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Unlike ideal 180° ferroelectric walls that are a unit cell wide ��0.5 nm�, real walls in ferroelectrics
have been reported to be many nanometers wide �1–10 nm�. Using scanning nonlinear dielectric
microscopy of lithium niobate �LiNbO3� and lithium tantalate �LiTaO3� ferroelectrics, we show that
the wall width at surfaces can vary considerably and even reach �100 nm in places where polar
defects adjoin a wall. The consequence of such variable wall widths is investigated on the specific
property of threshold field required for wall motion. Using microscopic phase-field modeling, we
show that the threshold field for moving an antiparallel ferroelectric domain wall dramatically drops
by two to three orders of magnitude if the wall was diffuse by only �1–2 nm, which agrees with
experimental wall widths and threshold fields for these materials. Modeling also shows that wall
broadening due to its intersection with a surface will influence the threshold field for wall motion
only for very thin films �1–10 nm� where the surface broadening influences the bulk wall width.
Such pre-existing and slightly diffuse domain walls with low threshold fields for wall motion may
offer a general mechanism to explain significantly lower experimental coercive fields for domain
reversal in ferroelectrics as compared to the thermodynamic predictions. © 2008 American Institute
of Physics. �DOI: 10.1063/1.3000459�

I. INTRODUCTION

Topological defects in materials play a critical role in
understanding their real-world physical behavior. For ex-
ample, dislocations explain the low deformation stresses re-
quired to overcome the otherwise large intrinsic Peierls po-
tential barrier predicted for a perfect lattice.1,2 Additionally,
the threshold stress to move a dislocation is inversely pro-
portional to the spatial extent of the local stress field around
a dislocation.3 Similarly, the coercive field to move a mag-
netic domain wall decreases exponentially as the wall width
increases.4 Thus, one might expect similar trends in ferro-
electrics, which contain two or more switchable states of
built-in electrical polarization under the application of an
electric field. In ferroelectrics, the inverse relationship be-
tween a ferroelectric wall width and threshold field is not
intuitive besides being experimentally challenging to verify.
This is because, unlike magnetic walls, a ferroelectric do-
main wall is theoretically predicted to possess an intrinsic
width on a unit cell level ��0.5 nm�.5

Here we show that antiparallel domain walls in lithium
niobate �LiNbO3� and lithium tantalate �LiTaO3� can become

diffuse on tens of nanometer scale in real ferroelectrics. We
also show using phase-field modeling that even a broadening
of the wall on 1–2 nm scale in the bulk can dramatically
lower the domain wall threshold field by orders of magni-
tude, bringing them in agreement with experimental thresh-
old fields. These two facts, taken together, imply that the
motion of pre-existing and slightly diffuse ferroelectric do-
main walls can be a mechanism to explain low threshold
fields for domain reversal in ferroelectrics.

This paper is organized as follows. In Sec. II, we discuss
the experimental ferroelectric wall widths in literature as
well as new scanning nonlinear dielectric microscopy
�SNDM� results that show significant wall broadening in the
100 nm range at surfaces. In Sec. III, we present the micro-
scopic phase-field modeling that explores the possible influ-
ence of wall broadening in the bulk and on the surfaces of
ferroelectrics on the threshold coercive fields needed to move
the wall. Finally, in Sec. IV, we discuss the conclusions of
the study as regards correlation between the experimental
wall widths and threshold fields in ferroelectrics.

II. EXTENDED FERROELECTRIC WALL WIDTH

Broadening of a domain or twin wall on nanometer scale
due to extrinsic defects,6–8 charged walls,9 and surfaces10,11a�Electronic addresses: vgopalan@psu.edu and vxg8@psu.edu.
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has been observed. Direct imaging of strain,12,13 index
contrast,14 and other optical properties15,16 at domain walls
reveal property changes in length scales of 1–30 �m.17 The
surface broadening also appears to be a sensitive function of
the nature of the surfaces, including its electrostatic bound-
ary condition, preparation, and defects.18 Recent work on
carefully extracting the polarization profile across a ferro-
electric wall using experiments and theory of piezoelectric
force microscopy �PFM� reveals surprising statistical varia-
tion in wall widths on the surface, with widths of up to 100
nm as the tip radius approaches zero.19 However, zero tip
radius is not possible to be experimentally achieved in a
contact PFM imaging mode; hence direct imaging of such
broadening is challenging with PFM. In comparison with the
PFM technique, SNDM has a higher demonstrated spatial
resolution, primarily arising from the localized region from
where higher order dielectric permittivity tensors being
probed arise.

