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Abstract

Twinning in certain metals or under certain conditions is a major plastic deformation mode. Here we present a phase field model to
describe twin formation and evolution in a polycrystalline fcc metal under loading and unloading. The model assumes that twin nucle-
ation, growth and de-twinning is a process of partial dislocation nucleation and slip on successive habit planes. Stacking fault energies,
energy pathways (c surfaces), critical shear stresses for the formation of stacking faults and dislocation core energies are used to construct
the thermodynamic model. The simulation results demonstrate that the model is able to predict the nucleation of twins and partial dis-
locations, as well as the morphology of the twin nuclei, and to reasonably describe twin growth and interaction. The twin microstructures
at grain boundaries are in agreement with experimental observation. It was found that de-twinning occurs during unloading in the sim-
ulations, however, a strong dependence of twin structure evolution on loading history was observed.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Deformation twinning is a major plastic deformation
mode in some cubic and in most non-cubic materials [1–
4]. For example, in hcp crystals, where deformation by slip
along some directions either is not possible or requires very
high stresses, twinning is a dominant deformation mecha-
nism. Although plastic deformation predominantly occurs
via dislocation nucleation and slip in coarse grained fcc
metals and alloys with medium to high stacking fault ener-
gies, deformation twinning becomes important in nano-
crystalline materials as grain sizes decreases [5–9]. Twin
formation during crystal growth from the melt due to cru-
cible contact stresses or growth stresses can be problematic
in the processing of single crystals, such as CdTeZn growth
via the vertical gradient freeze method [10,11]. A funda-
mental understanding of the effect of microstructure,
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defects and external stresses on twin nucleation and growth
is helpful in designing advanced or improving existing
materials and materials processing methods.

Experiments and atomistic simulations show that defor-
mation twinning in nanocrystalline fcc metals forms and
evolves via partials dislocations emitted from grain bound-
aries [5–9]. The stacking fault energy and energy pathways
are predicted using first principle calculations [12–14].
Molecular dynamics (MD) simulations have been success-
fully used to investigate how grain boundary structure
influences dislocation nucleation and in examining the
twinning mechanisms [9,15,16]. Stacking fault core fields
in fcc metals have been analyzed by MD simulations and
continuous models [17]. The critical twinning stress was
estimated using a continuous mechanical model [3,12],
which suggests that the shear stress on the habit plane
and slip direction of the twin controls twin nucleation. In
addition, one of the commonly accepted mechanisms in
both coarse grained and nanocrystalline fcc metals is that
a twin nucleates and evolves via the nucleation and slip
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of partial dislocations with the same Burgers vectors. In the
present work we assume that twin nucleation, growth and
de-twinning is a process of partial dislocation nucleation
and slip on successive habit planes under internal and
external stresses. A phase field model is proposed to
describe the dynamics of partial dislocations and to study
both stress-induced partial dislocation nucleation and twin
structure evolution. Compared with atomistic simulation
methods, the main advantage of the mesoscale phase field
method is that it permits simulations at relatively large
length and long time scales. Furthermore, it is possible to
incorporate the effect of long-range elastic interactions on
deformation twin evolution due to second phases, such as
inclusions/precipitates, once the elastic constants and lat-
tice mismatches are known. The capability of our model
is demonstrated by modeling twin microstructure evolution
in a polycrystalline fcc solid.

2. Phase field model

Fig. 1 illustrates the formation of the thinnest possible
twin in the matrix formed by the nucleation and passage
of three partial dislocation loops on successive planes.
Since the partial dislocation is the smallest unit cell in the
twin structure, we study twin evolution using partial dislo-
cation dynamics similar to the phase field model of disloca-
tion dynamics [18–20]. In this work an arbitrary fcc crystal
is used as an example. With the assumption that a twin
consists of partial dislocations with the same Burgers vec-
tors there are 12 twin variants in a single fcc crystal related
to 12 distinct partial dislocations with slip planes {1 1 1}
and dislocation Burgers vectors h11�2i, respectively. Twelve
order parameters gab(r, t) (a = 1,2,3,4; b = 1,2,3) are used
to describe the partial dislocations and their time evolution,
where a denotes the four {1 1 1} slip planes and b denotes
the three Burgers vectors on each of the slip planes. Con-
sidering a partial dislocation loop, the discontinuous dis-
placement across the slip plane is described as
u = gab(r, t)bab, where bab is the partial dislocation Burgers
bαβ

