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Abstract

Phase field simulations were conducted in order to understand the effect of grain orientation, grain boundary and grain size on
ferroelectric domain switching, stress distribution and evolution behavior under an applied electric field. Tetragonal ferroelectric
domains were considered. Hysteresis loops were obtained for a single crystal, a bi-crystal and a polycrystal and the differences in their
coercive fields were examined. It was found that the magnitude of the coercive field was closely related to the domain structures at the
maximum electric field. Nucleation of new domains at a grain boundary led to local high stress. The effect of a reduced ferroelectric tran-
sition temperature at the grain boundary on the polarization distribution, domain structure and switching was studied.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Ferroelectric ceramics are used in microelectronics
where the switching behavior of ferroelectrics under an
applied electric field is exploited [1]. It has been observed
that the domain structure and domain wall mobility play
a significant role in determining the switching behavior in
these materials [2]. Furthermore, the dielectric permittiv-
ity, coercive field and remnant polarization [2–6] have
been found to be strongly dependent on the grain size
of ceramics. The change in properties with grain size
was primarily attributed to the mechanical stresses devel-
oped at the grain boundary [7]. In this context, it is
important to understand the role of the grain boundary
in determining the domain structure and switching behav-
ior in ferroelectric ceramics.
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However, it is often difficult to separate the role of grain
boundaries in determining the domain structure and
ferroelectric properties from other factors experimentally,
for example, the space charge, grain boundary phases
and porosity arising from different processing conditions
[2,8,9]. In particular, it has been observed that the presence
of a low permittivity non-ferroelectric grain boundary layer
decreases the dielectric properties in barium titanate ceram-
ics [9]. Besides the grain boundary and grain boundary
phases, grain orientation has been found to play a signifi-
cant role in polarization switching [10]. The preferential
orientation of grains has been shown to affect the proper-
ties in ferroelectric ceramics [11]. Thus, the objective of this
paper was to examine the roles of the grain orientation,
grain boundary and presence of a low ferroelectric transi-
tion temperature at the grain boundary on the domain
structure, stress distribution and switching behavior in
ferroelectric materials during polarization switching.

There have been a number of computer simulations of
domain evolution during ferroelectric transition as well as
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domain evolution during an applied field in both single
crystal bulk and thin film systems [10,12–15]. There
have also been several theoretical studies of the switching
behavior of ferroelectric polycrystals [16–18]. These models
typically assumed that ferroelectric polycrystals are made
up of an array of single domain grains and the ferroelectric
or ferroelastic switching occurs when the energy provided
by the applied field exceeds a critical value. Kim [19] pro-
posed a continuum model for investigating the effects of
grain boundaries on the switching behavior using a one-
dimensional model. Rodel and Kreher [20] presented a
micro-mechanical model for showing the effect of the orien-
tations of crystallites in ferroelectric ceramics on switching
assuming a laminar domain structure. Recently Zhang
and Bhattacharya [10,21] presented a phase field model
for domain switching in single- and bi-crystals. It was
shown that the domain switching behavior was dependent
on the misorientation of the two half crystals in the bi-crys-
tal. Li et al. [22] showed that the domain switching in a grain
was constrained by the neighboring grains. The authors
recently proposed a phase field model for predicting the
polarization switching and domain structure evolution
under an applied electric field in ferroelectric polycrystals
[23]. In particular, the role of grain boundaries in the nucle-
ation and growth of new domains was studied. It was shown
that switching took place through the nucleation of 90�
domains at grain boundaries and subsequent growth into
the grain interiors instead of direct 180� domain switching.
A correlation between the domain structures in neighboring
grains was observed and polarization switching in one grain
was found to affect the switching in neighboring grains.

In this paper, we conducted extensive phase field simula-
tions for studying the effect of the grain orientation, grain
boundary and a low ferroelectric transition temperature at
the grain boundary on the domain structure, stress distribu-
tion and switching behavior in ferroelectric materials. Hys-
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teresis loops were constructed for a single crystal, a bi-
crystal and a polycrystal. Coercive fields obtained from
phase field simulations were compared with thermodynamic
calculations assuming single-domain and experimentally
observed coercive fields. We employed PbTiO3 as a model
system. The paper is organized as follows: Section 2 gives
a brief description of the phase field model, the methodol-
ogy of the analytical calculations and the choice of the
parameters for simulation are given in Section 3 and the
numerical results and discussions are presented in Section 4.