Figure 1 shows SNDM images of a domain wall on the
surface of thin single crystal slices of z-cut congruent lithium
niobate �Figs. 1�a� and 1�b�� and lithium tantalate �Figs. 1�c�
and 1�d��. The basic principle is a phase-sensitive detection
of the nonlinear capacitance of the sample.20 An oscillating
frequency ��p=6 kHz� applied between the probe and the
sample modulates the capacitance ��Cp� due to the linear
and nonlinear dielectric response of the sample. This signal
is detected by shifts in the resonance of an LC oscillator
circuit that incorporates the tip. The capacitance change �Cp

is thus measured at �p, 2�p, and 3�p frequencies, which
respectively correspond to the second, third, and fourth order
dielectric constants of the sample. The signal of nth order
dielectric constant is proportional to �n−1�th power of the
alternating applied electric field at �p; thus higher order sig-
nals have higher lateral resolution and sensitivity. Cho et
al.21 have recently demonstrated imaging of the Si�111�7
�7 surface atomic structure using similar second and third
order capacitance terms in SNDM showing �0.5 nm reso-
lution of SNDM. From the line profiles of SNDM signal
shown in Figs. 1�e� and 1�f�, it is clear that the thinnest
ferroelectric wall width in terms of dielectric contrast is
�20 nm. At places, this contrast can be even extended up to
50–100 nm as is particularly clear in Figs. 1�c� and 1�f�,
profile 5, where apparently a large polar dielectric defect
touches the wall. Profile 3 in Figs. 1�b� and 1�e� shows that
the second harmonic SNDM signal can reveal broadening
that is not seen in the first order signal in Fig. 1�a�. Similar
studies in lithium tantalate,22 performed in cross-sectional
y-cut geometry of the crystal reveals that the wall width de-
creases inside the crystal down to a width of �2.5−1 nm at
a depth of �50–100 nm from the z-surface of the crystal.
This demonstrates that the resolution of the system is
�1 nm in such ferroelectrics. The results also clearly sug-
gest that the local domain wall polarizability is different
from the matrix domain, and that the domain wall width is
influenced both by dielectric defects and by surfaces. This is
also supported by the reported observation of a silent TO9

Raman mode that appears only at the domain wall and in-
volves Nb–O bond polarizability.23

Thus, SNDM also reveals a wide spatial variation in wall

width on the surfaces, ranging from 20 to 100 nm. A similar
variability of a factor of 5 arising from bulk polar defects
may also exist in the wall width in the bulk of the crystal, but
it has not been systematically explored thus far. One could
therefore expect a variation of �1–5 nm wall width in the
bulk of the crystal. Next we explore the influence of such
wall width and the influence of surfaces on the threshold
fields for wall motion.

III. THRESHOLD FIELDS FOR WALL MOTION

A. Threshold field versus coercive field

We should first distinguish the ferroelectric coercive
field and the threshold field for domain wall motion. The
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FIG. 1. �Color online� SNDM images of a circular domain in a 40 nm thick
z-cut single crystal lithium niobate ��a� and �b�� and a 31 nm thick z-cut
single crystal lithium tantalate ��c� and �d�� at first harmonic, �p=6 kHz ��a�
and �c�� and second harmonic, 2�p=12 kHz ��b� and �d�� modulation fre-
quencies. Figures 1�d� and 1�e� show typical line profiles from these images
as labeled, and pairs of arrows indicate the wall region. Images �a�–�d� are
plotted in three-dimensional orthographic view with an �21° rotation about
the horizontal axes of the images. The length scales directly correspond to
the horizontal axes of the images. The same domain region is imaged in �a�
and �b�, and similarly in �c� and �d�.
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coercive field is typically defined as the field values Ec cor-
responding to the crossings of the polarization hysteresis
loops depicting P versus E. The coercive field corresponds to
a field value where, on the average, equal areas of positive
and negative domains exist in the probe region. The thresh-
old field Eh for wall motion, on the other hand, corresponds
to the field value at which a pre-existing domain wall begins
to move after overcoming the intrinsic Peierls friction of the
ferroelectric lattice. This field can be much lower than the
coercive field Ec. The coercive field Ec depends not only on
the field needed for nucleating a domain or moving a domain
wall but also the field value needed for long-range motion of
a wall by depinning through pinning sites in a ferroelectric.
On the other hand, the threshold field Eh is just the field
needed to begin to move a wall, which could even be a local
pinned motion of bowing of the wall between two pinning
sites. If the material already has pre-existing domain walls
�which is in reality always the case�, and if pinning is not
strong �which is not always the case�, then Ec can be similar
to Eh. In this paper, we focus on Eh.

