PFS should qualitatively describe the individual
stages in figure 41.

4.3.1. 3D Decoupling theory

4.3.1.1. Piezoelectric response in final and intermediate
states. The analysis in section 3 derives the thermodynamics
of domain evolution with bias. To calculate the shape of the
PFM hysteresis loop, the geometric parameters of the domain,
i.e. length l and radius r , must be related to the measured PFM
signal. This relationship, once established, will be equally
applicable to the thermodynamic theory developed in section 3,
the kinetic theory developed by Molotskii and Shvebelman
[311] and for data analysis in the PFM experiment.

To establish the relationship between domain parameters
and the PFM signal, we utilize the decoupling Green function
theory by Felten et al [182]. Measured in a PFS experiment
is the electromechanical response related to the size of
ferroelectric domain formed below the tip. Hence, to calculate
the shape of the PFM hysteresis loop, the electromechanical
response change induced by the semi-ellipsoidal domain is
required. For the system containing the semi-ellipsoidal
domain with semi-axes r and l, the following expression for the
vertical PFM responsedeff

33 = u3/U was found after integration
of equation (2.11) for x3 = 0, ρ = 0, as

deff
33 =d31g1(γ,r,l,y0)+d15g2(γ,r,l,y0)+d33g3(γ,r,l,y0),

(4.2)

gi (γ,r,l,y0)=fi (γ )−2wi (γ,r,l,y0). (4.3)
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Figure 41. Domain evolution with bias depending on different pinning strengths of the material. (a) Time dependence of voltage and (b)
schematics of hysteresis loop. (c) Schematics of the domain growth process. In the purely thermodynamics case (dashed arrows), the
domain shrinks with decreasing voltage (path 3–4). To account for realistic loop, the domain size does not change on (3–4) and the domain
of opposite polarity nucleates on path (4–6). At point 6, antiparallel domain walls annihilate. Reproduced from [314]. Copyright 2006,
American Institute of Physics.

Here, the functions wi = 0 in the initial and
wi = fi in the final state. The functions fi are
f1 = (2(1 + γ )ν + 1)/(1 + γ )2, f2 = −γ 2/(1 + γ )2, f3 =
−(1 + 2γ )/(1 + γ )2 and define the electromechanical response
in the initial and final states of switching process [184].
Functions wi are dependent on the domain sizes r , l and the
domain shift with respect to the tip apex, and can be reduced
to the integral representations:

w3(γ,r,l,y0)

=− 3

2π

∫ 2π

0
dϕ

∫ π/2

0
dθ cos3 θ sinθ

Rdw(θ,ϕ)

RG (θ,Rdw(θ,ϕ))
,

(4.4a)

w2(γ,r,l,y0)

= 3

2π

∫ 2π

0
dϕ

∫ π/2

0
dθ

(
γ d +cosθRdw(θ,ϕ)

RG (θ,Rdw(θ,ϕ))
−1

)
cos2 θ ·sinθ,

(4.4b)

w1(γ,r,l,y0)= 1

2π

∫ 2π

0
dϕ

∫ π/2

0
dθ
(
3cos2 θ −2(1+ν)

)
×cosθ sinθ

Rdw(θ,ϕ)

RG (θ,Rdw(θ,ϕ))
, (4.4c)

where the function Rdw(θ, ϕ) is determined by the shape of the

domain, and RG(θ, Rdw) =
√
(γ d +cos θRdw)2 +γ 2 sin2 θR2

dw

is related to the probe electrostatic potential in the domain wall
point determined by Rdw(θ, ϕ). Note that equations (4.4a)–
(4.4c) can be extended to arbitrary rotationally invariant

domain geometries, e.g. cylindrical or conic, as determined by
the functional form of Rdw(θ, ϕ). For instance, the ellipsoidal
domain wall shape corresponds to

Rdw (θ) = rl√
r2 cos2 θ + l2 sin2 θ

, (4.5a)

while for the case of prolate semiellipsoid (r � l) or cylinder,
shifted on distance y0 we derived at |y0| < r ,

Rdw (θ, ϕ) =
|y0| cos ϕ +

√
r2 − y2

0 sin2 ϕ

sin θ
. (4.5b)

Using approximate expressions derived for y0 = 0,
approximate analytical relationship between the radius of a
prolate semiellipsoidal domain, r , lateral shift, |y0|, and the
PFM signal can be determined:
deff

33 (r, y0) ≈
3

4
d∗

33

(
1 − 16r

πd + 8r
+

8πd (πd + 24r)

r (πd + 8r)3 y2
0

)
+

d15

4

(
1 − 16r

3πd + 8r
+

24πd (3πd + 24r)

r (3πd + 8r)3 y2
0

)
 .(4.6a)

Here, the material is regarded as dielectrically isotropic, γ = 1,
r = r(U) is the voltage dependent domain radius and d∗

33 =
d33 + (1 + 4ν)d31/3. In the defect-free case, the relationship
between the PFM signal and domain size is

deff
33 (r, y0) ≈ 3

4
d∗

33

(
1 − 16r

πd + 8r

)
+

d15

4

(
1 − 16r

3πd + 8r

)
.

(4.6b)
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Figure 42. (a) Schematic of the tip interaction with a semiellipsoidal domain and high-resolution PFM amplitude image of a domain wall in
BFO. (b) Domain wall profile and fit for several tip models. (c) Domain radius deconvoluted from the hysteresis data in the point charge
model. (d) Electric field on the domain boundary. (Inset) Activation energy for different models. Reproduced from [350]. Copyright 2007,
National Academy of Sciences.

Equations (4.2)–((4.6a) and (4.6b)) allow one to deconvolute
nascent domain sizes from the hysteresis loops of piezoelectric
response, as shown in [350]. The domain parameters
are calculated self-consistently from the decoupling Green
function theory by using tip geometry determined from the
domain wall profile (figure 42). The critical parameters of
the nucleating domain and the activation energy for nucleation
are determined. In particular, the electric field at the domain
wall at nucleation was estimated to be close to intrinsic
thermodynamic field, a conclusion later confirmed by direct
temperature-dependent measurements of nucleation biases by
UHV PFM [295].

4.3.1.2. Modeling loop shape in weakly pinned limit. In this
section we analyze the shape of the piezoresponse loop for PZT
in the weak pinning limit. To calculate the thermodynamic
hysteresis loop shape from the bias dependence of the domain
size, we assume that the domain evolution follows the
equilibrium domain size on the forward branch of the hysteresis
loop. The corresponding piezoelectric loops calculated using
the thermodynamic parameters derived in section 3 using
formulae in subsection 4.3.1.1 are shown in figures 43.

Numerically, the results obtained within the EPCM of
the tip at Rd → ∞ can be well approximated by deff

33 =

d∞(1 − √
U0/U). The deviation from deff

33 = d∞(1 − U0/U)

obtained within the framework of 1D model [180, 325] could
be related to the dimensionality of the problem.

It is clear from figures 43(b) and (d) that the modified
point charge model gives the narrower loop that saturates more
quickly than the exact series for sphere–tip interaction energy
and moreover quicker than the capacitance approximation.
This can be explained taking into account the fact that the
distance d between the effective point charge Q and the sample
surface is smaller in κ/εe ≈ 6 times than the first ones from
the image charges caused by the tip with curvature R0.

In [314] the effect of surface screening and bulk Debye
screening on piezoresponse loop shape, coercive voltage and
saturation rate was studied. It appeared that the effect of
surface and Debye screening on piezoresponse loop shape is
complementary with respect to domain nucleation and loop
saturation behavior, namely:

(i) The surface screening strongly influences the domain
nucleation and the initial stage of growth. The
coercive voltage (loop width) and nucleation voltages are
controlled by σS value. At the same time, piezoresponse
weakly depends on σS at high voltages, i.e. surface
screening does not affect the saturation law.
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Figure 43. Piezoelectric response as the function of applied voltage for PZT6B and σS = −PS in linear (a) and logarithmic (b) scales. Solid
curves represent EPCM approximation of the tip; dotted ones correspond to the exact series for sphere–tip interaction energy; dashed curves
are the capacitance approximation. d33 = 74.94, d31 = −28.66 and d15 = 135.59 pm V−1; whereas saturated value deff
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(ii) The Debye screening radius Rd strongly influences the
piezoresponse at high voltages and thus determines the
saturation law (i.e. high voltage tails of hysteresis loop),
whereas nucleation voltage depends on Rd relatively
weakly. The piezoresponse saturates much quicker at
small Rd values than at big ones. The reason for this effect
is explained by the quick vanishing of the tip potential at
small Rd radii.