2. Phase field model of ferroelectric domain structures in

polycrystals

There are two levels of structure for describing the
microstructure in ferroelectric ceramics, i.e. the grain struc-
ture and the domain structure of each individual grain. A
description of the grain structure is presented in Section
4.3. The domain structure is described by the inhomoge-
neous distribution of local polarization P L

i , where P L
1 , P L

2

and P L
3 are the components of the polarization vector in

the local crystallographic coordinate system within a grain
and the superscript L denotes the local coordinates (see
Fig. 1(a)). The total free energy of a ferroelectric polycrys-
tal is given by

F ¼
Z

V
ðfbulk þ felas þ fgrad þ felecÞdV ; ð1Þ

where fbulk is the local bulk free energy density, felas is the
elastic energy density, fgrad is the gradient energy density
which is only non-zero around domain walls and grain
boundaries and felec is the electrostatic energy density.
V is the volume of the polycrystal considered.

The bulk free energy density in a given grain is expanded
in terms of polarization components using the Landau
theory, i.e.
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where a1, a11, a12, a111, a112, and a123 are the dielectric and
higher order stiffnesses of the single crystal under a stress-
free boundary condition. They can be found in Ref. [24] for
lead titanate.

By definition, a ferroelectric material develops a sponta-
neous polarization during its transformation from its para-
electric state to a ferroelectric state when it is cooled below
the Curie temperature. This transformation leads to a
spontaneous strain that is related to the spontaneous polar-
ization through the electro-strictive coefficient Qijkl,

e0L
ij ¼ QijklP

L
k P L

l ; ð3Þ

where the repeated subscripts imply Einstein summation
and this convention is used for the whole paper except indi-
cated exceptions. For a polycrystalline system it is neces-
sary to describe the spontaneous strains in different
grains using a common reference coordinate system, which
we call the global coordinate system. The two coordinate
systems, namely the global and the local coordinate sys-
tems, are shown in Fig. 1(a) for a two-dimensional single
crystal. A transformation matrix TR = (trij) determining
the relationship between the tensor components of prop-
erty in the global coordinate system denoted by a super-
script G and those in the local coordinate system within
each grain was given in Ref. [23]. For example, for a grain
rotated by an angle u about the xG

3 axis only the transfor-
mation matrix is given by

TR ¼
cos ½u� sin ½u� 0

� sin ½u� cos ½u� 0

0 0 1

0
B@

1
CA: ð4Þ

Being a second-rank tensor, the spontaneous strain in
the global system is related to that in the local system by

e0G
ij ¼ trkitrlje

0L
kl : ð5Þ

The elastic energy density is given by

felas ¼
1

2
CijkleG

ij eG
kl ¼

1

2
CijklðeG

ij � e0G
ij ÞðeG

kl � e0G
kl Þ; ð6Þ

where eG
ij ¼ ðeG

ij � e0G
ij ) is the elastic strain, eG

ij is the total
strain compared to the parent paraelectric phase and Cijkl

is the elastic stiffness tensor.
The total strain field eG

ij can be written as the sum of the
spatially independent homogenous strain �eG

ij and a spatially
dependent heterogeneous strain field deG

ij , i.e.

eG
ij ¼ �eG

ij þ deG
ij : ð7Þ
The homogenous strain determines the macroscopic shape
deformation of the entire polycrystal due to an applied
strain, phase transformations or domain structure changes.
In this work, the external boundary of the polycrystal was
either clamped or stress free. For the clamped boundary
condition the homogenous strain (�eG

ij Þ is zero. By assuming
that elastic constants are independent of space, the homog-
enous strain under the stress-free boundary condition is ob-
tained as the spatial average of eigen strain, i.e. �eG

kl ¼ �e0G
kl ,

where �e0G
kl ¼ 1

V

R
V e0G

kl dV . The heterogeneous strain is de-
fined in such a way that

R
V deG

ij dV ¼ 0. The heterogeneous
strain is spatially dependent and is obtained by solving the
mechanical equilibrium equation rG

ij;j ¼ 0 using periodic
boundary conditions, where rG

ij denotes the elastic stress
component and rG

ij ¼ CijklðeG
kl � e0G

kl Þ. A detailed method
of solving the inhomogeneous strain was described in a pre-
vious paper [23].