nαβ

ηαβ = 1

ηαβ = 0

Twin Boundary

Fig. 1. A schematic view of a twin nucleus.
vector. The order parameter gab(r, t) is equal to 1 inside the
partial dislocation loop (or in the stacking fault) and
gab = 0 outside the partial dislocation loop (outside of
the stacking fault). The order parameter gab changes
smoothly from 0 to 1 across the dislocation core. Since dis-
location density is proportional to the gradient of the dis-
continuous displacement, the partial dislocation in the
phase field model is described by distributed small disloca-
tions, as in the Peierls–Nabarro model [21]. Such a descrip-
tion correctly gives the dislocation stress field far from the
dislocation core and removes the non-physical singular
stress in the theoretical solution. Next we discuss the
energy change of the system during partial dislocation for-
mation, glide and twin growth. The energy change includes
crystalline energy, interfacial energy and elastic energy.

2.1. Crystalline energy

The twin formation in Fig. 1 involves the generation and
slip of three partial dislocation loops on successive planes.
The nucleation and slip of a partial dislocation loop
accompanies energy changes, including crystalline energy,
stacking fault energy, elastic energy, and the core energy
of two partial dislocations. The crystalline energy is the
energy barrier which a partial dislocation must overcome
during slip. Fig. 2a, which is reproduced from the first prin-
ciples calculation for Al [12], shows the energy pathway
during the formation of an infinite stacking fault or a par-
tial dislocation loop in which the two partial dislocations
are separated by an infinite distance. The energy pathway
does not include the elastic and core energies of two partial
dislocations. The horizontal axis of the figure is exactly the
same as the order parameter gab in our phase field model. It
can be seen that the energy pathway has two local minima
at the perfect crystal gab = 0 and the crystal with infinite
stacking fault gab = 1 (or an infinite partial dislocation
loop). The energy of the perfect crystal at gab = 0 is 0
and is taken as the reference state. The energy at gab = 1
is equal to the stacking fault energy. Fig. 2b shows the
energy pathway during the formation and growth of an
infinite twin [12]. When gab 6 1 the energy pathway is the
same as that shown in Fig. 2a. However, when gab > 1
the energy pathway plots the energy change during the pas-
sage of partial dislocations on successive planes. Compar-
ing the energy changes of one stacking fault, two
stacking faults and a twin structure shown in Fig. 2a and
b, it was found that the stacking fault energy is very close
to the energy of two twin boundaries. If we view the stack-
ing fault energy as the interfacial energy of the partial dis-
location or twin boundaries, the crystalline energy of a
partial dislocation can be obtained by subtracting the
stacking fault energy from the energy pathway as shown
in Fig. 3. Fig. 3b plots the crystalline energy f(gab) of the
partial dislocation by subtracting cstgab from Fig. 3a, which
is for a stacking fault. Such a double well potential can also
be obtained by subtracting 2ctwin from the energy change
(i < gab < i + 1, i P 1) shown in Fig. 2b.
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Fig. 2. Reproduced energy pathways from Kibey et al. [12]: (a) for the formation of a stacking fault and (b) for the formation of a twin.
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Fig. 3. (a) The energy pathway for the formation of a stacking fault and
(b) the crystalline energy of a single partial dislocation.
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In this work we focus on the nucleation of partial dislo-
cations as well as twinning. Kibey et al. [12] presented a
hierarchical, multi-scale theory to predict the critical twin-
ning stress in Al. A continuous mechanical model [3] also
demonstrated that the resolved shear stress in the direction
of the twin Burgers vector on the habit plane controls twin
nucleation. Here we assume that the nucleation and glide
of partial dislocations is a process of crystal stability mod-
ification when the resolved shear stress is larger than the
critical shear stress for the given crystal. We write the crys-
talline energy as a function of discontinuous displacement
gab and local shear stress sab in the direction of the Burgers
vector on the habit plane as