Bandyopadhyay and Ray24 predicted the upper limit for
Eh for domain walls of finite width, 2�o as Eh�a�33Ps /�o.
For the uniaxial trigonal �3m� ferroelectric lithium niobate
�LiNbO3�, the Landau coefficient �33=1 /2�33�2
�109 N m2 /C2, where �33 is the dielectric permittivity, the
spontaneous polarization Ps�0.75 C /m2, and the lattice pa-
rameter, a=0.515 nm, by which a 180° wall moves laterally.
Thus, according to Bandyopadhyay and Ray,24 Eh

�30000 kV /cm �LiNbO3� and �12500 kV /cm �LiTaO3�
for a unit cell sharp domain wall, 2�o=a. In contrast, the
experimental coercive fields for LiNbO3 are typically in the
range from Ec�2 kV /cm �stoichiometric composition� to
210 kV/cm �for congruent composition�. The increase in the
coercive field with deviation from the stoichiometric compo-
sition is known to be directly related to the increased pinning
of domain walls. Even in nonstoichiometric �congruent�
LiNbO3 where Ec=210 kV /cm, the threshold field to bow a
domain wall pinned between defect sites has been observed
to be Eh�15 kV /cm, although it is only an upper limit.25 If
we exclude the influence of pinning by considering only the
stoichiometric compositions of these materials, the domain
walls are destabilized by electric fields as low as
�0.5 kV /cm in lithium tantalate and �2 kV /cm in lithium
niobate, which we believe are good estimates for the upper
limits for threshold fields Eh for domain wall motion in these
materials. It is thus important to distinguish the average co-
ercive field Ec, which can be influenced by domain wall pin-
ning events, and the threshold coercive field Eh to locally
move a wall, which can be smaller than Ec and is the subject
of this study. Next, we theoretically and numerically explore
the relationship between Eh and wall width, 2�o, for LiNbO3

and LiTaO3.

B. Analytical theory

Suzuki and Ishibashi26 and later Sidorkin27 have shown
analytically for a one-dimensional �1D� system that the
threshold field Eh to move a domain wall by overcoming the
Peierls barrier of a 1D lattice decreases exponentially as a

function of increasing domain wall width. Recent works of
Catalan et al.28 and Shin et al.29 have explored the role of
internal structure of the domain wall itself on the domain
reversal process. Following the outlines of the Ishibashi
model26,30 �see Appendix A�, we can derive a dependence of
the threshold field Eh on the wall width 2�o as follows:

Eh,Ishibashi = �33Ps��o

a
�3

exp�−
	2�o

a
�e4�	

2
�7/2

, �1�

where all the terms are as defined in Sec. III A. One can
clearly see an exponential drop in the threshold field for do-
main wall motion as a function of the wall width, �o. Next
we present microscopic phase-field modeling of this depen-
dence that includes the complete energy expression.

C. Microscopic phase-field modeling

The analytical theory of Suzuki and Ishibashi26 uses a
free energy expression described in Eq. �A1� in Appendix A
that considers only the polarization energy describing the
double potential well and a gradient energy term that incor-
porates the domain wall in the system. The elastic and elec-
trostrictive terms were ignored, which we now consider in a
numerical analysis. The complete analytical Ginzburg–
Landau–Devonshire total free energy for the prototype

paraelectric phase �3̄m� of LiNbO3 and LiTaO3 in terms of
order polarization vector Pi and strain tensor �ij is given by