The contribution of the domain walls to the total free
energy, i.e. the domain wall energy, is introduced through
the gradient of the global polarization field. For simplicity
we assumed the gradient energy to be isotopic. Hence, the
gradient energy density can be written as

fgrad ¼
1

2
G11ððP G

1;1Þ
2 þ ðP G

1;2Þ
2 þ ðP G

1;3Þ
2 þ ðP G

2;1Þ
2

þ ðP G
2;2Þ

2 þ ðP G
2;3Þ

2 þ ðP G
3;1Þ

2 þ ðP G
3;2Þ

2 þ ðP G
3;3Þ

2Þ; ð8Þ

where G11 is the gradient energy coefficient and P G
i;j repre-

sents spatial differentiation of polarization, i.e.
P G

i;j ¼ oP G
i /oxG

j .
Under an applied electric field the electrostatic energy

density felec consists of three contributions, i.e. the
dipole–dipole interaction energy density fdipole, the depolar-
ization energy density fdepol and the energy density due to
the applied electric field fappel, i.e.

felec ¼ fdipole þ fdepol þ fappel: ð9Þ
For an electrically inhomogeneous system the long-

range electric dipole–dipole interaction energy density is
given by

fdipole ¼ �
1

2
EG

i P G
i ; ð10Þ

where EG
i is the inhomogeneous electric field due to dipole–

dipole interactions in the global coordinates. It is related to
the electric displacement DG

i through the usual relation
DG

i ¼ e0jijEG
j þ P G

i , in which e0 = 8.85 · 10�12 Fm�1 is
known as the dielectric permittivity of the vacuum and jij

is the relative dielectric permittivity. Assuming there is no
space charge, the electric displacement DG

i satisfies the elec-
trostatic equilibrium equation of DG

i;i ¼ 0. For a given
polarization distribution the electric field components EG

i

and the electric displacements DG
i are solved by using Fou-

rier transforms. A detailed method of solving the inhomo-
geneous electric field was described in a previous paper [23].

The average depolarization field in the global coordinate
due to the presence of surface charges can be approximated
as
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EG
i;depol ¼ �

1

ei
P i

G; ð11Þ

where P i
G is the spatial average of the i-th component of

polarization in the global coordinates and ei = e0jij where
the repeated index, as well as in Eq. (11), does not imply sum-
mation. Hence the depolarization energy density is given by

fdepol ¼ �
1

2
EG

i;depolP
G
i : ð12Þ

When an externally electric field EG
appel is applied an addi-

tional contribution fappel should be taken into
consideration:

fappel ¼ �EG
i;appelP

G
i : ð13Þ

With the total free energy as a function of the global
polarization, the temporal evolution of polarization as well
as the domain structure is obtained by solving the time-
dependent Ginzburg–Landau (TDGL) equation:

oP G
i ðxG; tÞ
ot

¼ �M
dF

dP G
i ðxG; tÞ

; i ¼ 1; 2; 3; ð14Þ

where M is a kinetic coefficient related to the domain
mobility and t is the time.
3. Analytical calculations and numerical simulations

Assuming a single tetragonal domain for the ferroelec-
tric state, the hysteresis loops under clamped boundary
conditions can be computed analytically for a single crystal
at different orientations. The dipole–dipole interaction
energy, depolarization energy and the gradient energy van-
ish for a single domain system. Thus, under a clamped
boundary condition and assuming a single domain state,
the total energy of the system can be defined as the sum
of the bulk, the elastic energy and electric energy due to
the applied electric field. The hysteresis loop is computed
analytically by minimizing the total energy with respect
to P G

1 . Thus, the applied electric field along the xG
1 direction

is expressed as a function of P G
1 and is calculated as

EG
1;appel ¼ oF 0=oP G

1 , where F0 is the sum of the bulk and
the elastic energies.