f ðgab; sabÞ ¼
X
a;b

A1g
2
ab þ A2g

3
ab þ A3g

4
ab

h i
þ sss½B1ðgab � 0:5Þ

þ B2ðgab � 1:0Þ2 þ B3ðgab � 0:5Þ3

þ B4ðgab � 0:5Þ5� þ
X
a;b

X
a0–a;b0–b

Dg2
abg

2
a0b0

when sss � 0 ð1aÞ

f ðgab; sabÞ ¼
X
a;b

½A1g
2
ab þ A2g

3
ab þ A3g

4
ab½þsss½B1ðgab � 0:5Þ

þ B2ðgabÞ
2 þ B3ðgab � 0:5Þ3

þ B4ðgab � 0:5Þ5� þ
X
a;b

X
a0–a;b0–b

Dg2
abg

2
a0b0

when sss 6 0 ð1bÞ

where Ai, Bi and D are constants. The crystalline energy in-
cludes three terms. The first term is the energy pathway for
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the formation of a partial dislocation as shown in Fig. 3b.
This energy term describes the two phase equilibrium be-
tween a perfect crystal (gab = 0) and a crystal with a partial
dislocation (gab = 1), the energy barrier to the formation of
a partial dislocation and the symmetry of the crystal, i.e.
uniquely identifies 12 partial dislocations in a fcc crystal.
The second term describes the stability of a perfect crystal
and a partial dislocation under stresses. Applied stresses
and the nucleation of partial dislocations produce defor-
mation energy. As we know, the nucleation of a partial dis-
location involves a large deformation that includes two
parts. One is the elastic deformation energy. The elastic en-
ergy associated with the lattice mismatch due to the partial
dislocation and applied stresses/strains is included in the
total energy, and calculated by solving the elastic solution,
as will be discussed in the following section. The other part
is the plastic deformation energy. In this work we include
the plastic deformation energy in the crystalline energy
and simply assume that it is proportional to the total shear
stress sab. The third term includes the interaction energy
among partial dislocations with different Burgers vectors
in the crystalline energy. D is a positive constant, which im-
plies that two partial dislocations with different Burgers
vectors located on the same atomic plane are energetically
unfavored. Our simulation results will demonstrate that
such a description of crystalline energy can reasonably cap-
ture the main thermodynamic properties of a system.
Fig. 4a plots the change in crystalline energy near a perfect
crystal (gab = 0) for different shear stress values sss, which is
normalized by the critical shear stress sss = sab/scrit. The

shear stress is calculated as sab ¼ bab

jbabj
� ðrijÞ � nab where (rij)

is the local stress tensor. The crystalline energy shows that
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Fig. 4. Crystalline energy of partial dislocation as a function of resolved shear
shear modulus. (a) Perfect crystal and (b) partial dislocation.
the perfect crystal (gab = 0) becomes unstable when the lo-
cal shear stress is larger than the critical shear stress
(sss P 1) and it may transform to a partial dislocation
(gab = 1). Fig. 4b plots the change in crystalline energy near
a partial dislocation (gab = 1) for different shear stress val-
ues sss The partial dislocation will become unstable and
transform back to a perfect crystal when the shear stress
is larger than the critical shear stress (sss 6 �1). The minus
sign means that the shear stress is applied in the opposite
direction to the Burgers vector on the habit plane. The the-
oretical twinning stress scrit = 1.94 GPa for fcc Al [12] is
used in the present work as a reasonable value.
2.2. Interfacial energy

As shown in Fig. 1, a twin made up of three partial dis-
location loops has two kinds of interfaces. One is the twin
boundary related to the stacking fault and the other is the
end of the twin related to the distributed dislocation cores.
The interfacial energy along the twin boundary is much
smaller than the interfacial energy at the twin end, which
depends on the type of dislocation, i.e. edge, screw or
mixed dislocation. Generally speaking, these interfacial
energies of a twin changes during twin evolution because
the dislocation type changes along the twin ends. For sim-
plicity, we only consider the strong anisotropy of twin
interfacial energy. In order to describe the strong aniso-
tropic interfacial energy we separate the interfacial energy
into two parts as

Eint ¼
X
a;b

j
2
rgabj
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X
a;b
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stress sss in units of critical shear stress scrit = 1.94 GPa. C44 is the crystal
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The first term describes the twin boundary energy. The
coefficient j is determined by the twin boundary energy
and the twin boundary thickness. It can be estimated as
j � c2/Df. c is the twin boundary energy. Df is the height
of the double well shown in Fig. 4 when sss = 0. The second
term describes the interfacial energy at the twin ends, where
nab is the normal of the habit plane of twin variant gab and
is 0 on the twin boundary because nab and $gab are parallel
vectors. The coefficient j1 is determined by the dislocation
core energy and dislocation core size at the ends of the
twin. The dislocation core energy cdisðeV=ÅÞ can be calcu-
lated using atomistic simulations [22–24]. The coefficient j1

can be estimated as j1 � cdisr0=d0, where r0 is the disloca-
tion core radius and d0 is the interplanar distance of the dis-
location slip plane.

