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Abstract

A phase-field model is developed for predicting the polarization switching and domain structure evolution under an applied elec-
tric field in ferroelectric polycrystals. The model takes into account realistic grain structures as well as various energetic contribu-
tions, including elastic energy, electrostatic energy, and domain wall energy. A hysteresis loop – average polarization as a function of
applied electric field – is computed, and the detailed domain evolution process during switching is analyzed. In particular, the role of
grain boundaries in the nucleation and growth of new domains is studied. It is shown that switching takes place through the nucle-
ation of 90� domains at grain boundaries and subsequent growth into the grain interiors instead of direct 180� domain switching. A
correlation between the domain structures in neighboring grains was observed, and polarization switching in one grain was found to
affect the switching in neighboring grains.
� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Ferroelectric ceramics are of considerable interest
due to their applications in various electronic, micro-
electronic and electrooptical devices [1], such as acous-
tic sensors and actuators [2]. In microelectronics, the
switching behavior of ferroelectrics under an applied
electric field is exploited in the design of nonvolatile
random access memories. Switching involves the
nucleation of new domains and domain wall motion
under an applied electric field. Therefore, the ability
to predict domain evolution under an applied field is
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crucial to the development of a fundamental under-
standing of polarization switching mechanisms.

The most studied, and perhaps also the simplest,
case is 180� domain switching in single crystals [3].
In a single crystal, 180� polarization switching is gen-
erally thought to proceed by the nucleation of anti-
parallel domains and subsequent growth via domain
wall migration [3,4]. In the high-field regime, it is be-
lieved that nucleation occurs more rapidly, and
switching is completed by domain wall migration [5],
until collision of domains takes place [6]. For both
single-crystal bulk and thin-film systems [7–10], a
number of computer simulations have been carried
out of domain evolution during ferroelectric transi-
tions as well as domain evolution under an applied
field. However, switching involving both 180� and
ll rights reserved.
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90� domain walls occurring in polycrystals is less well
understood, although there have been several theoret-
ical studies of the switching behavior of ferroelectric
polycrystals [11–15].

Prior models typically assumed that ferroelectric poly-
crystals are made up of an array of single-domain grains,
and the ferroelectric or ferroelastic switching occurs
when the energy provided by the applied field exceeds a
critical value [11]. The polarization vs. applied electric
field (P–E) loops predicted by such an approach display
the main features of those obtained experimentally. An
alternative approach is the finite element method of
Hwang et al. [12] based on similar switching criteria,
which finds that switching in a given grain is inhibited
by the presence of neighboring grains. Arlt [13] proposed
a different model for predicting domain switching mech-
anism in ferroelectric polycrystal. The model is based on
the nucleation of a temporary domain wall by overcom-
ing a certain energy barrier in order to adjust the elastic
energy associated by the formation of wall. Recently,
Zhang et al. [14,15] presented a computational model
for domain switching in single-crystal and bicrystal fer-
roelectrics. Through 2D simulations, it was shown that
ferroelectric domain switching behavior changes in the
bicrystal as the difference in crystallographic orientation
between the grains increases.

In this paper, we describe a 3D phase-field model
for studying the domain evolution in a ferroelectric
polycrystal under an applied electric field, similar to
phase-field models for martensitic transformations in
polycrystals [16]. Previously, the phase-field approach
has been employed to investigate the microstructure
evolution during solidification [17] and a variety of so-
lid-state phase transformations [18]. We studied the
temporal evolution of domain structures during polar-
ization switching in a ferroelectric polycrystal using
PbTiO3 as a model system. It is well known that in
a real PbTiO3 polycrystal, the stress induced by the
ferroelectric phase transition is so large that it causes
cracks to form. The possibility of such crack forma-
tion is neglected in the simulations. Since the model
is rather computationally intensive in three-dimensions
(3D), as a first attempt we conducted our simulations
in two-dimensions (2D). Owing to this 2D nature and
neglect of the possibility of crack formation, the focus
of this paper is on the mechanisms for domain switch-
ing and the various energetic contributions to the
switching process, rather than on a quantitative com-
parison with experimentally measured hysteresis loops.
tr ¼
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2. Phase-field model of ferroelectric domain structures in

polycrystals

To describe the domain structures in polycrystals,
there are two levels of structures, i.e., the grain structure
and the domain structure in each individual grain. We
employed the phase-field model for grain growth to gen-
erate 2D and 3D grain structures [19]. The domain
structure within each grain is described by the inhomo-
geneous distribution of the local polarization PL

i , where
i = 1,2,3, and the superscript L indicates that the polar-
ization components are expressed in local coordinates
within each individual grain. The total free energy of a
ferroelectric polycrystal is given by