The temporal evolution of the global polarization vector
fields is obtained by solving Eq. (14) numerically with the
semi-implicit Fourier spectral method [25]. The local polar-
ization components are obtained from the global polariza-
tion components using the relation P L

i ¼ trijP G
j . In the

computer simulation we employed 128 · 128 discrete grid
points and periodic boundary conditions were applied
along the xG

1 and xG
2 axes. The grid space was chosen to

be DxG
1 ¼ DxG

2 ¼ l0, where l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G110=a0

p
, G110 = 1.73 ·

10�10 C�2 m4 N and a0 = ja1jT=25 �C. Hence, the grid spac-
ing in real space was about DxG

1 ¼ DxG
2 ¼ 1 nm. The meth-

odology of calculating the real grid spacing was described
in a previous paper [15]. We took the gradient energy coef-
ficient to be G11/G110 = 0.6. The time step for the evolution
in Eq. (14) is Dt/t0 = 0.05, where t0 = 1/(a0M). For the elas-
tic energy calculation we assumed the elastic stiffness tensor
to be isotopic with shear modulus l = 0.476 · 1011 N m�2

and Poisson’s ratio m = 0.312, while for the dipole–dipole
interaction energy calculation we used j11 = j22 = 100 in
our simulations. It should be pointed out that, although
we assumed uniform dielectric constants, there was a spa-
tial dependence of the apparent dielectric constant due to
the spatial dependence of the spontaneous polarization.
However, a more accurate calculation should use a spa-
tially varying dielectric constant tensor with the dielectric
constant locally evaluated from the inverse of the second
derivative of free energy with respect to polarization. Spa-
tially varying the dielectric constant would significantly
complicate the solution of the electrostatic equilibrium
equation since the dielectric constant tensor would have a
tetragonal symmetry with tetragonal axes along different
directions in different domains.

A domain structure was first generated by performing
the simulations without any applied electric field, starting
from an initial paraelectric state with small random pertur-
bations. The depolarizing field was considered along both
xG

1 and xG
2 directions. In order to construct the PE loop

an electric field was then applied to the generated domain
structure in the xG

1 direction while a depolarizing field
was considered only along the xG

2 direction as we assumed
that the electrodes fully compensated the bound charges in
the xG

1 direction. The domain structure from a previous
simulation was used as the input at each increment of
the electric field. The PE loop was obtained by plotting
the normalized average polarization ðP G

1 =P 0Þ versus the
normalized electric field in the xG

1 direction ðEG
1 =E0Þ, where

E0 = a0P0 = 1.306 · 108 V cm�1 and P0 = jPjT=25 �C =
0.757 C m�2.

4. Results and discussions

4.1. Ferroelectric domain switching in single crystals

We analytically calculated the hysteresis loops of a sin-
gle crystal under clamped boundary conditions for two dif-
ferent orientations (0� and 45�) with respect to the applied
electric field and the broken lines in Fig. 2 show the corre-
sponding loops. As expected, the coercive field along the
45� orientation was

p
2 times larger than the 0� orientation.

However, as it is well known that multi-domains form dur-
ing a ferroelectric phase transition, it can be expected that
the switching of a single crystal with multi-domains is very
different from that of a single-domain crystal. The solid
lines in Fig. 2 show the hysteresis loops for single crystals
under the clamped boundary condition at different orienta-
tions obtained from simulations as an electric field was
applied along the xG

1 direction. Each point in the PE loop
represents the average polarization at the end of 10,000
iterations at a given electric field. It is shown that, as the
angle u increased, the coercive field increased.