2.3. Elastic energy

Using the “eigenstrain” concept [25,26], the lattice mis-
matches associated with partial dislocations can be
described as an eigenstrain tensor as:

ed
ijðrÞ ¼

X
a;b

babðiÞnabðjÞ þ babðjÞnabðiÞ
2d0

gabðrÞ ð3Þ

where bab(i) is a component of the Burgers vector, nab(j) is a
component of the unit vector normal to the slip plane a, d0

is the interplanar distance of the slip planes and the field
variables gab are given in units of |bab|. The elastic energy
density Eelast can be calculated as [36]:

Eelast ¼ 1

2
kijkle

el
ij e

el
kl ð4Þ

using the conventional summation convention where kijkl

the stiffness tensor and eel is the elastic strain.

eel
ij ¼ �eij þ deijðrÞ � ed

ijðrÞ ð5Þ

where �eij is the homogeneous macroscopic strain character-
izing the macroscopic shape and volume change, deij(r) is
the heterogeneous strain, ed

ijðrÞ is the eigenstrain associated
with the dislocation distribution and dij is the Kronecker d.
For elastic inhomogeneous solids, such as polycrystalline
materials, the elastic solution can be obtained using an iter-
ation method [27].

2.4. Total energy of the system

The total energy of the system includes the crystalline
energy, interfacial energy and elastic energy terms:

F ¼
Z Z

X

Z
f ðgab; sabÞ þ Eint þ Eelast
� �

dv

¼
Z Z

X

Z �
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2 þ
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2

jnab �rgabj
2 þ 1

2
kijkle

el
ij e

el
kl

�
dV

ð6Þ
If the system is an fcc polycrystal, then we can either use
12 different order parameters for each grain or we can use
12 global order parameters, but the elastic constants
kijklðrÞ, the habit plane normal nab(r) and the Burgers vec-
tors bab(r) should be defined locally. In this work 12 global
order parameters have been used.

2.5. Kinetic equations

The evolution rate of the order parameters is assumed to
be a linear function of the thermodynamic driving forces.
The simplest form of the kinetic equation is the time-
dependent Ginzburg–Landau equation [28]:

@gab

@t
¼ �L

dF
dgab

þ nabðr; tÞ ð7Þ

where L is the kinetic coefficient characterizing the partial
dislocation mobility, F is the total energy functional (6),
dF

dgab
is the thermodynamic driving force and nab(r, t)is the

Langevin Gaussian noise associated with thermal fluctua-
tions [29]. In our model Eq. (7) is solved numerically. In or-
der to improve the numerical stability and alleviate the
constraint on the time increment for the equation we move
the main part of the gradient term from the right side of
Eq. (7) to the left side as [30]

fgab þ DtLjr2gabgjtþDt ¼
(

gab þ DtL
@f ðgab; sabÞ

@gab

�

þ j1

2

@jnab � gabj
2

@gab

þ rij

@ed
ij

@gab

!)�����
t

; ð8Þ

where Dt is the magnitude of the time increment andm rij is
the stress tensor. We use the following normalizations for

the numerical calculation: r�i ¼ ri
l0
;Dt� ¼ LDtC44, A�i ¼ Ai

C44
;

B�i ¼ Bi
C44

,D� ¼ D
C44
; j� ¼ j

l2
0
C44

and j�1 ¼ j1

l2
0
C44

, with l0 being a

characteristic length, thus r ¼ @
@r1
; @
@r2
; @
@r3

� 	
¼ 1

l0

@
@r�

1
; @
@r�

2
;

�
@
@r�

3

	
¼ 1

l0
r�. C44 is the shear modulus. In the simulations

we consider fcc Al as the example, and the elastic constants
are C11 = 108.2 GPa, C12 = 61.2 GPa and C44 = 28.5 GPa.
Since the elastic anisotropy for Al is weak, we use the iso-
tropic elastic constants C11 = 118.3 GPa, C12 = 61.2 GPa
and C44 = 28.5 by increasing C11 by a small amount. The
characteristic length l0 is taken as the interplanar distance
of the (1 1 1) glide planes. Eq. (8) is solved efficiently in
Fourier space [30].