4.3.1.3. Implications for switching mechanism. Experimen-
tally obtained hysteresis loops nearly always demonstrate
much faster saturation than the loops predicted from thermody-
namic theory. This behavior can be ascribed to several possible
mechanisms, including (a) delayed domain nucleation (com-
pared with thermodynamic model), (b) finite conductivity and
faster decay of electrostatic fields in the material, (c) kinetic
effects on domain wall motion and (d) surface screening and
charge injection effects. These mechanisms are discussed in
detail below:

(a) Delayed nucleation: the activation barrier for nucleation
is extremely sensitive to the maximal electric field in the tip–
surface junction region, which can be significantly reduced by
surface adsorbates, quantum effects due to a finite Thomas–
Fermi length in the tip material, polarization suppression at
surfaces, etc. These factors are significantly less important
for determining the fields at larger separation from contact,
and hence affect primarily domain nucleation, rather than
subsequent domain wall motion. Poor tip–surface contact can
lead to a rapid jump from the initial to the final state. This
effect will result in a sudden onset of switching, increasing
the nucleation bias and rendering the loop more square-
shaped. However, the theory in section 4 suggests that to
account for experimental observations, the nucleated domain
size should be significantly larger than the tip size, and
that nucleation should occur only for very high voltages.
Given the generally good agreement between experimental and
theoretical nucleation biases, we believe this effect does not
explain the experimental findings.
(b) Conductivity and finite Debye length: the second possible
explanation for the observed behavior is the finite conductivity

of the sample and/or the surrounding medium. In this case,
screening by free carriers will result in a cross-over from a
power law to an exponential decay of electrostatic fields at
a depth comparable to the Debye length. This was shown
to result in self-limiting effect in domain growth. Given that
in most materials studied to date the Debye lengths are on
the order of micrometers, this explanation cannot universally
account for the experimental observations.
(c) Domain wall motion kinetics: in a realistic material, domain
growth will be affected by the kinetics of domain wall motion.
In the weak pinning regime, the domain size is close to the
thermodynamically predicted size, while in the kinetic (strong
pinning) regime the domain is significantly smaller. Both
domain length and radius will grow slower than predicted
by the thermodynamic model. The detailed effect of pinning
on domain shape is difficult to predict, since the field decays
faster in the z-direction, but at the same time surface pinning
can dominate the wall dynamics. In either case, pinning
is likely to broaden the hysteresis loop compared with its
thermodynamic shape, and is unlikely to affect nucleation,
contrary to experimental observations.
(d) Surface conductivity effect: one of the most common
factors in AFM experiments under ambient conditions is the
formation and diffusion of charged species, as analyzed in
section 3.2.5. Here we note that surface charging can result in
rapid broadening of the domain in the radial direction, i.e. the
electrical radius of tip–surface contact grows with time. Given
that only the part of the surface in contact with the tip results
in cantilever deflection (i.e. the electrical radius is much larger
than the mechanical radius), this will result in rapid saturation
of the hysteresis loop. Note that similar effects were observed
in, e.g., dip-pen nanolithography [300] and the kinetics of
this process is very similar to the experimentally observed
logarithmic kinetics of tip-induced domain growth. Estimating
carrier mobility at D ∼ 10−11 m2 s−1, diffusion length in 10 s is
1 µm. At the same time, the surface charge diffusion is unlikely
to affect the nucleation stage, since the latter is controlled by
the region of maximal electric field directly at the tip–surface
junction. Also, charge dynamics is unlikely to affect PFM
imaging, since the characteristic frequencies are significantly
larger and at 100 kHz the diffusion length is 10 nm.
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4.3.2. Ginsburg–Landau model of local polarization switching
and piezoresponse loop formation

4.3.2.1. Landau–Ginzburg–Devonshire theory. The major-
ity of theoretical work analyzing the domain formation pro-
cess in PFM utilized the rigid ferroelectric approximation and
assumed infinitely thin domain walls. However, the self-
consistent description of the SPM probe-induced domain for-
mation in ferroelectrics and other ferroics requires an analytical
approach based on the Landau–Ginzburg–Devonshire (LGD)
thermodynamic theory. For ferroelectrics, LGD describes the
dynamics of a continuous spatial distribution of the polariza-
tion vector P in an arbitrary electric field and the nonlinear
long-range polarization interactions (correlation effects) [3].
In this manner, the LGD approach avoids the typical limita-
tions (sharp walls and field-independent polarization values)
of the rigid ferroelectric Landauer–Molotskii (LM) approach
(compare figures 44(b) and 1(c)). Charge-neutral 180◦ do-
main walls do not cause the depolarization electric field and
usually are ultra-thin. However, the charged (or counter) do-
main wall at the domain apex creates a strong depolarization
field due to uncompensated bound charges (divP 
= 0). The

charged wall inevitably appears at the tip of the nucleating
domain (figure 44(b)).

The strong positive depolarization field in front of the
infinitely thin charged domain wall causes the spontaneous
increase in the domain length leading to the domain wall
breakdown into the depth of the sample. Complementary
to the LM approach evolved for infinitely thin domain walls,
the LGD approach provides the solution of the paradox: the
domain vertical growth should be accompanied by the increase
in the width of the charged domain wall (see figure 45(d)). The
width increase smears the jump of the depolarization field at the
domain tip, and the domain wall broadening and propagation
are completed once the field in front of the wall becomes
smaller than the coercive field.

Below, we illustrate the application of the GLD approach
for analytical calculation of hysteresis loop on the ideal
surface [351] and in the presence of pre-existing 180◦ domain
wall [352]. The approximate analytical expressions for the
equilibrium distribution of surface polarization were derived
from the free energy functional by a direct variational method.

We consider the spontaneous polarization P3(r) of
ferroelectrics directed along the polar axis, z. The
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33 � 5, L⊥ = 1 nm, sample thickness h → ∞. Solid curves are calculated case iii, dotted curves correspond to case ii, dashed
curves correspond to case i. Reproduced from [351].

sample is dielectrically isotropic in transverse directions, i.e.
permittivities ε11 = ε22, while ε33 may be different. The
dependence of in-plane polarization components on electric
field is linearized as P1,2 ≈ −ε0(ε11 − 1)∂ϕ(r)/∂x1,2. The
conventional relation between piezoelectric coefficients dijk =
2ε0εilQjklmPm in Voigt notation acquires the explicit forms
d33 = 2ε0ε33Q11P3, d31 = 2ε0ε33Q12P3, d15 = 2ε0ε11Q44P3,
where Qij are the electrostriction tensor components in Voigt
notation and ε0 is the universal dielectric constant.

The problem for quasi-static electrostatic potential ϕ(r)

follows from the Maxwell equations, namelyεb
33

∂2ϕ

∂z2
+ ε11

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
= 1

ε0

∂P3

∂z
,

ϕ (x, y, z = 0) = Ve (x, y) , ϕ (x, y, z → ∞) = 0.

(4.7)

Here we introduced dielectric permittivity of the background
or reference state [353] as εb

33. Typically εb
33 � 10; its origin

can be related to electronic polarizability and/or reorientation
of impurity dipoles.

Potential distribution produced by the SPM probe
on the surface can be approximated as Ve(x, y) ≈
V d/
√

x2 + y2 + d2, where V is the applied bias, d is
the effective distance determined by the probe geometry
[314, 320]. The potential is normalized assuming the

condition of perfect electrical contact with the surface,

Ve(0, 0) ≈ V . In the case of the local point charge
model, the probe is represented by a single charge Q =
2πε0εeR0V (κ + εe)/κ located at distance d = εeR0/κ for
a spherical tip apex with curvature R0 (κ ≈ √

ε33ε11 is the
effective dielectric constant determined by the ‘full’ dielectric
permittivity ε33 in the z-direction, εe is the ambient dielectric
constant), or d = 2R0/π for a flattened tip represented by a
disk of radius R0 in contact with the sample surface.

In the framework of LGD phenomenology, the spatial–
temporal evolution of the polarization component P3 of
the second order ferroelectric is described by the Landau–
Khalatnikov equation:

− τ
d

dt
P3 = αP3 + βP 3

3 − ξ
∂2P3

∂z2
−η

(
∂2P3

∂x2
+

∂2P3

∂y2

)
−E3,

(4.8)
where ξ > 0 and η > 0 are the gradient terms, the expansion
coefficient, β > 0, for the second order phase transitions
considered hereafter and τ is the Khalatnikov coefficient
(relaxation time). In the absence of (microscopic) pinning
centers or for weak pinning of viscous friction type the domain
wall equilibrium profile can be found as the stationary solution
of equation (4.8). Rigorously, the coefficient α should be
taken as renormalized by the elastic stress as (α − 2Qij33σij )

[354, 355]. Hereafter we neglect the striction effects, which are
relatively small for ferroelectrics such as LTO and LNO [356].
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Initial and boundary conditions for polarization in
equation (4.8) are

P3 (r, t � 0) = P0 (x) ,

(
P3 − λ

∂P3

∂z

)∣∣∣∣
z=0

= 0.