It is interesting to observe that there was a significant
jump in the coercive field between u = 20� and 30�. The
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reason for such a jump can be found by examining the
domain structures in Fig. 3. There are four tetragonal vari-
ants in a typical tetragonal domain structure simulated in
two dimensions. We labeled the four variants as a1 positive,
a2 positive, a1 negative and a2 negative with polarizations
ðP L

1 > 0; P L
2 ¼ P L

3 ¼ 0Þ, ðP L
2 > 0; P L

1 ¼ P L
3 ¼ 0Þ, ðP L

1 < 0;
P L

2 ¼ P L
3 ¼ 0Þ and ðP L

2 < 0; P L
1 ¼ P L

3 ¼ 0Þ, respectively.
The four variants are represented with the different shades
shown in Fig. 3. The arrows represent the directions of the
polarization vectors. Fig. 3(a) represents the domain struc-
ture for u = 0� at the maximum electric field corresponding
to position A in Fig. 2. As can be seen, the domain struc-
ture consists of three types of domains: a1 positive, a2 posi-
tive and a2 negative. Fig. 3(b) shows the domain structure
for u = 0� that corresponds to point B in Fig. 2. It shows
the nucleation of new domains at the twin boundary
through 90� domain switching (marked by the circles). Sim-
ilarly, the domain structures for u = 15� and 20� at the
maximum applied electric fields (points C and D in
Fig. 2) also display three types of domain (Fig. 3(c) and
(d)). By comparing Fig. 3(a), (c) and (d) we found that
u = 20� has a smaller volume fraction of the a2-positive
domain. On the other hand, when u was greater than 30�
there were only two types of domains at the maximum
applied electric field, namely a1 positive and a2 negative
(Fig. 3(e) and (f)). The absence of the third type of domain
was the main reason for the significant increase in the coer-
cive field for u greater than 30� (Fig. 2).

In order to study the effect of the external mechanical
boundary conditions on the switching behavior, we consid-
ered two single crystals with different orientations under
stress-free boundary conditions and the PE loops are shown
in Fig. 4. The dotted and solid lines show the hysteresis
loops obtained from thermodynamic calculations and phase
field simulations, respectively. For comparison, hysteresis
loops of single crystals obtained from thermodynamic cal-
culation under clamped boundary condition are also pre-
sented. The figure shows that, similar to the clamped
boundary condition, the coercive field obtained from the
thermodynamic calculation increased as the angle u
increased. Contrary to the thermodynamic calculation the
coercive field obtained from the phase field simulation under
a stress-free condition decreased as the angle u increased.
This can be explained from the domain structure corre-
sponding to the maximum electric field as shown in Fig. 5.
The figure shows that, for u = 0�, the single crystal was com-
prised of a single domain, while for u = 45� the domain
structure was comprised of two kinds of domain, which
facilitated the formation of new domains during polariza-
tion switching. This observed decrease in the coercive field
with the presence of more than one tetragonal variant in a
single crystal was similar to the trend observed under a
clamped boundary condition as presented above. Compari-
son of the domain structures obtained under the stress-free
and clamped boundary conditions showed that it was easier
to stabilize more than one tetragonal variant under the
clamped boundary condition. Since neighboring grains in
a polycrystal clamp a crystalline grain, we will assume a
clamped boundary condition for the rest of the paper.

4.2. Switching in bi-crystals

Fig. 1(b) shows a schematic diagram of two bi-crystals.
In both bi-crystals, the orientation (u) of grain 1 is 0� while
that of grain 2 is 15� for bi-crystal 1 and 45� for bi-crystal 2.

Fig. 6(a) and (b) shows the hysteresis loops for bi-crystal
1 and bi-crystal 2, respectively. For comparison, we have
also included the hysteresis loops for the corresponding
single crystals at different orientations. It is shown that
the hysteresis loop for bi-crystal 1 lies in between those
for the corresponding single crystal values with the coercive
field approximately the average of the single crystal values,
i.e. the effect of the grain boundary is minimal. However,
for bi-crystal 2 the coercive field was much lower than
the average of the corresponding single crystals as shown
in Fig. 6(b).