3. Results and discussion

To demonstrate the capability of the proposed phase field
model we constructed a two-dimensional simulation cell
consisting of four differently orientated grains. The orienta-
tions of grains 1–3 are shown in Fig. 5a. hi (i = 1, 2, 3) denotes
the angle between direction ½11�2� or ½01�1� and the x-axis.
The orientation of grain 4 was the same as grain 1, which
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Table 1
The dimensionless parameters used in the simulations.

Time Dt* 0.01
Characteristic length l0 0.268 nm
Gradient coefficient j* 0.0016
Gradient coefficient j�1 0.1
Elastic constants C�ij C�11 ¼ 4:15, C�12 ¼ 1:25,

C�44 ¼ 1:0
Coefficients of crystalline

energy
A�i ;B

�
i ;D A�1 ¼ 0:167, B�1 ¼ �0:043

A�2 ¼ �0:352, B�2 ¼ 0:010
A�3 ¼ 0:167, B�3 ¼ 0:160
D� ¼ 0:167, B�4 ¼ �0:139

Critical shear stress of twin
nucleation

s�crit ¼ scrit=C44 0.0701

Orientations of grains and
slip bands

Case 1 h1 = 0, h2 = 45, h3 = 0
Case 2 h1 = 30, h2 = 45, h3 = 0
Case 3 h1 = 0, h2 = 45 h3 = 30
Case 4 h1 = 30, h2 = 45, h3 = 30
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ensured that the simulation cell was periodic in the x direc-
tion. As shown in Fig. 5b, two twin variants, their habit
planes perpendicular to the plane of the figure, existed in
grains 2 and 3. Considering the two-dimensional simulation
cell, we assumed that all twin variants in grain 1 with habit
planes that were not perpendicular to the figure plane were
not active in the simulations. We also assumed that there
are pre-existing slip bands in grain 1 that produce internal
stresses. Three slip bands, which had 3, 5 and 7 dislocations,
Grain1Grain2 Grain3

Slip band

7b

5b

3b

b=[0 1 1]

θ2 = 45 θ1 = 0 θ3 = 0

critττ12 =

critττ11 =

Fig. 6. Distribution of shear stress r12 around slip bands. (a a
respectively, were placed in grain 1, as shown in Fig. 5. The
dislocations had Burgers vector b ¼ ½01�1� and piled up on
successive (1 1 1) planes at the grain boundaries. Table 1 lists
the material properties and model parameters.

The dislocations in slip bands were described by the Pei-
erls–Nabarro model with a dislocation core size of four lat-
tice constants to eliminate stress singularity at the
dislocation core [25]. The eigenstrain tensor in Eq. (3)
was used to describe the lattice mismatch of the slip bands.
Our previous work [31] indicated that the numerical dislo-
cation stress solution outside the dislocation core was in
good agreement with the analytical solution. Fig. 6 plots
the distribution of shear stress r12 produced by the slip
bands in the region marked by the dashed line in Fig. 5a
for two different sets of grain orientations. The purple con-
tours show that the shear stress in the twin Burgers vector
direction b11 on the habit plane n11 was equal to the critical
shear stress for dislocation nucleation. This implies that
twin 1 may nucleate inside the purple contours. The blue
contours identify the possible nucleation region of twin 2.
It can be seen that the potential nucleation regions strongly
depend on the orientation and thickness of the pre-existing
slip bands. In the simulations we considered four different
sets of grain orientations, listed in Table 1. The simulations
first examined the nucleation of partial dislocations and
twins induced by the internal stresses produced by the slip
Grain1Grain2 Grain3

b=[0 1 1]
Slip band

7b

5b

3b

θ2 = 45 θ1 = 30 θ3 = 0

critττ12 =

critττ11 =

nd b) Two different orientations of grain and slip bands.
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bands, and then an increasing external strain was applied at
the simulation cell, described by

eappl
ij ¼

�0:0016 0:002 0

0:002 0:0016 0

0 0 0

2
64

3
75eappl

0 ¼
�0:0016 0:002 0

0:002 0:0016 0

0 0 0

2
64

3
75_e0t�

ð9Þ
Fig. 7. Twin microstructure evolution during loading: (a) Case 1 with grain o
h1 = 30, h2 = 45, h3 = 0. The numbers in the figures show the applied strain e
where _e0 is the strain rate and t� is the normalized time. The
applied strain tensor produces a pure shear stress, as shown
in Fig. 7. A small strain rate _e0 ¼ 1=ð6000Dt�Þ was used to
ensure that the twin nuclei and structures observed in the
simulations had energetically favored morphologies,
including size, shape and orientation. We used the coeffi-
cient eappl

0 ¼ _e0t� for the applied strain tensor to control
rientations h1 = 0, h2 = 45, h3 = 0 and (b) Case 2 with grain orientations
appl
0 .
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the magnitude of the applied strain. Above eappl
0 ¼ 20 the

applied strain decreased at a rate _e0 ¼ �1=ð6000Dt�Þ to
simulate twin evolution under mechanical unloading.