F =� 	−
�ijPiPj

2
+


ijklPiPjPkPl

4
+

Cijkleijekl

2

− �ijkl�ijPkPl +
gij

2
� �Pj

�xi
�2

−
PiEi,dd

2
− PiEi,ext
dV ,

�2�

where �ij and 
ijkl are the first and second order impermit-
tivity tensors and Cijkl, �ijkl, and gij are the elasticity, elec-
trostrictive, and gradient tensors, respectively, The numerical
values for all these quantities in LiNbO3 and LiTaO3 are
given in Ref. 31. Further, eij is strain, Ei,ext is the external
electric field, Ei,dd the field due to dipole-dipole interactions,
and V is the simulation volume. A single infinite domain wall
with a polarization profile P= Ps tanh�x /�o� is defined,
where Ps is the spontaneous saturation polarization, x is the
coordinate normal to the wall, and coordinate z is parallel to
Ps. The wall is parallel to the crystallographic y-direction. A
single 180° domain wall was placed in the simulation vol-
ume of 128a�2a�128a for a smaller gradient coefficient or
512a�2a�128a for a large gradient coefficient when the
wall width 2�o increased above �2 nm. Note that this is a
quasi-two-dimensional �2D� simulation, picked to minimize
the computational time, which even for three dimensions can
be presently considerable. We verified using example simu-
lations with a larger thickness than 2a that the final results
we present are insensitive to this dimension.

Two cases were considered.
Case 1, bulk simulation. A single domain wall in an in-

finite ferroelectric medium with no surfaces. Since there are
no surfaces, periodic boundary conditions were assumed in
all directions xi.
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Case 2, thin crystal simulation. A single wall in a ferro-
electric crystal of finite film thickness t in the polarization
direction with top and bottom electrodes. The film thickness
was taken as t=na with n�128. Periodic boundary condi-
tions were employed in x1 and x2 directions.

The spontaneous polarization, P= �P1 , P2 , P3�, is taken
as the order parameter. The temporal evolution of the polar-
ization pattern is calculated from solving the following time-
dependent Ginzburg–Landau equations

�Pi�r,t�
�t

= − L
�F

�Pi�r,t�
�i = 1,2,3� , �3�

under the boundary condition of charge neutral surfaces
specified as �P3 /�x3=0 at both x3=0 and x3= t, the thickness
of the ferroelectric film. �The coordinates �x1 ,x2 ,x3� corre-
spond to �x ,y ,z�.� Here L is the kinetic coefficient and F is
the total free energy defined in Eq. �2�, integrated over the
volume of simulation. Note that without any applied stress,
an internal stress field may be generated in a ferroelectric
nanostructure by inhomogeneous spontaneous strains due to
the inhomogeneous polarizations and the film surface bound-
ary condition. The stresses must satisfy the mechanical equi-
librium equation of ij,j =0 and stress-free top and bottom
surface boundary conditions of 3j �x3=0=3j �x3=t=0. Periodic
boundary conditions are assumed in the x1 and x2 coordi-
nates.

Without any applied electric field or free charges, the
electric field is induced only by the inhomogeneous sponta-
neous polarizations under the given boundary conditions.
The self-electrostatic field is the negative gradient of the
electrostatic potential, i.e., Ei=−�,i. The electrostatic poten-
tial can be obtained by solving the electrostatic equilibrium
equation,

�11��,11 + �,22� + �33�,33 = P1,1 + P2,2 + P3,3. �4�

Here, �11=54�0 and �33=44�0 for LiTaO3 and �11=85�0 and
�33=30�0 for LiNbO3, respectively, and �0 is the vacuum
permittivity. For simulating the domain wall switching, the
boundary conditions of �3 �x3=0=0 and �3 �x3=t=�o are im-
posed, where �o is the applied external electric potential.

During the simulation, the gradient coefficient g13 was
normalized to g0=�33a

2, the polarization was normalized to
Ps and the grid spacing was chosen to be �x1=�x2=�x3