Fig. 3. Domain structures of the single crystals with different orientations presented in Fig. 2 for various stages of polarization switching: (a) for u = 0� at
point A; (b) for u = 0� at point B; (c) for u = 15� at point C; (d) for u = 20� at point D; (e) for u = 30� at point E; (f) for u = 45� at point F.
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In order to understand the difference between the
switching behaviors of the two bi-crystals, we examined
the domain structure (Fig. 7(a)) of bi-crystal 1 at the max-
imum applied electric field (point M in Fig. 6(a)). It is
shown that each grain consisted of three domains, similar
to their corresponding single crystals at the same orienta-
tions. Fig. 7(b) is a domain structure during initiation of
switching in the bi-crystal corresponding to point N in
Fig. 6(a). A new domain is shown to nucleate at the grain
boundary. For comparison, we present the domain struc-
ture of bi-crystal 2 at the maximum applied electric field
in Fig. 7(c) (point X in Fig. 6(b)). It is seen that, although
the domain structure in grain 1 has three types of domain,
grain 2 with u = 45� contains only two types of domain.
However, in this case nucleation of a new domain occurs
during switching at the grain boundary (Fig. 7(d)), which
corresponds to point Y in Fig. 6(b) and it propagates
towards the grain interior. Hence, although grain 2 in bi-
crystal 2 consisted of only two domains at the maximum
applied field, the presence of the grain boundary acted as
a source for nucleating new domains. As a result, the coer-
cive field was much lower than the average of the corre-
sponding single crystals (Fig. 6(b)).

In the above two examples, both of them had one of the
two half crystals oriented along u equal to 0. As another
example, we examined the switching behavior of a bi-crys-
tal with 45� misorientation between the two half crystals.
One half crystal is oriented at u = 22.5� and the other half
is oriented at u = �22.5�. We call this example bi-crystal 3.
Fig. 7(e) shows the domain structure at the maximum
applied electric field (point Z in Fig. 6(c)). It is shown that
both grains contained three types of domain. Thus, when



Fig. 5. Domain structures of the single crystals obtained from simulations under the stress-free condition corresponding to the maximum electric field:
(a) for single crystal with u = 0� at point K; (b) for single crystal with u = 45� at point L in Fig. 4.
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Fig. 6. Hystersis loops of the bi-crystals shown in Fig. 1(b). The hystersis loops of the single crystals obtained from simulation for u = 0� and 15�, u = 0�
and 45� are presented in (a) and (b), respectively, for comparison. Plots in (c) show, for comparison, the hystersis loops of bi-crystal 2 and bi-crystal 3.
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Fig. 7. Domain structures of bi-crystals at various stages of polarization switching presented in Fig. 6. Domain structures in (a) and (b) are, respectively,
corresponding to point M and point N of bi-crystal 1 in Fig. 6(a). Domain structures in (c) and (d) are, respectively, corresponding to point X and point Y
of bi-crystal 2 in Fig. 6(b). The circles represent the nucleated new domains near the grain boundaries. The domain structure in (e) corresponds to points Z
of bi-crystal 3 in Fig. 6(c).
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the electric field was reversed, new domains could nucleate
at twin boundaries and, consequently, the coercive field in
bi-crystal 3 was less than the coercive field for bi-crystal 2
(Fig. 6(c)). Furthermore, a comparison between the slopes
of the hysteresis loops from the two bi-crystals showed that
nucleation of the new domain during switching initiated at
a much lower field at a twin boundary in bi-crystal 3 than
at the grain boundary as in bi-crystal 2.

In order to study the effect of grain boundaries on the
stress distribution during polarization switching, we plot-
ted the distribution of normalized global elastic stress near
the grain boundary in bi-crystal 1 and bi-crystal 2. The cor-
responding stress distributions are shown in Fig. 8. The
elastic stress components rG

ij were calculated from the elas-
tic strains using the relation rG

ij ¼ CijkleG
kl; i; j; k; l ¼ 1; 2; 3.

Fig. 8(a)–(c) displays the distribution of the stress compo-
nents in bi-crystal 1 corresponding to the domain structure
presented in Fig. 7(b). Solid lines mark the grain boundary
while the domain walls are schematically shown by dotted
lines. The high-stress location near the grain boundary is
marked. The fact that high stresses occurred near the grain
boundary could be related to the nucleation of the new
domain. The distributions of the stress components in bi-
crystal 2 (based on the domain structure presented in
Fig. 7(d)) are shown in Fig. 8(d)–(f). Similar to bi-crystal
1, high stress was generated near the grain boundary dur-
ing polarization switching. Comparing the stress distribu-
tion for the two bi-crystals, the magnitude of the stress
components was higher in bi-crystal 2 with a larger mis-
alignment between the two grains. Nucleation of the new
domain at a grain boundary created intersections between
the domain boundaries and a grain boundary. The
domains around the intersections had different transforma-
tion strains as a result of different crystallographic orienta-
tions. The incompatibility of the deformation among these
domains near the grain boundary resulted in a high stress
concentration at the intersections.