(4.9)
Polarization distribution P0(x) satisfies equation (4.8) at zero
external bias, Ve = 0.

Reported extrapolation length λ values are 0.5–50 nm
[357]. Hereafter, second order ferroelectrics with large
extrapolation length, λ � √

ξ , are considered. Infinite
extrapolation length λ → ∞ corresponds to the situation of
perfect atomic surface structure without defects or damaged
layer.

4.3.2.2. Probe-induced domain formation and ferroelectric
breakdown through the film. The analysis of the domain
switching produced by the probe field requires the analytical
description of the depolarization field produced by the counter
domain wall. Since for most ferroelectrics the tip size is
larger than the correlation length, L⊥ � d , this approximation
is used hereinafter. Applying direct variational method to
the linearized solution of equation (4.8), we obtained that
in the actual region z � Lz, the gradient effects lead to
the unessential renormalization of expansion coefficient α as
α → αR = α(1 + (1 + γ −2)L2

⊥/d2). The approximation is
rather rigorous outside the domain wall region. Hence, coupled
equations (4.7) and (4.8) can be rewritten as

γ 2
P (P3)

∂2ϕ

∂z2
+

∂2ϕ

∂x2
+

∂2ϕ

∂y2
= 0,

αRP3 + βP 3
3 + δP 5

3 = −∂ϕ

∂z
,

ϕ (x, y, z = 0) = Ve (x, y) , P3 (r � d, z < 0) → −PS.

(4.10)

Polarization-dependent anisotropy factor γP [P3] is intro-
duced as

γP (P3) =
√

εb
33

ε11
+

1

ε11ε0
(
αR + 3βP 2

3 + 5δP 4
3

) . (4.11)

Note that the dielectric susceptibility χ ∼ (αR+ 3βP 2
3 +

5δP 4
3 )−1 is positive for thermodynamically stable states.
Then the spatial distribution of the polarization can be

found as the solution of the nonlinear algebraic equation

αRP3 (ρ, z) + βP 3
3 (ρ, z) + δP 5

3 (ρ, z) = E3 (ρ, z) . (4.12)

We emphasize that the effective field E3 is the sum of the
probe field Ee(ρ, z) and depolarization field EW(ρ, z). The
left-hand side of equation (4.12) describes the conventional
ferroelectric hysteresis. Thus, under the absence of the pinning
field, a thermodynamically stable domain wall boundary ρ(z)

can be determined from equation (4.12) as the coercive point,
i.e. under the condition αR + 3βP 2

3 (ρ, z) + 5δP 4
3 (ρ, z) = 0

valid at coercive field: E3(ρ, z) = Ec.

The intrinsic coercive field Ec is well known [358] as

Ec =



2

3
√

3

√
−α3

R

β
, for the second order ferroelectrics,

2

5

(
2β +

√
9β2 − 20αRδ

)
×
(

2αR

−3β −
√

9β2 − 20αRδ

)3/2

, for the first order.

(4.13)

Note that this analysis essentially reproduces early arguments
of Kolosov [123], stating that the domain size in a PFM
experiment corresponds to the region in which tip-induced
field exceeds coercive field. Here, we obtain a similar result;
however, the field is now intrinsic (rather than macroscopic)
coercive field renormalized by the depolarization field of the
nascent domain.

The bias dependences of the domain length l(V ) and
radius r(V ) calculated from the equation E3(ρ, z) = Ec are
shown in figure 45 for typical ferroelectric materials including
LiTaO3, PbTiO3 and PbZr40Ti60O3 in three limiting cases:

(i) Perfect screening of domain wall depolarization field by
free charges. For this case there are no resulting charge at
the wall and no depolarization field (see dashed curves in
figure 45).

(ii) No motion of the charged domain wall by depolarization
field and no screening charges. This case has unclear
physical interpretation and shown by dotted curves in
figure 45 for comparison.

(iii) The motion of the charged domain wall by the maximal
depolarization field is considered. The situation is typical
in the absence of screening or very slow screening (see
solid curves in figure 45).

The remarkable aspect of the above analysis is that the
domain radius r calculated from equations (4.12) is always
finite at finite intrinsic domain wall widthL⊥ 
= 0. This reflects
the fact that spontaneous polarization re-orientation takes place
inside the localized spatial region, where the resulting electric
field absolute value is more that thermodynamic coercive
field, i.e. |E3| > Ec, while the hysteresis phenomenon
appeared in the range |E3| < Ec as anticipated within
the LGD approach considering nonlinear correlation effects.
The domain breakdown through the sample depth appears
for infinitely thin domain walls (L⊥ → 0), i.e. under the
absence of domain wall correlation energy (ξ, η → 0). The
microscopic origin of the domain tip elongation in the region
where the probe electric field is much smaller than the intrinsic
coercive field is the positive depolarization field appearing in
front of the moving charged domain wall (see figure 44(c)).
Note, that the activationless hysteresis phenomenon calculated
within the LGD approach corresponds to the metastable state,
in contrast to activation mechanism of the stable domain
formation calculated within the energetic LM approach.

Within the rigid LM approach the domain walls are
regarded infinitely thin and polarization absolute value is
constant: −PS outside and +PS inside the domain (if any).
Semi-ellipsoidal domain radius r and length l are calculated
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Figure 46. Diagram demonstrating the main features of
probe-induced domain formation calculated within the LGD
approach (solid curves), LM approach (dashed curves) and their
envelope (dotted curve). LNO material parameters are the same as
in figure 45, ψS = 0.35 J m−2, probe surface separation d = 50 nm.
Squares are experimental data reported by Agronin et al [359].
Reproduced from [351].

from the free energy excess consisting of the interaction energy,
the domain wall surface energy ψS and the depolarization field
energy. Nonlinear correlation energy contribution is absent
within the rigid approximation. Within the LM approach,
the depolarization field energy vanishes as 1/l, while the
interaction energy is maximal at l → ∞, the condition of
negligible surface energy leads to the domain breakdown
l → ∞ and the subsequent macroscopic region re-polarization
even at infinitely small bias (if only V PS > 0), while
the hysteresis phenomena or threshold bias (saddle point)
are absent. Under finite domain wall energy, the critical
bias Vcr and energetic barrier Ea of stable domain formation
exist. Activation (or nucleation) bias Va is determined from
the condition Ea(Va) = n kBT ,where the numerical factor
n = 1 . . . 25. Usually Va � Vcr for thick films.

In figure 46 we compare the main features of the probe-
induced domain formation calculated within the intrinsic LGD
approach and the energetic LM approach. For consistency
between the approaches we used the Zhirnov expression [354]
for the domain wall surface energy

ψS =
√√√√(1 +

2
((

Q2
11 + Q2

12

)
s11 − 2Q11Q12s12

)
β
(
s2

11 − s2
12

) )
η

× (−2α)3/2

3β
, (4.14)

where Qij are the electrostriction tensor, sij are the elastic
compliances.

4.3.2.3. Probe interaction with domain walls. The analytical
model for the interaction of the biased SPM probe and
existing domain walls opens the way for experimental studies
of microscopic mechanisms of domain wall polarization
interaction with electric field that can be studied in strongly
inhomogeneous fields of biased force microscope probe. This
problem is similar to that of domain wall pinning on a charged

impurity, where the SPM probe acts as a ‘charged impurity’
with controlled strength (controlled by tip bias) positioned at
a given separation from the domain wall. In this context,
the problem of the infinitely thin ferroelectric domain wall
interaction with a charged point defect was considered by
Sidorkin [360]; however, neither correlation effects (e.g. finite
intrinsic width of domain walls) nor rigorous depolarization
field influence were taken into account. For the description
of domain wall equilibrium position the Laplace tension
conception (whose applicability to ferroelectrics has not been
studied in detail) was used instead of the conventional LGD
theory, thermodynamic Miller–Weinreich approach [86] or
their combination with molecular dynamics and Monte-Carlo
simulations as proposed by Rappe et al [88]. However, they
studied domain wall profile changes in homogeneous external
field.

Below we consider the interaction of ferroelectric 180◦

domain wall polarization with a strongly inhomogeneous
electric field of biased force microscope probe within LGD
thermodynamic approach using direct variational method (see
figure 47).