F ¼
Z
V
ðfbulk þ felas þ fgrad þ felecÞ dV ; ð1Þ

where fbulk denotes the bulk free energy density, felas the
elastic energy density, fgrad the gradient energy density
(nonzero only near domain walls and grain boundaries),
and felec the electrostatic energy density.

The bulk free energy density in a given grain is ex-
panded in terms of polarization components using the
Landau theory, i.e.,
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where a1, a11, a12, a111, a112, a123 are the dielectric stiff-
ness and higher-order stiffness coefficients under stress-
free boundary conditions [20], and PL

1 ; P
L
2 ; P

L
3 are the

polarization components in the local crystallographic
coordinate system within each grain.

In order to solve the elasticity and electrostatic equa-
tions, we introduce a common global coordinate system
for all grains. We describe the orientation of a particular
grain in the polycrystalline structure using three Euler
angles (u, h, w) [21], corresponding to three consecutive
counter-clockwise rotations with respect to the global
coordinates (x1, x2, x3): u about the x3-axis, h about
the rotated x01-axis and w about the newest x03-axis.
Accordingly, the transformation matrix from the global
to local coordinate system is given by
� þ cos½h� cos½u� sin½w� sin½h� sin½w�
� cos½w� � sin½u� sin½w� sin½h� cos½w�
cos½u� sin½h� cos½h�

1
CA. ð3Þ
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The polarization in the local coordinate system, PL
i , is

related to that in the global system, Pi, through

PL
i ¼ trijP j; ð4Þ

where trij represents the ij-component of the transforma-
tion matrix tr. The local polarization is unique to a par-
ticular grain and assumed to remain constant during
domain evolution.

The elastic energy density is given by

felas ¼
1

2
Cijkleijekl ¼

1

2
Cijklðeij � e0ijÞðekl � e0klÞ; ð5Þ

where Cijkl represents the elastic stiffness tensor, and eij,
eij and e0ij denote the elastic strain, total strain and spon-
taneous strain, respectively. The spontaneous strain in a
given grain can be expressed with respect to the local
coordinate system by e0Lij ¼ QijklP

L
kP

L
l , where Qijkl is the

electrostrictive coefficient of the corresponding single
crystal. Therefore, the spontaneous strain in the global
coordinate system can be obtained from

e0ij ¼ trki trlje0Lkl . ð6Þ

The total strain eij can be written as the sum of the
spatially independent homogenous strain, eij, and a spa-
tially dependent heterogeneous strain, deij, i.e.,

eij ¼ eij þ deij. ð7Þ
The homogenous strain determines the macroscopic

shape deformation of the entire polycrystal resulting
from an applied strain, phase transformations or do-
main structure changes. If the external boundary of
the polycrystal is clamped, eij is zero. The heterogeneous
strain is defined in such a way that

R
V deij dV ¼ 0.

To solve the equilibrium heterogeneous strain field
deij, we introduce a set of displacements ui (x), such that
deij = 1/2(ui,j + uj,i), with ui,j = oui/oxj. The mechanical
equilibrium condition is given by rij,j = 0, where rij is
the elastic stress, and rij,j is the sum of the derivatives
of rij with respect to x1, x2 and x3 respectively
rij ¼ Cijklekl ¼ Cijklðekl � e0klÞ. For simplicity, we assume
that the elastic modulus is isotropic and homogeneous
and thus Cijkluk;lj ¼ Cijkle0kl;j. The equilibrium displace-
ment and the heterogeneous strain components can be
solved using Fourier transforms [22].