4.2.1. Effect of a reduced transition temperature at grain

boundaries
In order to study the effect of the non-ferroelectric phase

of a grain boundary on switching, we assumed a reduced
transition temperature at the grain boundary of a bi-crystal
(Fig. 1(c)). We studied two cases where the lowest transi-
tion temperatures at the grain boundary were assumed to
be 150 �C and 25 �C, respectively. The transition tempera-
ture within the grain was 479 �C, the same as the transition
temperature of bulk lead titanate under the clamped
boundary condition. It was assumed that the transition
temperature varied linearly near the grain boundary as



Fig. 8. Normalized global elastic stress distribution near the grain boundary of bi-crystal 1 and bi-crystal 2 during switching. The normalization factor (r0)
is 9.8 · 106 MPa. (a)–(c) show the distributions of stress components rG

11=r0; rG
22=r0 and rG

12=r0 of bi-crystal 1 corresponding to the domain structure in
Fig. 7(b) while (d)–(f) shows the distribution of similar stress components in bi-crystal 2 corresponding to the domain structure in Fig. 7(d). The grain
boundary is shown by a thick line while the domain walls are schematically shown by a dotted line. The locations of stress concentration near the grain
boundary are marked.
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shown in Fig. 1(c). The grain boundary width was main-
tained at four simulation grid points, i.e. the width of the
grain boundary was 4DxG

1 . The orientation of the bi-crystal
was the same as described in Fig. 1(b). For the rest of the
paper, bi-crystal 1 and bi-crystal 2 with a reduced transi-
tion temperature at the grain boundary will be referred as
bi-crytsal 1 0 and bi-crystal 2 0, respectively.

Fig. 9(a) and (b) shows the hysteresis loops for bi-crystal
1 0 and bi-crystal 2 0. It can be seen that, in both the cases,
the coercive field increased as the transition temperature
at the grain boundary decreased. For bi-crystal 1’, in which
the transition temperature at the grain boundary was
decreased from 479 �C to 25 �C, the increase in the coercive
field was small. This can be explained from the switching
behavior in bi-crystal 1 in Fig. 6(a), which was found to
be similar to the single crystal with the coercive field
approximately the average of the single crystal values. As
the grain boundary did not play a significant role in the
switching behavior of bi-crystal 1, reducing the transition
temperature at the grain boundary only had a small effect
on the coercive field. For the case of bi-crystal 2, the situ-
ation was quite different. As shown above, nucleation of
the new domains in bi-crystal 2 occurred primarily at the
grain boundary for bi-crystal 2 (Fig. 7(d)): a significantly
lower transition temperature at the grain boundary greatly
decreased the coupling across the grain boundary and thus,
increased the coercive field (Fig. 9(b)). Therefore, if this is
the general case, a decrease in the ferroelectric transition
temperature at the grain boundary will increase the coer-
cive field.

4.3. Grain size effect on domain switching in a polycrystal

In order to study the effect of the grain size on the
domain structure and polarization switching, we first
employed a phase field model for grain growth for generat-
ing two-dimensional grain structures. Fig. 10 presents a
polycrystal consisting of 54 grains. Each grain was assumed
to be oriented along a different crystallographic direction.
Orientations of different grains could be specified by the
angle u about the xG

3 axis. The grain orientations were lim-
ited to within 0� and 45� due to symmetry. In this work, the
orientation of each individual grain (u) was assigned ran-
domly and did not change with time during domain switch-
ing. In order to study size effects on the domain structure
and polarization switching we used six grain structures
with different grain sizes and 512 · 512 discrete grid points,
such that the average grain radius varies between 11 and
88 nm.