=�x=a. The saturation polarizations Ps=0.75 C m−2 for
LiNbO3 and Ps=0.5 C m−2 for LiTaO3 were assumed, and
a=0.515 nm was assumed. A single 180° domain wall was
placed in the simulation volume. The threshold field was
determined as the field Eh needed to move the wall by one
unit cell distance a laterally. To include the lattice-pinning
effect on domain wall motion, we adopt a microscopic ver-
sion of the free energy model �1� defined on a lattice of
pervoskite unit cells. In this microscopic model, the Landau
free energy becomes the local potential for the dipoles on
each unit cell, and gradient energy terms describe the
nearest-neighbor interactions. We note that there is no direct
experimental measurement of the gradient coefficient gij of a
material. In literature, one uses diffraction,32 electron
microscopy,9 and scanning probe techniques19 to measure the
width of interfaces such as twin walls and domain walls. The

gradient coefficient, gij is typically determined from experi-
mental wall width, as �o��2g13 /�33. Since we find the wall
width �o to have experimental variability in this work, it is
perfectly reasonable to assume that defect-wall interactions,
such as in Fig. 1, can influence the gradient energy coeffi-
cient of the material. Thus we vary only the gradient coeffi-
cient g13 in the simulation, while keeping all other material
properties the same.

D. Threshold field versus wall width

Figure 2�a� shows the threshold field Eh versus wall
width 2�o for the two numerical phase-field modeling cases,
as well as the analytical theory. A striking observation is that
even a small broadening of 2�o�2–3 nm can dramatically
lower coercive fields in these materials for both cases 1 and
2.

FIG. 2. �Color online� �a� Phase-field simulation of the threshold coercive
field Eh for the motion of a single domain wall in LiNbO3 �LN� and LiTaO3

�LT� vs domain wall width 2�o. The film in phase-field simulation was t
=96a thick, and the simulation size was 128a�2a�128a for 2�o�2 nm
and 512a�2a�128a for 2�o�2 nm, where a=0.515 nm. Inset shows the
phase-field simulation of the polarization profile at the junction between the
wall and one of the surfaces of the film. The bulk phase-field simulation was
infinite in all dimensions. Analytical theory based on Eq. �1� is also plotted
for LiNbO3. �b� The dependence of Eh on film thickness for a fixed g13

=4�33a
2. Also the domain wall, 2�o at z=0, z= t /2 and an average quantity,

2�o�z�dz / t are plotted.
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Note that while the wall width is uniform through the
crystal for case 1, the wall broadens at the surface for case 2
as shown in the inset, where t=96a was assumed. However,
the Eh is in excellent agreement between cases 1 and 2, when
the wall width 2�o at z= t /2 is plotted for case 2 in Fig. 2�a�.
Thus an important conclusion is that for thick crystals, the
bulk wall width determines the Eh, suggesting that the bulk
of the wall exerts a drag on the surface triple junction under
an external field. The results also show an excellent agree-
ment between the Ishibashi model30 and the phase-field mod-
eling for small wall widths ��o�2 nm�. For larger widths,
phase-field modeling shows a second exponential depen-
dence of the Eh versus �o that is different from the Ishibashi
model. An analytical expression that approximates the phase-
field modeling results is

Eh = A + B exp�−
�o

a	2� + Eh,Ishibashi, �5�

where A�0.6 kV /cm, B�1.798 kV /cm for LiNbO3. Al-
though the elastic and electrostrictive energy terms are ig-
nored in the Suzuki and Ishibashi model, but included in the
phase-field modeling, their contribution is small and does not
explain the difference between the two. There appears to be
lattice friction components in the phase-field simulation that
is not captured in the Ishibashi model. There is a frictional
component �suggested by A in Eq. �5�� that is independent of
the wall width and another component �described by the Ish-
ibashi model� for small wall widths that leads to a strong
dependence of the threshold field on the wall width. The
intermediate exponential term �denoted by amplitude B in
Eq. �5�� bridges these two wall width regimes. The physical
origin of these additional lattice friction terms is presently
unclear and may require atomistic modeling.

We next show that only in very thin crystals or films
does the surface broadening of the wall influence the Eh. In
such cases, the broadening of the wall at the two opposite
surfaces interact and effectively broaden the bulk wall width
itself at the center of the crystal. If z�d is approximately the
crystal depth to which the wall broadening occurs due to the
presence of a surface, then t�2d would be the crystal thick-
ness at which the surfaces would begin to influence the
threshold field for domain wall motion. This is seen more
clearly in Fig. 2�b� by plotting the correlation between Eh