3.1. Nucleation of partial dislocations and twins

Our phase field model assumes that the nucleation of par-
tial dislocations occurs through structural instability due to
Fig. 8. Twin microstructure evolution during loading: (a) Case 3 with grain o
h1 = 30, h2 = 45, h3 = 30. The numbers in the figures show the applied strain
locally high shear stresses. Figs. 7 and 8 show the nucleation
and evolution of partial dislocations and twins near the slip
bands due to the applied strains. The value of eappl

0 during
loading is listed in the figures. The purple regions in grains
2 and 3 denote the partial dislocation (Burgers vector b ¼
½�1�1�2� and slip plane n ¼ ½�1�11�) or twin 1. The blue regions
in grains 2 and 3 denote twin 2. Since the characteristic length
l0 is taken as the interplanar distance of (1 1 1) planes, one
rientations h1 = 0, h2 = 45, h3 = 30 and (b) Case 3 with grain orientations
eappl

0 .



Fig. 10. TEM image of twin morphology at grain boundaries in Fe from
Dr. Yufeng Shen (private communication).
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step on the twin boundaries is related to one partial disloca-
tion. Comparing the potential nucleation regions of twins
around the slip bands shown in Fig. 6 and the predicted
nuclei shown in Figs. 7a and 8a when eappl

0 ¼ 0, it was found
that the sizes of the twin nuclei were much smaller than the
potential nucleation regions, which can be understood if
we note that the formation of a finite twin or partial disloca-
tion loop will increase the total interfacial energy, including
the twin boundary energy and dislocation core energy, and
will reduce local stresses because the internal shear stress is
opposite to the shear stress associated with twin formation.
The shear stress distributions after the twins nucleated are
presented in Fig. 9. Comparing Figs. 9 and 6, we fond that
twin formation largely reduced the maximum shear stresses
and modified the potential nucleation sites. From Figs. 7 and
8 at eappl

0 ¼ 0 it can also clearly be seen that nucleated twins
included several partial dislocations with the same Burgers
vector, a thicker slip band induced a larger twin and the ori-
entations of the twins were consistent with the grain orienta-
tion. Although twin 1 was supposed to nucleate inside the
purple regions, twin 1 was only observed to nucleate at
thicker slip bands in Fig. 7b. It should be pointed out that
no order parameter fluctuations, i.e. nab,(r, t) = 0 were
applied in the simulations. This means that the nucleation
of partial dislocations resulted from a modified crystal struc-
ture stability due to high local shear stresses. The twin mor-
phology, including the orientation, shape and size, was
completely determined by minimization of the crystalline
energy associated with the partial dislocation, the interfacial
energy associated with the twin boundaries and dislocation
cores and the elastic energy related to pre-existing slip bands
and the formation of twins. Therefore, we conclude that the
model is able to predict the nucleation of twins and disloca-
tions as well as the twin nucleus morphology.

3.2. Evolution of partial dislocations and twins during

loading

MD simulations in nanocrystalline Al showed that the
ability of grain boundaries in a nanocrystalline micro-
Grain1Grain2 Grain3

Slip band

7b

5b

3b

b=[0 1 1]

θ2 = 45 θ1 = 0 θ3 = 0

critττ12 =

critττ11 =

Fig. 9. Distributions of shear stress r12 after twin formation around slip
structure under high stress to nucleate partial dislocations
at a high rate inevitably leads to deformation twinning
[15]. Twin morphology evolution is illustrated in Figs. 7
and 8 as the applied strain increased. As expected, twin
structures depended on the particular orientations of
grains and slip bands. It can clearly be seen that most
partial dislocations were emitted from grain boundaries,
which is in agreement with the MD simulations. As a con-
sequence, a twin structure with a broad root at the grain
boundary and a narrow tip formed. Such a twin structure
has been observed in Fe, as shown in Fig. 10. It can also
be seen that internal stresses around the pre-existing slip
bands promoted the nucleation of twin 2. However, the
applied strain, which produced a shear stress on slip plane
n ¼ ½�1�11�Þ in grain 3 with orientation h3 ¼ 0, resulted in
the formation of twin 1, as shown in Fig. 7a and b.
Grain1Grain2 Grain3