Fig. 11 shows the domain structures of the six polycrys-
tals without any applied electric field. A comparison of the
domain structures in Fig. 11(a)–(f) showed that, the larger



Fig. 10. Simulated grain structure using the grain growth model. The
figure shows the two different coordinate systems used during calculations.
G and L represent global and local coordinates, respectively. For each
grain the direction of the global coordinate system remains fixed while the
local coordinate system rotates such that 0� 6 u 6 45�.
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the average grain size, the higher the total number of
tetragonal variants present in each grain. As the grain size
decreased, the number of tetragonal variants present in
each grain decreased. This prediction matched well with
the experimentally observed domain structures in PZT
[26]. Furthermore, we observed that, as the average grain
radius decreased to 11 nm, most of the grains became single
domains.

In order to study the effect of grain size on the switching
behavior, we constructed the hysteresis loops for three
grain sizes (Rave = 11, 32 and 52 nm) as presented in
Fig. 12. It is shown that the polycrystalline structure with
a smaller grain size had a smaller magnitude of coercive
field. It has been shown in Fig. 7(b) and (d) that grain
boundaries act as sources for the nucleation of new
domains during switching. As a result, a polycrystal with
a smaller grain size provides more nucleation sites for
new domains during switching and, thus, results in a lower
coercive field. The remnant polarization for different grain
sizes almost remains the same.

Although our prediction of the effect of grain size on the
domain structure was consistent with experimental obser-
vation, the decrease in the coercive field with grain size
from our simulations seemed to contradict other experi-
mental observations [2–4] where it was observed that the
coercive field increased with a decrease in the grain size.
This difference in the grain size dependence on switching
was possibly due to the much smaller grain size (of the
order of few tens of nanometers) considered in our simula-
tions as compared to those studied experimentally, which
were in the order of microns. Hence, for a grain structure
with an experimental grain size, each grain typically con-
tains more than two different types of domain [27]. As
our simulation results on the switching behavior of bi-crys-
tals showed that the number of domains present within
each grain affected the domain switching behavior of indi-
vidual grains, it appears that the range of grain size consid-
ered in this work may not have been sufficient enough for
explaining the experimental observation. Thus, it is difficult
to draw clear conclusions on the effect of size on coercive
fields based on our two-dimensional simulations.

Although the phase field model presented in this paper
can be used for studying the switching behavior in three-
dimensional ferroelectric polycrystals, we conducted our
simulations in two dimensions for computational reasons.
Owing to the two-dimensional nature of the simulations
the focus of this paper was on the mechanisms, primarily
in order to understand the domain switching mecha-
nism, rather than on a quantitative comparison with



Fig. 11. Domain structure of lead titanate polycrystal in decreasing grain size. The system size is kept fixed in all the six cases at 512 · 512. The average
grain radii are 88, 52, 43, 32, 17 and 11 nm, respectively.
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experimentally measured hysteresis loops. In fact, the study
of the effect of the grain size on the coercive field in PZT
using three-dimensional simulations is currently under
way.
5. Conclusions

Phase field simulations were performed in order to
understand the role of grain orientations and boundaries
in domain switching in ferroelectric single, bi- and
polycrystals. It was found that the switching behavior in
a single crystal was strongly dependent on the orientation
of the grain with respect to the applied electric field for
both clamped and stress-free boundary conditions. It
was observed that, in single crystals, the number of tetrag-
onal variants in the domain structure at the maximum
applied electric field determined the coercive field during
polarization switching. The switching behavior of a bi-
crystal was found to be similar to that in single crystals
when the misorientation between the grains of a bi-crystal
was less than 15�. The grain boundary was found to play a
significant role in determining the switching behavior for
bi-crystals with larger misorientations between the grains
of the bi-crystal. Nucleation of new domains during polar-
ization switching was found to occur at the grain bound-
ary in bi-crystals, which led to high stress near the grain
boundary. Furthermore, it was observed that reducing
the transition temperature at the grain boundary might
change the switching behavior of a bi-crystal. The effect
of a reduction in the transition temperature at a grain
boundary on the coercive field depended on the orienta-
tion of the grains with respect to the applied electric field
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direction. Although the effect of grain size on the coercive
field contradicted experimental observation, the result of
the effect of grain size on domain structure was consistent
with experiments.
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