The solution of equation (4.8) for the initial flat
domain wall profile positioned at x = x0 is P0(x) =
PS tan h((x − x0)/2L⊥), where the correlation length is L⊥ =√−η/2α, and the spontaneous polarization is P 2

S = −α/β.
Polarization distribution at the sample surface was

derived as

P3 (x, y, 0) ≈ P0(x) −
√

ε11ε0

−2α

× PVd2√
d2 + x2 + y2

(
d2 + x2 + y2 + L⊥d

) .
The variational amplitude PV should be found from Landau–
Khalatnikov equation

τ
d

dt
PV + w1PV + w2 (x0) P 2

V + w3P
3
V = V (t) , (4.15)

with parameters

w1 = 1, w2 (x0) = − 3βPSx0√
(L⊥ + d)2 + x2

0

√−2αε11ε0

4α2 (L⊥ + d)
,

w3 = βε11ε0

4α2 (L⊥ + d)2 .

In the decoupling approximation and object transfer functions
approach (see [182, 183, 186, 352]), Pade approximations for
the bias V dependence of effective piezoelectric response
PR(V ) = u3(x = 0, y = 0)/V were found as

PR (V, x0) = deff
0 (x0) − ε0ε11

γ
(4.16)

×
4∑

i=1

Bi (γ ) · ln (e + bi (γ )/C) PV (V , x0)

(bi (γ ) + ln (e + bi (γ )/C)) (L⊥ + d ln (e + bi (γ )/C))
,

where deff
0 (x0) is the bias-independent PFM profile of the

flat 180◦ domain wall located at distance x0 from the
tip apex. Response deff

0 (x0) was calculated in [361].

Dielectric anisotropy factor γ =
√

(ε33 + εb
33)/ε11. Con-

stants e ≈ 2.718 28 . . . is the natural logarithm base
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Figure 47. (a) Schematics of ferroelectric 180◦ domain wall boundary curved by the strong localized electric field of the biased probe in
contact with the sample surface. (b) Wall curvature at the sample surface in quasi-continuous media approximation (solid curves and a
grayscale level). Dashed rectangle corresponds to the schematics of activation field calculations used by Miller and Weinreich for rigid
polarization model, where the distance a is equal to the lattice constant. Reproduced from [352]. Copyright 2008, American Physical
Society.

and C ≈ 0.577 216 . . . is Euler’s constant. Constants
b1(γ ) = γ 2/(1 + γ )2, b2(γ ) = γ /(1 + γ ), b3(γ ) =
(γ /2)((1 + 2γ )/(1 + γ )2), b4(γ ) = (16 − 15γ 2)γ /4(1 + γ )2

and B1(γ ) = −2ε0ε33Q12(γ /(1 + γ )2), B2(γ ) =
(1 + 2ν)2ε0ε33Q12(1/(1 + γ )), B3(γ ) = 2ε0ε33Q11((1 + 2γ )/

(1 + γ )2), B4(γ ) = 2ε0ε11Q44(γ
2/(1 + γ )2) (ν is the Poisson

ratio).
Static thermodynamic coercive biases V ±

c (x0) for both
polarization and piezoresponse hysteresis loops should be
found from the condition dV /dPV = 0, namely V ±

c (x0) =
(w2(2w2

2 − 9w3) ± 2(w2
2 − 3w3)

3/2)/27w2
3. It is easy to show

that �Vc is defined only for the case of x2
0 � 2(L⊥ + d)2.

Only in this region is the bistability possible. Far from the
wall (x0 � d) corresponding coercive biases are symmetric,
namely V ±

c = ±((L⊥ + d)/
√−2αε11ε0)(2αPS/3

√
3).

The phase diagram in coordinates {x0, d} that contains
domain wall bending regime (no hysteresis, V ±

c = 0) to
the domain nucleation far from the wall (almost symmetric
hysteresis loop with V +

c ≈ −V −
c ) and intermediate regime

(asymmetric hysteresis with V +
c 
= −V −

c ) is shown in
figure 48.

The analysis in figure 48 illustrates that for small
tip–surface separations the domain wall displacement is
activationless, corresponding to the wall bending toward or
away from the probe. For intermediate separations, the
process is affected by depolarization field induced by wall
bending, corresponding to thermodynamics nucleation biases
reduced relative to bulk values and appearance of significant
loop imprint. Finally, for large tip–surface separations,
the wall does not affect nucleation below the tip. From
figure 49(a) it is seen that the loop halfwidth monotonically
increases with an increase in the distance x0. Viscous friction
leads to the loop broadening and smearing far from the
wall, while near the wall the loop originates much earlier
than without pinning (compare solid and dotted curves in
figures 49(a)–(c)).

This analysis is performed for the case of ferroelectric
material with second order phase transition in the absence
of lattice and defect pinning. It can further be extended to
incorporate lattice effects through the introduction of lattice
discreteness or periodic pinning potentials.
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Figure 48. Phase diagram in coordinates {x0, d}. Boundaries
between the regions of different bias dependence of P3:
activationless domain wall bending, domain nucleation far from the
wall (hysteresis) and intermediate regimes are shown schematically.
Material parameters correspond to LiNbO3. Reproduced
from [352]. Copyright 2008, American Institute of Physics.

4.4. SS-PFM of polarization dynamics in low-dimensional
ferroelectrics

Despite relatively short history, SS-PFM has been established
as a powerful technique for the characterization of switching
behavior in nanoscale ferroelectric materials. Below, we
summarize some of the recent applications of SS-PFM and
advances made in the understanding of polarization reversal
mechanisms.

4.4.1. Work of switching in ferroelectric nanoparticles. One
of the first demonstrations of SS-PFM was the studies of
polarization reversal of and within ferroelectric nanoparticles
[362]. The topography, mixed PFM and SS-PFM images of
initial piezoresponse, switchable piezoresponse and the work
of switching of a single 70 nm diameter nanoparticle are shown
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Figure 49. (a) Effective piezoelectric response (pm V−1) versus applied bias (V) calculated from equation (2) for different distances x0 from
the domain wall for x = 0, 20, 30, 40, 60, 100, 300 nm (plots 1–6). Dotted curves are static dependences calculated at τ = 0, while solid
curves are kinetic loops calculated for τ = 10−8 s and applied bias frequency f = 500 kHz. (b), (c) Normalized polarization P3 versus
applied bias for τ = 0 (b) and τ = 10−8 s (c) for x = 0, 20, 30, 40, 60, 100, 300 nm (curves 0–6). Effective distance d = 25 nm. Material
parameters for LNO are ε11 = 84, α = −2 × 109 SI units, PS = 0.75 C m−2. Poisson ratio is ν = 0.3; electrostriction coefficients are
Q44 = 0.038, Q12 = −0.003, Q11 = 0.016 m4 C−2; L⊥ = 1 nm.

in figure 50. A two-layer model for the nanoparticle consisting
of a switchable (ferroelectric) layer characterized by the
presence of a built-in electric field and a non-switchable (frozen
polarization) layer as shown in figure 50 was introduced and
relevant parameters were analyzed using the 1D model, as
described previously [180, 334]. Specifically, the vertical shift
of a hysteresis loop is related to the relative thickness of
the non-switchable polarization component and defines the
distribution of the frozen polarization within the system, while
the lateral shift of the hysteresis loop defines the built-in field
in the ferroelectric component.

4.4.2. Imaging of multiferroic structures. The role of inter-
faces on ferroelectric switching behavior and on multiferroic
coupling ferroelectric–ferromagentic heterostructures [363]
was studied in [104]. Topography, PFM and SS-PFM (work of

switching, PNB and NNB) images for a BFO–CoFe2O4 (CFO)
nanostructure sample are shown in figure 51, along with char-
acteristic loops from the BFO, CFO and BFO–CFO interface
regions. The corresponding bias parameters are defined in
figure 51(h). The SS-PFM maps illustrate that coercive and
nucleation biases are uniformly distributed within the ferro-
electric regions and do not exhibit any systematic trends in
the vicinity of the interface. While the work of switching and
the electromechanical response are reduced in the vicinity of
the interfaces, analysis of the SS-PFM data shows that this is
a purely geometric effect due to the reduction of the domain
volume at the interface [104].

4.4.3. Disorder potential mapping. The role of defects
as nucleation centers in polarization reversal is the central
theme of ferroelectric switching models and at the heart of
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Figure 50. (a) Topography, (b) mixed PFM, (c) initial piezoresponse and (d) the work of switching for the nanoparticle shown in (a).
(e) Schematic showing the polarization within a nanoparticle and (f ) the corresponding loop which is shifted along the voltage axis due to
imprint and the response axis due to the frozen polarization. Reproduced from [362]. Copyright 2008, John Wiley and Sons, Inc.

device behavior; however, experimental studies of specific
nucleation centers are quite challenging given the predicted
size of nucleation centers (below 10 nm), low densities in
high quality films, and the difficulties distinguishing nucleation
from domain wall propagation.