The contribution of the domain walls to the total free
energy, i.e., the domain wall energy – is introduced
through the gradient of the global polarization field.
For the sake of simplicity and because of a dearth of
experimental values for the domain wall energies along
different directions, we assume the wall energy to be iso-
tropic. For an isotropic domain wall energy, the gradi-
ent energy density can be written as

fgrad ¼
1

2
G11½ðP 1;1Þ2 þ ðP 1;2Þ2 þ ðP 1;3Þ2 þ ðP 2;1Þ2 þ ðP 2;2Þ2

þ ðP 2;3Þ2 þ ðP 3;1Þ2 þ ðP 3;2Þ2 þ ðP 3;3Þ2�; ð8Þ
where G11 is the gradient energy coefficient and
Pi,j = oPi/oxj denotes the spatial differentiation of the
polarization components.

Under an applied electric field, the electrical energy
density felec is comprised of the dipole–dipole interaction
energy density due to the inhomogeneous distribution of
polarization, fdipole; the depolarization energy density
due to surfaces, fdepol; and the energy density due to
the applied electric field, fappel:

felec ¼ fdipole þ fdepol þ fappel. ð9Þ
For an electrically inhomogeneous system the long-

range electric dipole–dipole interaction energy density
is given by

fdipole ¼ � 1

2
EiP i; ð10Þ

where Ei denotes the inhomogeneous electric field due to
dipole–dipole interactions. It is obtained by solving the
electrostatic equilibrium equation given by Di,i = 0,
where Di is the electrical displacement represented by
Di = e0jijEj + Pi, where e0 = 8.85 · 10�12 Fm�1 repre-
sents the dielectric permittivity of vacuum and jij the rel-
ative dielectric permittivity, assumed to be independent
of space [23]. Spatially differentiating the electric dis-
placement and using the electrostatic equilibrium equa-
tion, we find

Di;i ¼ 0 ¼ e0ðjijEj;iÞ þ P i;i. ð11Þ
The electric field Ei is related to the electric potential /
through �/,i = Ei. Hence, by assuming jij = 0 for i 6¼ j
and rearranging the terms in Eq. (11), we obtain

ðj11/;11 þ j22/;22 þ j33/;33Þ ¼
1

e0
ðP 1;1 þ P 2;2 þ P 3;3Þ.

ð12Þ
Transforming Eq. (12) to Fourier space yields

/ðfÞ ¼ � 1

e0

Iðf1P 1ðfÞ þ f2P 2ðfÞ þ f3P 3ðfÞÞ
ðj11f

2
1 þ j22f

2
2 þ j33f

2
3Þ

; ð13Þ

where fi is the component of positional co-ordinate f in
the Fourier space, and I ¼

ffiffiffiffiffiffiffi
�1

p
. The symbols /(f) and

Pi(f) denote the Fourier transforms of the electric poten-
tial and polarization component, respectively, and are
given by

P iðfÞ ¼
1

ð2pÞ3
Z Z 1

�1

Z
P iðxÞe�Ix.f d3x;

/iðfÞ ¼
1

ð2pÞ3
Z Z 1

�1

Z
/iðxÞe�Ix.f d3x.

ð14Þ

The electric field and electric potential are related by
Ei(f) = �Ifi/(f). Therefore, the real-space electric field
arising from dipole–dipole interactions is given by

EiðxÞ ¼
Z Z 1

�1

Z
EiðfÞeIx.f d3f. ð15Þ



Fig. 1. Grain structure generated using the 2D phase-field model for
grain growth. The dotted and solid pairs of arrows illustrate the global
and local coordinate systems, respectively, with 0� 6 u 6 45�.
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It should be noted that the point f = 0 is excluded
when calculating the dipole–dipole interaction energy.
The average depolarization field in global coordinates
due to the presence of surface charges can be approxi-
mated as

Ei;depol ¼ � 1

ei
P i; ð16Þ

where P i is the spatial average of the ith component of
polarization, and ei = e0jii (no summation implied by
the repeated index). Hence, the depolarization energy
density is

fdepol ¼ � 1

2
Ei;depolP i. ð17Þ

Finally, when an externally electric field Ei,appel is ap-
plied in the global ith direction, an additional contribu-
tion fappel should be taken into consideration:

fappel ¼ �Ei;appelP i. ð18Þ
With the total free energy F expressed as a functional

of the global polarization, the temporal evolution of the
domain structure can be obtained by solving the time-
dependent Ginzburg–Landau (TDGL) equation

oP iðx; tÞ
ot

¼ �M
dF

dP iðx; tÞ
; i ¼ 1; 2; 3; ð19Þ

where M is a kinetic coefficient related to the domain
mobility, and t is time.
3. Numerical simulations