and the integrated average wall width over the crystal thick-
ness, given by �eff=2�o�z�dz / t, for a fixed gradient coeffi-
cient g13. Clearly the threshold field decreases as the bulk
wall width increases due to a decrease in the crystal thick-
ness. Note that while conventional nucleation models33 pre-
dict an increase in the coercive field Ec with thinner films,
the threshold field Eh is predicted to remain unchanged for
thicknesses much greater than the surface wall broadening
depth d and decreases only when t approaches 2d. Since in
the LiNbO3 and LiTaO3 sample studied here, the coercive
field Ec does not change over a thickness range from 900 nm
�thinnest sample studied here� to 0.5 mm �thickest studied�,
we expect that the nucleation model of Landauer33 and
Janovec34 are not the dominant mechanisms for explaining
the observed coercive field Ec for wall motion. Instead, the
growth of pre-existing microdomains in the crystals requir-

ing a threshold field Eh to grow and a depinning field Ec to
overcome pinning sites is more relevant. This would also
predict that the threshold coercive field will decrease for
thinner single crystal LiNbO3 and LiTaO3 of t�1–10 nm
due to surface effects.

IV. DISCUSSION

From Fig. 2, in LiNbO3, the threshold electric field de-
creases drastically, a change of two orders of magnitude
�from 787 to 1.95 kV/cm�, with an increase in domain wall
width from 2�o�0.76 nm to 2�o�2.1 nm. For larger do-
main wall widths, another order of magnitude decrease is
observed, reaching a value of �0.3 kV /cm for a wall width
of 2�o�103 nm. Similar results are seen for LiTaO3, but
with lower coercive fields. To put these results in context, the
estimated threshold field for bulk LiNbO3 crystals to date is
�2 kV /cm and for LiTaO3 is �0.55 kV /cm. This would
correspond to a bulk wall width of �2 nm for LiNbO3 and
�2.7 nm from Fig. 2. These are entirely reasonable values
based on the experimental results on wall widths known for
these materials as discussed in Sec. II.

Interestingly, the bulk width of a given wall determines
the threshold field for motion of the entire wall. For a homo-
geneous crystal of thickness z= t, the wall thickness at t /2
appears to determine the threshold field for the motion of the
wall. Figure 1 shows that even 100 nm wall widths are lo-
cally possible near defects and at surfaces; however, these
defects will influence the overall threshold field for wall mo-
tion only if they influence the bulk wall width. This bulk wall
width broadening, however, does not have to be large. Even
a broadening from 0.5 to 2 nm will dramatically lower the
threshold field for motion by a few orders of magnitude.

Finally, we address a more subtle question: is the dra-
matic drop in the threshold field Eh versus the wall width
2�o in Fig. 2 due to an increase in the wall width, or due to
a corresponding increase in the wall energy ? After all, by
varying the gradient coefficient, g13, as done here, the do-
main wall energy ��g13�f also changes, where �f
��33

2 /4
3333 is the Landau energy barrier. For the simulation
of a real material such as LiNbO3 or LiTaO3, these two ef-
fects, namely, the influence of wall width versus the wall
energy on the threshold field is difficult to separate. To avoid
confusion from the discussion that follows, we reiterate that
the only variable in Fig. 2 is the gradient coefficient, g13. No
other material parameter was varied in Fig. 2, and thus those
results should be considered valid for the materials studied
here. However, we can perform numerical tests on a “hypo-
thetical material” as described in Appendix B, which con-
firms the central role of wall width instead of wall energy in
the decrease of threshold coercive field in ferroelectrics.

V. CONCLUSIONS

This work explores the correlation between domain wall
width and the threshold field for wall motion. SNDM images
show that wall widths in ferroelectric lithium niobate and
lithium tantalate can be quite extended ��100 nm�, particu-
larly when polar defects adjoin a domain wall. The role of
such broadening, whether due to defects or surfaces is ex-
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plored on the threshold field required to move the wall. Us-
ing microscopic phase-field modeling and analytical theory,
we find that the threshold field drops dramatically by two to
three orders of magnitude with an increase in the bulk wall
width to even �2 nm, which is consistent with the wall
widths and threshold fields reported for these materials in
literature. Interestingly, we predict that wall broadening at
surfaces will influence the threshold field only when the
crystal thickness is on the order of 1–10 nm, where the sur-
faces influence the bulk wall properties. In general, the bulk
wall region with the narrowest width will dominate the
threshold field for the motion of the entire wall. Pre-existing
and slightly diffuse domain walls with low threshold fields
for wall motion may provide one general mechanism to ex-
plain significantly lower experimental coercive fields for do-
main reversal relative to their thermodynamic predictions in
all ferroelectrics.
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APPENDIX A: ANALYTICAL DERIVATION OF THE
THRESHOLD FIELD