SS-PFM has allowed real-space imaging of nucleation
centers in ferroelectrics via mapping positive and negative
nucleation biases. To relate the PNB and NNB maps to
local materials properties, RB disorder was introduced as
a variation in wall energy, ψS(x, y) = ψ0

Sα(x, y) (or,
equivalently, thickness), and RF disorder is introduced as
built-in polarization disorder, PS(x, y) = P 0

S (1 + β(x, y)),
or frozen polarization. Here, ψ0

S and P 0
S correspond to the

parameters of the ideal material and α(x, y) and β(x, y)

describe variations in materials properties on length scales
larger than the characteristic nucleating domain size (∼2 nm,
as estimated from activation energy). The local nucleation
bias is then U 2

cr = AψS(x, y)PS(x, y), where A is a constant
determined by the tip properties and the dielectric properties of
the material. Assuming that the latter are position independent,
the positive and negative nucleation biases are

U 2
+ = Aψ0

SP 0
S α (x, y) (1 + β (x, y)) , (4.17a)

U 2
− = Aψ0

SP 0
S α (x, y) (1 − β (x, y)) . (4.17b)

Thus, analysis of the nucleation biases allows the random
bond and random field components of the disorder potential
to be separated and subsequently correlated with the local
microstructure (figure 52).

4.4.4. Barkhausen jumps at the nanoscale. The analysis
of hysteresis loops from a variety of materials systems has

shown that often the loops possess fine features, as shown
in figure 53. The features are highly localized, reproducible
and in some cases are associated with the visible structural
defects. The studies by the Alexe group have associated the
presence of the fine structure features with the proximity to a
ferroelastic domain wall [364, 365]. Bdikin et al [366] have
performed simultaneous imaging and spectroscopic studies
and illustrated that the fine structure is associated with the non-
monotonic jumps in wall motion, i.e. individual pinning events
(figure 54). Notably, the defect–defect spacing in the high-
quality epitaxial films can be of the order of 100–300 nm [367],
well above the resolution of the PFM. Hence, single defect
imaging can be feasible provided that (a) the defect signature in
hysteresis loop measurements is known and (b) the sensitivity
of the method is sufficient to detect a single defect. Recently,
single-defect imaging from SS-PFM was demonstrated
(figure 54) [319].

4.5. Time resolved spectroscopies of ferroelectrics

One of the most interesting aspects of ferroelectric behavior
is the polarization dynamics. In most materials, domain
nucleation occurs at the ∼nanosecond time scale, and wall
velocities are extremely high. Consequently, PFM limited
to ∼100 Hz bandwidth for spectroscopy and ∼1 mHz for
imaging cannot be expected to provide direct time resolved
information on ferroelectric domain resolution, necessitating
the development of stroboscopic modes [342, 343, 368] or
alternative time-resolved probes such as focused x-ray [369].
However, an important exception is the relaxor ferroelectric
and ferroelectric polymers that often have extremely large
(hours to days) relaxation times, enabling PFM-based dynamic
studies. Furthermore, domain wall dynamics at small fields
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Figure 51. SS-PFM of multiferroic BFO–CFO nanostructures. (a) Topography, PFM (b) amplitude, and (c) phase images. (d) SS-PFM
map of the work of switching and (e), (f ) maps of the positive and negative nucleation biases, respectively. (g) Representative loops from
BFO (�), CFO (�) and the BFO–CFO hetereostructure interface (�). (h) Loop with coercive and nucleation biases indicated. Reproduced
from [104]. Copyright 2007, IOP Publishing.

can be extremely slow, as thus directly accessible by the PFM
time spectroscopy measurements.

4.5.1. Single point spectroscopy. Single point time-resolved
PFS (TR-PFS) was developed to study local retention and
relaxation behavior in ferroelectrics. In TR-PFS, a dc
voltage setting pulse is applied to the probe for a duration
t1, and then the bias is turned off for the following duration,
t2 (figure 55(a)). The evolution of the electromechanical
response during this second stage is measured using an ac
voltage. The sequence can be repeated and the results averaged
as necessary.

This approach was pioneered by Kholkin for relaxor
ferroelectrics [250]. He demonstrated strong variability
of relaxation behavior between the 0.9Pb(Mg1/3Nb2/3)O3–
0.1PbTiO3 (PMN–10PT) grains with different orientations.
The relaxation process was shown to consist of two stages,
the rapid initial decrease in the response and slow (typically
stretched exponent) decay of the contrast. Subsequently,

this approach was applied for ferroelectric poly(vinylidene
fluoride) (PVDF) [137, 370]. Recently TR-PFS has been
used to investigate relaxation behavior in PVDF nanomesas
[131] and in ferroelectric relaxors [371, 372]. In figure 55(b),
relaxation curves for PMN–10PT, LNO and mica are
shown. The observed dynamics suggest that the contribution
of possible instrumental and atmospheric artifacts (e.g.
electrocapillary effect) to relaxation is minimal. Relaxation
curves for PMN–10PT in bias-on (during the application of
10 V pulse) and bias-off (after bias pulse) states are shown in
figure 55(c).

An example of single-point relaxation data collected in the
time interval from 10 ms to 100 s is shown in figure 55(d). The
relaxation can be well described by the Kohlrausch–William–
Watts (KWW) law, R = R0 + R1f (t), where R0 and R1

are the non-relaxing and relaxing polarization components
and f (t) = exp(−(t/τKWW)β). The local KWW exponent,
β ≈ 0.4, which is much larger than the macroscopic value
determined from dielectric spectra (β ≈ 0.09). The fits using
power-law and exponential relaxation all failed.

52



Rep. Prog. Phys. 73 (2010) 056502 S V Kalinin et al

Figure 52. (a) Surface topography, (b) PFM amplitude and (c) PFM phase of an epitaxial PZT film. (d) Qualitative random field (RF) and
random bond (RB) disorder map. The RF disorder is defined as (|PNB| − |NNB|)/2, the RB disorder is defined as (|PNB| + |NNB|)/2.
Hysteresis loops illustrating the effect of (e) RF and (f ) RB disorder on the loop shape (comp. figure 1). Reproduced from [65]. Copyright
2008, Nature Publishing Group.

Figure 53. Hysteresis loop with the corresponding domain images.
Reproduced from [366]. Copyright 2008, American Institute of
Physics.

4.5.2. Spatially resolved time spectroscopy imaging. The
single point TR-PFS can be extended to a mapping method
to explore spatial variability of relaxation behavior. The
measurements are performed on a densely spaced grid of

points, yielding the 3D PR(x, y, t) data arrays, where PR

is the piezoresponse signal, (x, y) is the coordinate and t

is the time. An analysis of the resulting PR(x, y, t) using
functional fit PR(t) = f (α, t), where α = α1, . . . , αn is
an n-dimensional parameter vector, allows maps of αi(x, y)

describing the spatial variability of relaxation behavior to
be constructed. As an example, the fit using the stretched
exponential law, PR(t) = A0 + A1 exp(−(t/τ )β) with n = 4
yields spatially resolved maps of relaxing, A1, and non-
relaxing, A0, polarization components, relaxation time, τ , and
exponent, β (not shown). Alternatively, the fitting can be
performed using power law or logarithmic function.

The TR-PFM data were fitted using a logarithmic function
and the resulting spatial maps of offset, B0(x, y), and slope,
B1(x, y), are shown in figures 56(a) and (b). A number
of relaxation curves extracted from regions of dissimilar
contrast in figure 56(a), (b) are shown in figures 56(c) and
(d). Note that relaxation behavior varies between adjacent
locations, illustrating the presence of mesoscopic dynamic
inhomogeneity on the ergodic relaxor surface. The slope
distribution is relatively narrow, B1 = −0.10±0.02 within the
image, and close to Gaussian. In comparison, the distribution
of offsets is broader, B1 = −1.5 ± 0.5, and is strongly
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Figure 54. (a) Topography, (b) 2D map of negative nucleation bias. (c) Integral fine structure map for the forward branch of the hysteresis
loop. (d) Loops from locations marked in (a) and (e) hysteresis loop fine structure in loop I. Reproduced from [319]. Copyright 2008,
American Institute of Physics.

asymmetric. This observation suggests that the amplitude
of the pulse-induced polarization varies significantly from
point to point, while the kinetics of the observed logarithmic
relaxation is more uniform.