Although the model described in the last section is
applicable to 3D polycrystalline systems, for computa-
tional reasons and simplicity we performed 2D simula-
tions to study the qualitative features and mechanisms
of domain evolution during polarization switching in
polycrystalline ferroelectrics. We generated a 2D grain
structure employing the grain-growth model developed
by Krill and Chen [19]. Fig. 1 shows an example of a
2D grain structure generated by the 2D version of the
3D grain-growth model. In this work, we assume that
the grain structure is static, i.e., it does not evolve with
time. The simulated polycrystal is comprised of 91
grains, with each grain assumed to be oriented along a
different crystallographic direction. In 2D the orienta-
tions of different grains can be specified by the rotation
angle u about the x3-axis; hence, the angles h and w are
assumed to be zero in Eq. (3). The grain orientations
vary between 0� and 45� because of symmetry. The ori-
entation of each individual grain (u) was assigned ran-
domly and does not change with time during domain
switching.

The temporal evolution of the global polarization
vector fields are obtained by numerically solving
Eq. (19) using the semi-implicit Fourier spectral method
[24]. The Landau energy coefficients in Eq. (2) and the
electrostrictive coefficients for PbTiO3 are found in
[10,20] and were given originally by Haun et al. [25].
In the simulations we employed 512 · 512 discrete grid
points and periodic boundary conditions applied along
the x1 and x2 axes. The grid spacing was chosen to
be Dx1 = Dx2 = l0, where l0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G110=a0

p
and a0 ¼

ja1jT¼25 �C. We assumed that the gradient energy coeffi-
cient is G11/G110 = 0.6. The corresponding domain wall
width is about 1.5Dx1, and the domain wall energy
densities at T = 25 �C are evaluated to be about
0:60a0l0P 2

0 for 90� domain walls and 1:26a0l0P 2
0 for

180� domain walls. The spontaneous polarization is
P0 = |P|T = 25 �C = 0.757 Cm�2. If l0 = 2.0 nm, G110 =
7.12 · 10�10 C�2 m4 N. The corresponding specific do-
main wall energy is about 0.12 Jm�2 for 90� domain
walls, and the wall width is around 3.0 nm, which is sim-
ilar to experimentally observed domain wall energies
and widths in single crystals [26]. With l0 = 2.0 nm, the
average grain radius in the simulated grain structure in
Fig. 1 is about 110 nm. The time step in Eq. (19) is taken
to be Dt/t0 = 0.05, where t0 = 1/(a0M). For the calcula-
tion of elastic energy, we took the elastic constants to be
isotopic and homogeneous, with shear modulus
l = 0.476 · 1011 Nm�2 and Poisson�s ratio m = 0.312,
in order to avoid having to solve inhomogeneous elastic
equations in a polycrystal. Clamped boundary condi-
tions were used. For the dipole–dipole interaction en-
ergy calculations, we used j11 = j22 = 100 in our
simulation.



0

50

Po
la

ri
za

tio
n 

P 1
(µ

C
/c

m
2 )

a

b

S. Choudhury et al. / Acta Materialia 53 (2005) 5313–5321 5317
A domain structure was first generated by perform-
ing the simulations without an applied electric field,
starting from an initial paraelectric state with small
random perturbations. A depolarizing field was as-
sumed to exist along both x1 and x2 directions. To
compute the PE loop, an electric field is applied to
the generated domain structure in the x1 direction,
while a depolarizing field is assumed to exist along
the x2 direction. At each increment of the electric
field, the domain structure from the previous simula-
tion is used as the starting configuration.
-50
-600 -400 -200 0 200 400 600

Electric Field      (kV/cm)

c

1E

Fig. 3. Hysteresis loop computed for lead titanate ceramic.
4. Results

Fig. 2 shows an example of the domain structure in
a polycrystal at zero applied electric field following
50,000 iterations beginning from a paraelectric state.
There are four tetragonal variants, labeled as a1 posi-
tive, a2 positive, a1 negative, and a2 negative,
with polarization components ðPL