The following development follows the Suzuki and Ish-
ibashi model.26 Free energy density for a one component
ferroelectric, ignoring tensor notation, is given by

f�x� = −
�

2
P�x�2 +




4
P�x�4 +

g

2
	dP�x�

dx

2

. �A1�

The equation of state is

− �P�x� + 
P�x�3 − g
d2P�x�

dx2 = 0. �A2�

The solution of Eq. �A2�, corresponding to an isolated do-
main wall, is

P�x� = PS tanh� x

�o
� , �A3�

where PS=�� /
 is spontaneous polarization of a homoge-
neous system and �o=�2g /� is a measure of the half-width
of the wall �distance where the polarization reaches a value
of 0.76Ps� tanh�1�Ps from the center of the wall�. Introduc-
ing the designation r�x�= P�x� / PS we can rewrite Eq. �A1� as

f�x� = −
�2

4

+

�2

4

�1 − r�x�2�2 +

g

2
��



�	dr�x�

dx

2

� �K2

2
��1 − r�x�2�2 − 1� +

1

2
	dr�x�

dx

2���g



�

� � 1

2�o
2	�1 − tanh� x

�o
�2�2

− 1

+

1

2
	 d

dx
tanh� x

�o
�
2���g



� . �A4�

The density of free energy excess localized at the wall is
given by

f�x� +
�2

4

� ��g



� 1

�o
2	cosh� x

�o
�
4 . �A5�

Surface energy of the wall is

�
0

� � f�x� +
�2

4

�dx =

3�g

4
�o
�

3�2

4

� g

2�
.

Using the expression �A5� and results of Ishibashi,30 it is
easy to rewrite the activation energy between a stable �state
I� and unstable �state II� domain wall positions as

�F = FII − FI = a�
n
	 f�na� +

�2

4


 − �

−�

� 	 f�x� +
�2

4


dx .

where n is an integer that discretizes the lattice in units of
lattice parameter, a. This can be further simplified as

�F �
�2



�2g

�
� �2g

a��
�3

exp�−
	2�2g

a��
�e4�	

2
�7/2

. �A6�

Ishibahsi model stops with the derivation of �F, a key
result. We can now obtain the threshold field for domain wall
motion as

Eh,Ishibashi �
�F

PS�o
= �PS��o

a
�3

exp�−
	2�o

a
�e4�	

2
�7/2

,

�A7�

which completes the derivation of Eq. �1�. The thermody-
namic coercive field, on the other hand, is given by

Ec = 2���/�27
� . �A8�

APPENDIX B: THE INFLUENCE OF DOMAIN WALL
WIDTH VERSUS WALL ENERGY ON THE
THRESHOLD FIELD

By varying the gradient coefficient, g13, the domain wall
energy ��g13�f also changes, where �f ��33

2 /4
3333 is
the Landau energy barrier. In order to determine if the
change in threshold coercive field Eh is due to a change in
the wall width 2�o or the wall energy , we repeated the
simulation in Fig. 2�a� by performing the following two nu-
merical tests.
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�a� Fix  and Ps, while varying wall width 2�o: by arbi-
trarily scaling g13 by a constant K �K�1�, while scal-
ing �33, and 
33, by 1 /K, we linearly scale the wall
width, �o� Ps

�g13 /�f by a factor K, while keeping the
wall energy  and the saturation polarization Ps

=��33 /
3333 constant. The results are shown in Fig.
3�a�, where clearly a dramatic drop in Eh is seen with
scaling of the wall width in a bulk crystal.

�b� Fix 2�o and Ps, while varying wall energy : if g13,
�33, and 
33 are all scaled by K, the wall width  and
polarization Ps remain the same, while the wall energy
scales linearly by K. Figure 3�b� shows that this leads
to a linear increase in the threshold coercive field for a
single domain wall in a bulk crystal.

Although scaling �33 and 
33 in the above numerical
tests changes the material itself �and hence these results do

not correspond to LiNbO3 or LiTaO3 any more, but instead
to a hypothetical material�, these tests do confirm the central
role of wall width instead of wall energy in the dramatic
decrease of threshold coercive field in Fig. 2�a�.
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