4.6. Switching in ferroelectric capacitors

Switching in ferroelectric capacitors was extensively studied
by the Gruverman [241, 341], Stolichnov [373–376] and Noh
[377] groups in the context of applications to FeRAM. It is well
recognized that polarization switching in capacitors is initiated
at a relatively small number of defect sizes, and the switching
process proceeds though domain wall motion. PFM can be
employed to study capacitor switching in the stroboscopic
mode, in which domain pattern changes as a function of voltage
pulse length and amplitude are measured [93–95, 241, 378]
This step-by-step switching [342, 343, 368] approach can
be used to measure the domain kinetics (nucleation and
growth) during polarization reversal and the results can be
compared with experimental macroscopic results and with
theory [81, 377, 379–383]. As discussed in section 2.3.3.5,
this approach is limited by the resolution of PFM on capacitor
structures, which is determined by the structure thickness
rather than tip–surface contact area.

Despite this limitation, this approach was extensively
used to study imprint and flexoelectric effects in capacitors
[241], variability of switching behavior in capacitor structures
[341, 378], interplay between nucleation and domain wall

motion [368] and nucleation probability distribution in capaci-
tors [377]. Noteworthy is that similar studies can be performed

dynamically (using real-time resolution) using focused x-rays
[369]. However, since the top electrode covers the surface of
the ferroelectric, it is not possible to correlate the surface struc-
ture with the nucleation sites, nor is it possible to rule out the
influence of the metal–ferroelectric interface roughness.

The second approach for probing polarization dynamics
in capacitors is based on SS-PFM, as reported recently [384].
It has been shown that in polycrystalline materials, switching
often proceeds through the formation of correlated clusters
containing 102–103 grains, presumably stabilized by elastic
interactions active on the length scale of film thickness.

Finally, studies of in-plane capacitor switching using
a combination of in-plane electric field and PFM imaging
(i.e. capacitor cross-section studies) merit separate discussion.
This approach was introduced by Lu et al [385] and Gysel
et al [386] using beveled and cross-sectioned planar capacitors,
and further developed by Balke et al using specially fabricated
structures [387]. These measurements allow the nucleation
and lateral wall growth stages to be visualized directly and
to establish the relationship between these processes and the
field history of the sample. Ultimately, these studies can be
performed in the electron microscopy geometry, potentially
providing insight into domain nucleation and wall motion
mechanisms on the sub-10 nanometer and atomic levels.

5. Phase-field simulations of local ferroelectric
switching mechanism

Polarization switching under PFM is a temporal and spatial
evolution process driven by a highly inhomogeneous external
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field. It involves a complex coupling of long-range
electromechanical interactions in a highly inhomogeneous
and nonequilibrium system. Analytical solutions for the
spatial and temporal distributions of polarization, electric field
and stress during switching under PFM are generally not
possible although semi-analytical solutions for the polarization
distributions corresponding to the critical states or stable states
have been attempted, as summarized in sections 3 and 4. To
better understand the polarization switching mechanisms in
PFM, a number of efforts to model the polarization evolution
process using the phase-field method [65, 263, 295, 350, 388,
389] have been attempted. One of the main advantages for
the phase-field method is the fact that one is able to model the
temporal/spatial evolution of arbitrary domain morphologies
under an applied electric field without explicitly tracking the
positions of domain walls. Secondly, the inhomogeneous
electric field and stress field distributions accompanying the
polarization switching are readily available. Furthermore, the
effect of structural defects such as grain boundaries, surfaces,
dislocations and random defects can be incorporated without
significantly increasing the computational time. Phase-field
models have previously been applied to domain evolution
during ferroelectric phase transitions and domain switching,
effect of random defects and dislocations, as well as strain
effect on transition temperatures and domain structures in thin
films [390].

5.1. Phase-field method

During polarization switching the polarization distribution
is always inhomogeneous, i.e. it depends on the spatial
positions. In the phase-field approach, one employs the
spatial distribution of local spontaneous polarization P (x) =
(P1(x), P2(x), P3(x)) to describe a domain structure. Using
the free energy for the unpolarized and unstrained crystal as
the reference, the local free energy density as a function of
strain and polarization using the Landau–Devonshire theory
of ferroelectrics is

fbulk (ε(x), P (x)) = 1
2αijPi (x) Pj (x)

+ 1
4γijklPi (x) Pj (x) Pk(x)Pl(x)

+ 1
6ωijklmnPi(x)Pj (x) Pk(x)Pl(x)Pm(x)Pn(x) + · · ·

1
2cijklεij (x) εkl(x) − 1

2qijklεij (x)Pk(x)Pl(x), (5.1)

where αij , γijkl and ωijklmn are the phenomenological Landau
expansion coefficients and cijkl and qijkl are the elastic
and electrostrictive constant tensors, respectively. All the
coefficients are generally assumed to be constant except
αij which is linearly proportional to temperature, i.e. αij =
αo

ij (T − To), where To is the Curie temperature.
It should be noted that the coefficients in equation

(5.1) correspond to zero strain while experiments are usually
conducted at zero stress. In order to use the materials
constants and Landau coefficients from stress-free conditions,
we rewrite the free energy for zero stress. One first obtains
the spontaneous strain, i.e. the strain or crystal deformation at
zero stress,

εo
ij (Pk) = 1

2 sijmnqmnklPkPl = QijklPkPl, (5.2)

where Qijkl are the electrostrictive coefficients measured
experimentally. Substituting the spontaneous strain from
equation (5.2) for the strain in equation (5.1), we have the
free energy at zero stress as

gbulk (P (x)) = 1
2αijPi(x)Pj (x)

+ 1
4γ ′

ijklPi(x)Pj (x)Pk (x) Pl(x)

+ 1
6ωijklmnPi(x)Pj (x) Pk(x)Pl(x)Pm(x)Pn(x) + · · · , (5.3)

where the αij and ωijklmn remain the same for zero stress as
for zero strain, but γijkl at constant strain is changed to γ ′

ijkl at
zero stress with

γ ′
ijkl = γijkl − 2cmnopQmnijQopkl . (5.4)

The free energy at zero strain and that at zero stress are
related by

fbulk
(
εij (x), P (x)

) = gbulk (P (x)) + felast
(
Pi (x) , εij (x)

)
,

where

felast
(
P(x), εij (x)

) = 1
2cijkl

(
εij (x) − εo

ij (x)
)

× (εkl(x) − εo
kl(x)

)
. (5.5)

For a domain structure, the electrostatic energy contains
contributions from an external applied field Eex, the energy due
to inhomogeneous polarization distribution δPi(x) = Pi(x)−
P̄i and the depolarization energy Fdep if the crystal is finite and
the surface polarization charge is not fully compensated:

Felec =
∫

V

felec (Pi(x), Ei(x)) dV = −
∫

V

Pi (x) Eex
i (x)dV

− 1
2

∫
V

Ei(x)δPj (x)dV + Fdep
(
P̄i

)
, (5.6)

where P̄i is the average polarization and Ei is the ith
component of the electric field generated by the heterogeneous
polarization distribution δPi(x).

The total free energy of an inhomogeneous domain
structure is given by Ginzburg–Landau free energy functional:

F =
∫

V

[fbulk(Pi) + fgrad(∂Pi/∂xj ) + felast(Pi, εij )

+ felec(Pi, Ei)]d
3x (5.7)

in which fbulk is the bulk free energy density, fgrad is the
gradient energy that is only nonzero around domain walls and
other interfaces where the polarization is inhomogeneous,

fgrad = 1
2GijklPi,jPk,l, (5.8)

where Pi,j = ∂Pi/∂xj and Gijkl is the gradient energy
coefficient.

To obtain the elastic strain energy density felast in equation
(5.5), one needs to solve the mechanical equilibrium equation
for a given domain structure. For a bulk single crystal with
periodic boundary conditions, one can use Khachaturyan’s
elasticity theory [391, 392]. For thin films, the mechanical
boundary conditions become more complicated. The top
surface is stress-free and the bottom surface is constrained
by the substrate. As it has been shown in [393, 394],
the solution to the mechanical equilibrium equations for
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a film–substrate system can be obtained by combining
Khachaturyan’s mesoscopic elasticity theory [391, 392] and
the Stroh formalism of anisotropic elasticity [395]. In
obtaining the elastic energy, the local distributions of
mechanical displacements, strain and stress are also readily
available for a given domain structure and external boundary
conditions.

Similarly, the electrical energy density, felec, in equation
(5.6) can be obtained by solving the electrostatic equation. For
the simple case that the depolarization field is compensated and
the external field is uniform, we have the electrostatic energy
for a single crystal,

∫
V

felecd3V = 1

2

∫ ∣∣niP
o
i (g)
∣∣2

njκjknk

d3g

(2π)3 − (Eex
i P̄i

)
V, (5.9)

where P o
k (g) = ∫

V
P o

k (x)e−ig·xd3x, κjk is the dielectric
constant tensor and ni is the ith component of unit vector,
gi/|g|. In equation (5.9), the reciprocal space origin, g = 0,
is excluded in the integration. Equation (5.9) shows the
dependence of electrostatic energy on dielectric constants, the
domain structure and the external applied field. For electric
boundary conditions that are inhomogeneous at the boundary,
e.g. under PFM, the electrostatic equilibrium equation is solved
using a specified inhomogeneous boundary condition for the
electric potential, φ,

φsubstrate−film interface = 0, φfilm surface = φ1 (x1, x2) (5.10)

using the same strategy as the elastic solution for thin films
[396].