1 > 0; PL
2 ¼ PL

3 ¼ 0Þ;
ðPL

2 > 0; PL
1 ¼ PL

3¼0Þ; ðPL
1 < 0; PL

2¼PL
3 ¼ 0Þ and ðPL

2 < 0;
PL
1 ¼ PL

3 ¼ 0Þ, respectively. The four variants are repre-
sented by different shading. As expected, the polariza-
tion directions for the domains vary from one grain
to another, with both 90� and 180� domain walls
existing in the simulation cell. Fig. 3 shows the P 1 vs.
E1,appel loop (PE loop) as an electric field is applied
along the x1 direction. Each point in the PE loop rep-
resents the average polarization at the end of 5000 iter-
ations at the given electric field. As the applied electric
field increases, the volume fractions of the tetragonal a1
and a2 domains change. The polarization directions in
Fig. 2. Domain structure after 50,000 iterations without applied electric field.
left.
different grains try to orient along the direction of the
electric field. Therefore, for the maximum positive ap-
plied electric field, corresponding to point b in Fig. 3,
the a1 domains with negative polarization vanish, as
seen in Fig. 4. The domain structure is predominantly
comprised of just two types of domains – namely, a1
positive and a2 negative. A small volume fraction of
a2 positive domains is present in the grains having an
orientation close to that of the applied field.

To illustrate the domain evolution process in more
detail, we plot in Fig. 5(i)–(iv) the evolution of the
polarization configurations within the dotted rectangu-
lar box of Fig. 2 for various iteration numbers Nitr at
The four tetragonal variants are shaded according to the legend at top



Fig. 4. Domain structure corresponding to the point b in the PE loop
of Fig. 3. The tetragonal a1 negative variant is completely absent, and
the majority of the simulation cell is comprised of two tetragonal
variants.
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point c of Fig. 3, where E1,appel = 104.48 kV/cm. The
small arrows in Fig. 5 indicate the local polarization
direction. Fig. 5(i) shows the domain structure in grain
Fig. 5. Domain structure during switching at an applied electric field of E1

Fig. 3 at different iteration steps: (i) Nitr = 1; (ii) Nitr = 500; (iii) Nitr = 1000;
dashed and thin lines denote 90� and 180� domain walls, respectively. The
direction of growth of the nucleated 90� domain.
A after the first iteration. As the number of iterations
increases, an a1 domain with positive polarization
nucleates at the grain boundary where the twin bound-
ary and the grain boundary meet (Fig. 5(ii)). A solid
circle marks the location of the nucleated domain.
The domain then grows towards the center of grain
A, with the large arrow in Fig. 5(ii) indicating the
direction of domain growth. From Fig. 5(iii) it is evi-
dent that switching in grain A propagates to the neigh-
boring grain B, resulting in the nucleation a new
domain in grain B. The nucleated domain then grows
toward the center of grain B, as shown in Fig. 5(iv).
Switching occurs by a similar mechanism in other
grains as well, suggesting that this is a rather general
mechanism for switching in a polycrystal.

To analyze the energetic contributions to local do-
main switching, we determined the changes in the local
energy densities in grain A as switching progressed. Figs.
6 and 7 show the contours of the change in electric and
elastic energy density distributions, respectively, at dif-
ferent stages of the switching process. The difference in
the energy densities is calculated with reference to the
domain structure presented in Fig. 5(i). For example,
Fig. 6(i) represents the distribution of the difference in
electrical energy density between the domain structures
presented in Fig. 5(ii) and (i); the darker the color of
the contour, the higher the magnitude of energy density.
The iteration steps were chosen to be identical to those
presented in Fig. 5(ii)–(iv).
= 104.48 kV/cm. Figures correspond to the point c in the PE loop of
(iv) Nitr = 3700. The filled lines represent grain boundaries, while the

nucleated 90� domain is marked by a circle. The big arrow shows the



Fig. 7. Difference in elastic energy density of the domain structure presented in Fig. 5(ii)–(iv) with respect to that of the unswitched domain structure
of Fig. 5(i).