b=[0 1 1]
Slip band

7b

5b

3b

θ2 = 45 θ1 = 30 θ3 = 0
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critττ11 =

bands. (a and b) Two different orientations of grain and slip bands.
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The results in Figs. 7 and 8 show a number of twin
growth phenomena. For example, one twin cannot pene-
trate another twin, so continuous growth stops at the twin
boundary. As a result, it may block partial dislocations
slipping through or initiate partial dislocation nucleation,
as shown in Fig. 7b. High local stresses may promote twin
nucleation at the other side of the twin, as shown in
Fig. 7a and 7b. It can be observed in Figs. 7 and 8 that
a twin blocked at a grain boundary activates another twin
nucleation. For two sets of grain orientations we can see
that partial dislocations were continuously emitted from
grain boundaries and the cross-sections of two twins in
Fig. 7a and b. The results demonstrate that our model
can reasonably reproduce the expected phenomena of
twin evolution and describe the interaction between differ-
ently orientated twins and their growth behavior.
Fig. 11. Twin microstructure evolution during unloading: (a) Case 1 with grain
h1 = 30, h2 = 45, h3 = 30. The numbers in the figures show the applied strain
3.3. Evolution of partial dislocations and twins during

unloading

Twin growth involves the nucleation and glide of partial
dislocations. If an opposite stress is applied to the simula-
tion cell the partial dislocations will reverse their slip direc-
tion. If the local stress is larger than the critical shear stress
the partial dislocations or the stacking fault will become
unstable, as shown in Fig. 4b. Fig. 11 illustrates twin and
partial dislocation evolution during unloading from the
microstructure shown in Fig. 7. Comparing the microstruc-
tures at eappl

0 ¼ 20 and eappl
0 ¼ 15 we observe that some par-

tial dislocations continued their glide at the beginning of
unloading, but most started to reverse their glide direction
in response to the changes in local stress. With continuous
unloading partial dislocations showed reverse gliding and
orientations h1 = 0, h2 = 45, h3 = 30 and (b) Case 2 with grain orientations
eappl

0 .
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de-twinning took place. Experiments and MD simulations
also showed de-twinning in pure Al [32]. If we carefully
examine the twin structures during loading and unloading
in Figs. 7 and 11 it is clear that the evolution of twin struc-
tures was not completely reversible, but rather exhibited
mechanical hysteresis. In fact, we observe that a number
of twins and partial dislocations remained even when the
applied strain was eappl

0 ¼ �5. The observed mechanical
hysteresis might result from stress relaxation due to nucle-
ation and glide of partial dislocations and the presence of
grain boundaries. The reverse stresses acting on twin struc-
tures are thus lower during unloading, leading to less de-
twinning. The effect of stress relaxation due to grain
boundaries on twinning and de-twinning has also been
observed in experiments [33]. Therefore, the twin structures
depend on not only the macroscale applied strains (loading
history) but also the local stress relaxation due to micro-
structures and microstructure evolution.

4. Conclusion

In this work we have proposed, for the first time, a phase
field model to predict both nucleation and evolution of
twin structures in a polycrystalline material with defects
and subject to external applied loads. The model was devel-
oped for fcc Al and was based on the assumption that a
twin evolves via the nucleation and glide of partial disloca-
tions. Stacking fault energies, energy pathways (c surfaces),
ideal critical shear stresses for the formation of stacking
faults and dislocation core energies were used to construct
a thermodynamic model for the crystalline energy of par-
tial dislocations, twin boundary energies and critical shear
stresses that determine the stability of perfect crystals and
stacking faults. The model was used to simulate the nucle-
ation of twins and partial dislocations around slip bands
and grain boundaries and the evolution of twins and par-
tial dislocations during loading and unloading. The results
demonstrate that: (1) the model is able to predict the nucle-
ation of twins and dislocations as well as the morphology
of the twin nuclei; (2) the model can reasonably reproduce
the expected phenomena of twin evolution and describe the
interaction between differently orientated twins and their
growth behavior; (3) the twin structure evolution depends
on not only the external applied strains (loading history)
but also local stress relaxation. The model can be used to
study the effect of defects such as inclusions, voids and
grain boundaries on deformation twin evolution and
mechanical properties.
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