With all the important energetic contributions to the total
free energy, the temporal evolution of the polarization vector
field, and thus the domain structure, is then described by the
time-dependent Ginzburg–Landau (TDGL) equations,

∂Pi (x, t)

∂t
= −L

δF

δPi (x, t)
, (5.11)

where L is the kinetic coefficient related to the domain-
wall mobility. For a given initial distribution of polarization,
numerical solution to equation (5.11) yields the temporal and
spatial evolution of polarization, and thus domain switching
under an external field.

5.2. Modeling the electric potential distribution from PFM

To model the domain writing process by PFM, one needs
quantitative information on the electric potential or electric
field distribution produced by the probe. The actual
distribution will depend on the size and shape of the probe,
and its accurate determination is difficult and requires finite-
element-type of calculations with the knowledge of precise
probe geometry. Most existing theories and numerical
simulations of ferroelectric domain switching under PFM
assumed point-charge-type of electric potential distributions.
For example, in phase-field simulations of domain switching
under PFM, the tip-induced electric potential distribution on a

Figure 57. Variation of nucleation voltage as a function of effective
tip size.

sample surface is approximated by a two-dimensional Lorentz-
like function [350, 388],

φ1 (x1, x2) = φ0

[
γ 2(

x1 − x0
1

)2
+
(
x2 − x0

2

)2
+ γ 2

]
, (5.12)

where x1 and x2 are the coordinates on the surface, (x0
1 , x0

2 ) is
the location of the tip (the peak of distribution) and γ is the
distance from the tip over which the applied electric potential
reduces to half of its peak value, φ0.

5.3. Nucleation bias

The nucleation bias is defined as the minimum applied
electric potential required to nucleate a new domain under
PFM. To determine the nucleation bias of a new domain
in a phase-field simulation, one starts with a single crystal
single ferroelectric domain state and impose an electric
potential distribution according to equation (5.12) as the
electric boundary conditions. One then gradually increases
the potential value φ0 with small intervals. The minimum
potential value at which a new domain appears under PFM
is determined as the nucleation bias. However, it should be
noted that the nucleation bias is strongly sensitive to the probe
geometry, or in our simple potential model, to the parameter γ .
As an example, the dependence of nucleation bias on γ was
demonstrated using a BiFeO3 epitaxial thin film consisting
of a single rhombohedral domain with polarization direction
along [1̄ 1̄ 1] [1]. To find the critical nucleation potential, the
potential φ0 was slowly increased in increment of 0.05 V. At
a sufficiently high value of φ0, a new rhombohedral domain
with polarization along [1̄ 1̄ 1̄] was found to nucleate below the
tip, and the corresponding value for φ0 was identified as the
nucleation potential. The nucleation bias as a function of γ is
shown in figure 57. For the ranges of tip parameters consistent
with the measured domain wall width, the nucleation bias is
∼4.8 ± 0.5 V.

Since there are no defects or thermal fluctuations
considered in the model, the nucleation bias in a phase-field
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Figure 58. Evolution of polarization and electric field before (a)–(d) and after (e)–(h) nucleation. Shown are (a),(e) vertical polarization
component, (b), (f ) vertical electric field, (c), (g) field in the image plane and (d), (h) electric field perpendicular to the image plane [345].
Copyright 2009, John Wiley and Sons, Inc.

simulation corresponds to intrinsic thermodynamic switching
in the local field produced PFM tip. The fact that the voltage
required to nucleate a domain intrinsically within a matrix is
on the order of a few volts for tip radius of ∼30 nm indicates
that the non-uniform electric field under a PFM tip is sufficient
to induce intrinsic polarization switching on an ideal surface
even for moderately low tip biases. This is also supported by
PFM measurements and phase-field predictions of temperature
dependence of nucleation bias which shows a nearly linear
dependence of nucleation bias on temperature. The linear
temperature dependence of the nucleation bias can also easily
be obtained for intrinsic switching using the direct variational
method which considers intrinsic (rather than infinitely thin)
width of domain wall and variable magnitude of polarization.
The small temperature dependence of the nucleation bias arises
primarily from the temperature dependence of the dielectric
constants and the spontaneous polarization.

5.4. Mesoscopic switching mechanism in a single domain

The domain switching mechanism under PFM can be
monitored by the evolution of the polarization distribution
and electric fields. An example is shown in figure 58 [345].
Below the nucleation threshold, the applied electric field from a
PFM leads to polarization inhomogeneity under the tip without
nucleation (figure 58(a)). The degree of inhomogeneity
increases with the applied PFM electric potential. As expected,
based on the equation for the PFM potential, the out-of-plane
(normal) component (E3) of the electric field (figure 58(b)) is
symmetric while the in-plane component (E2) anti-symmetric
with both positive and negative values (figure 58(c)). Above
the nucleation threshold, switching takes place, leading to
the reversal of the out-of-plane polarization component, i.e.
corresponds to 71◦ ferroelastic switching for the case of a
rhombohedral domain in a (0 0 1) oriented film (figure 58(e)).
The nucleation of a needle-like domain is consistent with the
minimization of the depolarization energy. In the mean time,
the out-of-plane component of the electric field displays both

positive and negative regions after nucleation (figure 58(f ))

while the in-plane component E2 (figure 58(g)) now has also
significant values inside the film. With continuous application
of the PFM tip, the domain will eventually penetrate through
the film.

5.5. Local ferroelectric switching across a ferroelastic
twin wall

Ferroelectric thin films are seldom perfect and often contain
various structural defects such as twin walls, dislocations
and grain boundaries. Since the electric and stress fields
around structural defects in a ferroelectric thin film are
inhomogeneous, it is expected that the nucleation bias at or near
a structural defect will be different from a single domain state.
The role of a single ferroelastic twin boundary in the magnitude
of nucleation bias has been studied using a specific example
of tetragonal PbZr0.2Ti0.8O3 ferroelectric thin film [388]. For
a thin film attached to a substrate, the stable domain state
depends on the strain imposed by a substrate. In this example,
we introduced a symmetric, compressive biaxial strain of 0.3%,
i.e. εs

11 = εs
22 = −0.003. Under such a condition, the stable

domain structure is a c/a domain mixture where c and a

represent domains with out-of-plane and in-plane polarization
directions, respectively. Figure 59 shows an a-domain (in red
color) with polarization direction along the [0 1 0] direction
embedded in a c-domain matrix (light green) with polarization
direction along the [0 0 1̄] direction. The PFM tip parameter,
γ , is chosen to be 30 nm. As in the case of determining
the intrinsic nucleation bias, the potential φ0 was increased
gradually in steps of 0.025 V. The applied electric potential
at which a tetragonal domain with polarization along [0 0 1]
nucleated below or near the tip was identified as the nucleation
potential. The nucleation bias was determined along the line
marked by A–M–N–B across two ferroelastic twin boundaries,
where each dot shows the location of the PFM tip. Figure 59(c)
plots the variation of the nucleation voltage with position along
the line A–M–N–B. The value indicated by each square symbol
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Figure 59. (a) Domain structure of epitaxial PbZr0.2Ti0.8O3 thin film with a pre-existing a2-positive domain (polarization along [0 1 0])
within a matrix of c-negative domain (polarization along [0 0 −1] under short-circuit boundary condition. The dots show the locations of the
PFM tip along the profile A–M–N–B; (b) spatial distribution of nucleation potential at selected locations; (c) distribution of electrostatic
energy density (MJ m−3) without applied potential [388]. Copyright 2008, American Institute of Physics.

Figure 60. (a) Domain structure of an (0 0 1)-oriented epitaxial PbZr0.2Ti0.8O3 thin film; (b) spatial distribution of the nucleation potential
along the profile P–Q–R–S–T–U–V [388]. Copyright 2008, American Institute of Physics.

represents the nucleation potential corresponding to a dot in
figure 59(a). It is shown that the potential required to nucleate
a 180◦ domain is lower near the ferroelastic twin defects
(∼1.6 V) as compared with ∼2.6 V away from the twin defect
within the matrix. It is also found that the two parallel twin
walls are not equivalent. The potential required to nucleate a
180◦ domain is lower near the left twin boundary compared
with the right one.