Fig. 6. Difference in electrical energy density of the domain structure presented in Fig. 5(ii)–(iv) with respect to that of the unswitched domain
structure of Fig. 5(i).
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5. Discussion

The stability of domain structures in ferroic materials
is governed by competing energetic contributions. In the
case of a ferroelectric material, the total energy includes
the bulk free energy, domain wall energy, electrostatic
energy, and elastic energy densities. Under an applied
electric field, the changes in these energies determine the
nucleation of a newdomain at a particular site andgrowth
by domain wall migration during polarization switching.

According to Fig. 6(i), the nucleation of a new do-
main near the grain boundary in grain A reduces the
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electrical energy density locally. The figure shows that
the nucleated domain marked by the circle is bounded
by contour lines of �0.05 and �0.02. Fig. 6(ii)–(iii) illus-
trate how the growth of the 90� domains is also accom-
panied by a decrease in the electrical energy density with
respect to the unswitched energy state. The decrease in
electrical energy density during nucleation and growth
can be attributed to the difference in polarization direc-
tion across the grain boundary between grains A and B.
Nucleation and growth of a 90� domain in grain A helps
to maintain a head-to-tail configuration across the grain
boundary. The switching in grain A seems to promote
the nucleation of a 90� domain within grain B near the
grain boundary, indicating that switching in one grain
influences the occurrence of switching in neighboring
grains.

The elastic energy density changes during switching
are shown in Fig. 7(i)–(iii). All contour lines near the
switched domain have positive values, indicating that
switching increases the elastic energy density locally
compared to the unswitched state. Comparing Figs. 6
and 7, we conclude that the switching-induced increase
in elastic energy density is more than offset by the de-
crease in electrical energy density; hence, the total en-
ergy density of the system decreases. Therefore, it can
be concluded that nucleation and growth of 90� domains
is primarily driven by the decrease in the electrical en-
ergy density.

Our observation of polarization switching by nucle-
ation and growth of 90� domains has already been
found in experiment. For example, Chen et al. [27] ob-
served that polarization switching in PZT thin films oc-
curs by nucleation of new 90� domains and subsequent
growth of the nucleated domains. This confirms the
behavior seen in Fig. 5(ii) that a new 90� domain nucle-
ates at the twin boundary in grain A and grows toward
the center of the grain along the twin boundary marked
by the large arrow. Using a finite element model, Hwang
et al. [11] suggested that the change in dielectric interac-
tion energy arising from neighboring grains was the
primary cause for 90� switching in ferroelectric polycrys-
tals. In addition, our prediction that the polarization
switching in one grain is facilitated by the polarization
switching in a neighboring grain is consistent with prior
observations by Cao et al. [28], which indicated that the
domain switching process involves both intergranular
and trans-granular cooperation.

It should be noted that our model takes into account
the complicated local elastic and electrostatic interac-
tions between neighboring grains that are present during
polarization switching. Although the emphasis of this
paper is on the domain switching mechanisms under an
electric field, the model can be applied to domain evolu-
tion under an applied stress or to the simultaneous appli-
cation of stress and an electric field. Furthermore, the
present model can be applied directly to switching and
domain evolution in a 3D system; as a matter of fact, a
parallel version of the current computer code is being
developed for the study of domain switching mechanisms
and hysteresis loops in 3D. Moreover, it is possible to
introduce other defects into the model, such as inhomo-
geneous compositional distributions, dislocations and
second-phase precipitates [29–31]. Finally, in this work
we assumed that the elastic coefficients are homogenous
and isotopic, although real polycrystalline materials are
always inhomogeneous. Numerical algorithms are now
available [30,32] for taking elastic inhomogeneity into ac-
count, and its effect on ferroelectric domain switching
will be the focus of future publications.
6. Conclusion

A 3D phase-field model has been developed for pre-
dicting domain structure evolution under an applied
electric field in ferroelectric polycrystals. Based on the
simulation of ferroelectric domain evolution, it was
found that polarization reversal takes place by the
nucleation and migration of 90� domain walls instead
of by direct 180� domain switching. It was observed that
these 90� domains nucleate at the grain boundaries and
then grow toward the grain interior. The electrical en-
ergy was found to be the main driving force for both
the nucleation and growth of 90� domains. Finally, it
was demonstrated that polarization switching between
neighboring grains is correlated.
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