The origins of the asymmetric variation of the nucleation
voltage near the two twin walls can be easily understood by
analyzing the electrostatic energy density on the surface of the
thin film without any applied electric potential (figure 59(c)).
The observation that the locations of the lowest nucleation
voltage (figure 59(b)) do not coincide with the locations of
the twin walls (point M or N in figure 59(c)) in the initial
domain structure in figure 59(a) can be attributed to the
in-plane electric field of PFM which slightly displaces the wall
positions. Finally, the small a-domain size (∼10 nm) was not
resolved since the tip parameter γ was 30 nm, and hence only
a single large asymmetric dip in the nucleation voltage near
the a-domain is observed.

5.6. Nucleation potential distribution in a domain structure

As shown above that the nucleation potential is different
near ferroelastic twin walls and within a homogeneous

domain matrix, it is expected that the nucleation potential is
inhomogeneous within a domain structure. As an example,
the spatial distribution of nucleation voltage was probed in
a more realistic domain structure of PZT epitaxial thin film
(figure 60(a))using phase-field simulations [388]. The domain
structure is generated under a short-circuit boundary condition
starting from an initial paraelectric state with small random
perturbations. Each of the colors represents a tetragonal
variant. The domain structure consists of a1 and a2 domains
embedded in a c-domain matrix. To understand the correlation
between the spatial variation of nucleation voltage and with
the locations of ferroelectric twin walls and wall junctions, the
PFM tip position was moved along the line P–Q–R–S–T–U–V
in figure 60(a). The nucleation voltage as a function of position
is recorded in figure 60(b). It is observed that the nucleation
potential is correlated with the number of local twin domain
variants. For example, the nucleation voltage is highest within
the c-domain matrix (points R and U) followed by a single twin
wall (point S), and then by the area where a1 and a2 intersect
(point Q). The lowest nucleation potential is observed near the
triple junctions (point T) where three domains meet.

Remarkably, these examples illustrate that the combi-
nation of the phase-field modeling and piezoresponse force
microscopy and spectroscopy studies effectively allow us to
study polarization dynamics at the level of a single mesoscopic
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defect and decipher associated mechanisms. This provides a
crucial missing step between the macroscopic statistical theo-
ries, and atomistic-scale electron microscopy and density func-
tional studies of phase transitions in solids. Given the ubiquity
of electromechanical phenomena in solids, including energy
storage materials (e.g. Li-ion batteries), Jahn–Teller solids,
etc this combined approach can be expected to be applicable
well beyond the ferroelectric and multiferroic materials studied
to date.

6. Advanced topics in PFM of ferroelectrics

6.1. Polarization mediated surface chemistry

The surface of ferroelectric (and other polar) materials is
characterized by the presence of bound polarization charge,
screening charge and band bending, which may be used
to enable a broad range of applications including 2DEG-
based devices, molecular assembly, adsorption, chemical
reactions, etc. Domain decoration of ferroelectric surfaces
was first demonstrated in the 1950s and 1960s [397–399].
Domain-specific surface chemistry has been demonstrated
by friction force microscopy, and continues to be a topic
of interest today. The combination of PFM-based domain
patterning and domain specific chemical reactivity opens a
natural pathway for the fabrication of ferroelectric based device
structures.

Notably, photochemical deposition has been demonstrated
by Giocondi et al [45, 400], Jones et al [401–403], Dunn
et al [48, 404] and Liu et al [405] and has been used
to fabricate nanowires [50, 51] and complex nanostructures
[46, 49]. Recently, adsorption of charged polystyrene [406]
and the assembly of virus particles [407] and DNA [408] have
all been demonstrated.

6.2. PFM in a liquid environment

6.2.1. Imaging in a liquid environment. Two of the most
detrimental effects on resolution in PFM arise from capillary
forces due to the presence of a water layer on the surface
and non-local electrostatic interactions between the sample
and the conductive tip and cantilever beam. The surface
water layer leads to the presence of liquid necks when the
AFM tip contacts the sample surface, increasing the effective
tip–sample contact area and thus reducing the resolution (see
section 3.2.5). Non-local electrostatic forces can lead to long-
range tip–sample interactions that can preclude high resolution
studies of the local piezoelectric response [409]. By imaging
electromechanical response in a liquid environment, i.e. by
controlling the dielectric constant of the imaging media, it
would be possible to eliminate both the capillary and the long-
range electrostatic forces. Liquid PFM was demonstrated
in 2006 and showed an order of magnitude improvement in
resolution for a bulk ceramic PZT sample [410]. The ability to
image electromechanical coupling in a liquid environment may
open the door to studies of soft and biological piezoelectrically
active materials, the potential for which has been suggested
and the challenges outlined [111, 411]. Recently, PFM has

been demonstrated in a tapping or intermittent contact mode
in liquid, which may assist in the imaging of electromechanical
coupling in biological systems [412].

6.2.2. Polarization switching in solution. As previously
mentioned, one limitation of imaging through a top electrode is
that the domain structure and nucleation sites cannot be related
to surface topography without removing the top electrode.
Using a tip as a top electrode allows the domain dynamics
to be studied locally. In ambient, an applied dc voltage of
sufficient magnitude will result in the nucleation of a domain
directly under the tip. In de-ionized water, however, the
application of a dc voltage will result in electrochemical
reactions. Switching in solvents of low to intermediate
conductivity combined with liquid PFM allows the spatial
extent of the applied field to be controlled independently of
the local piezoresponse measurement [413]. Through the
choice of solvent, it has been shown that it is possible to
nucleate a single domain, switch an entire sample surface
and even partially switch a large region (figure 61), much
like the step-by-step switching studies described earlier
(section 4.5). This allows an additional tool for nucleation site
visualization. Future progress in this area requires specially
fabricated shielded probes (figure 62) [414, 415] similar
to those produced for scanning electrochemical microscopy
[416, 417].

6.3. PFM and transport measurements

The interest in combined PFM–conductivity measurements
stems both from the non-volatile memory applications and
potential for electroresitive memory devices. The early
work of Gruverman et al explored the relationship between
domain dynamics and conductivity at interfaces in thin films
[418]. The combination of local electromechanical and
conductivity measurements has shown a relation between
current and pinning [261] at the bicrystal grain boundary in
BFO. These studies have addressed the intrinsic conductivity
mediated by the structural defects only weakly affected by
polarization.

Following early work on ferroelectric diodes, much
attention has been devoted to electroresistances in ferroelectric
heterostructures. An extensive review of this area has recently
been provided by Watanabe [419]. The work by Rodriguez
Contreras [420] has sparked an extensive search for theoretical
mechanisms [42, 421] and experimental demonstrations
of electroresistance in conductor–ferroelectric–conductor
junctions. However, in many cases, the presence of extended
defects and oxygen vacancy accumulation has precluded
identification of polarization mediated transport mechanisms.
The use of the PFM approach allowed localization of
field within small defect free regions, allowing the direct
unambiguous probing of polarization-controlled tunneling
into ferroelectric surface [308, 422]. In parallel, increased
conductivity at domain walls in bismuth ferrite is due to
structurally driven changes in the local potential and bandgap
at a domain wall [267]. This increased conductivity likely
plays a role in the observed relaxation of ferroelastically
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Figure 61. (a)–(d) PFM phase images illustrating domain morphology in regions I–V and the choice of solvent for the phase map
in (e). (e) Schematic parameter diagram of possible switching modes versus field localization and pulse parameters. Reproduced
from [413]. Copyright 2007, American Physical Society.

Figure 62. Fabrication steps for insulated PFM probe for imaging in liquid environment. Reproduced from [414]. Copyright 2007,
American Institute of Physics.

switched regions [269] and may be of concern to bismuth
ferrite capacitor based applications.

7. Summary

Strong coupling between order parameters and electromechan-
ical response in ferroelectric materials enables a local probe
approach for studying the static domain structures and polar-
ization dynamics. The unique image formation mechanism of
PFM and its spectroscopic and dynamic modes have rendered
them a quantitative and powerful method for probing ferro-
electrics on the nanometer level, and have opened new venues
in understanding the role of defects on switching, polarization
ordering in relaxors and many other applications. The future
will undoubtedly see atomic level studies on an engineered
defect structure (including imaging in vacuum and in liquid),
perhaps on a single unit cell level. A new generation of dy-
namic PFM modes is emerging to allow high energy resolution
spectroscopy and of weakly piezoelectric materials. The com-
bination of PFM and EM methods offers the opportunity for
imaging atomic rearrangements during polarization switching
in situ. These developments will lead to new advancements in
areas such as information technologies, data storage, energy
technologies, electrophysiology, as well as new serendipitous
areas we can only imagine.
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