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Abstract. We report an efficient phase field formalism to compute the stress distribu-
tion in polycrystalline materials with arbitrary elastic inhomogeneity and anisotropy.
The dependence of elastic stiffness tensor on grain orientation is taken into account,
and the elastic equilibrium equation is solved using a spectral iterative perturbation
method. We discuss its applications to computing residual stress distribution in sys-
tems containing arbitrarily shaped cavities and cracks (with zero elastic modulus) and
to determining the effective elastic properties of polycrystals and multilayered com-
posites.
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1 Introduction

Phase-field models have been extensively used to study the effect of elastic stresses on mi-
crostructural evolution during solid-to-solid phase transformations (see the reviews [1–3]
for details). However, most of these models approximate the elastic modulus to be ho-
mogeneous. Homogeneous modulus approximation is not a valid assumption when the
microstructures exhibit large elastic inhomogeneity. Examples of elastically inhomoge-
neous materials include multiphase materials in which the constituent phases have dif-
ferent elastic moduli, composites, systems containing cavities and cracks, and polycrys-
talline materials. In the case of polycrystals, the overall elastic stiffness tensor depends
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on the orientation of each grain constituting the polycrystal. As a result, polycrystalline
materials are always associated with an inhomogeneous distribution of elastic moduli.

There have been fewer efforts to model elastically inhomogeneous systems using
phase field models. Leo et al. and Zhu et al. numerically solved the mechanical equilib-
rium equation for elastically inhomogeneous systems using conjugate gradient method [4,
5]. Hu and Chen developed an iterative-perturbation scheme to solve the mechanical
equilibrium equation in elastically inhomogeneous binary alloys [6, 7]. Wang et al. de-
veloped a phase field microelasticity theory to model elastically and structurally inho-
mogeneous solids [8]. Their theory is based on the estimation of strain energy of an
elastically inhomogeneous solid by numerically computing the effective stress free strain
for an equivalent elastically homogeneous system [8, 9].

In this paper we present a phase field model based on the iterative-perturbation
method developed by Hu and Chen [6] to compute the residual stress distribution in
polycrystalline materials. This allows one to compute the equilibrium stress distribution
for any arbitrary structurally and elastically inhomogeneous microstructure using our
method. Furthermore, it will be shown that the effective elastic properties of polycrystals
can be efficiently computed from its response to an applied stress or strain.

2 Formulation and numerical implementation

In the phase-field model developed by Fan and Chen for studying grain growth [10, 11],
a polycrystalline microstructure is described using a set of Q continuous, non-conserved
order parameter fields ηi(r,t) (i=1,··· ,Q). The order parameter fields represent grains of
a given crystallographic orientation. We use a function φ(r,t)=∑i η

2
i (r,t) to distinguish

between the grain interior and the grain boundaries.

In a polycrystalline material, the elastic constants depend on the relative orientation of
different grains constituting the polycrystal and hence are always inhomogeneous. Since
the grains are rotated with respect to a fixed coordinate system, the elastic stiffness tensor
for each grain is obtained by transforming the tensor with respect to the fixed coordinate
system. Let Cijkl represent the stiffness tensor for a single grain in a fixed reference frame.
Then, the position-dependent elastic stiffness tensor for the entire polycrystal in terms of
the order parameter fields is defined as

Cijkl(r)=∑
g

η2
g(r)a

g
ipa

g
jqa

g
kra

g
lsCpqrs, (2.1)

where a
g
ij is the transformation matrix representing the rotation of the coordinate system

defined on a given grain ‘g’ with respect to the fixed reference frame and Cpqrs is the
stiffness tensor of the reference medium. The transformation matrix aij is expressed in
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terms of the Euler angles θ, ψ and ζ (in three dimensions):

aij =





cosθcosζ−sinθsinζcosψ sinθcosζ+cosθsinζcosψ sinζsinψ
−cosθsinζ−sinθcosζcosψ −sinθsinζ+cosθcosζcosψ cosζsinψ

sinθsinψ −cosθsinψ cosψ



, (2.2)

where 0≤ θ≤2π, 0≤ψ≤π, 0≤ ζ ≤2π. In addition, the elastic constants may depend on
additional variables such as concentration and order parameters. However, in this work,
we focus on the effect of elastic inhomogeneity in a grain structure.

The spatially dependent elastic stiffness tensor, Cijkl(r), can be written as a sum of a

constant homogeneous part C0
ijkl and a position-dependent inhomogeneous perturbation

C′
ijkl(r). When the homogeneous part is assumed to be isotropic, the homogeneous elastic

constants can be expressed in terms of two independent elastic constants, bulk modulus
K and shear modulus µ:

C0
ijkl =Ciso

ijkl =Kδijδkl+µ

(

δikδjl+δilδjk−
2

d
δijδkl

)

, (2.3)

where d represents the dimensionality of the system and δij is Kronecker’s delta function.
Otherwise, the homogeneous part can also be approximated as the mean between the
maximum and minimum values of Cijkl(r):

C0
ijkl =

1

2

[

max(Cijkl(r))+min(Cijkl(r))
]

. (2.4)

The remaining elastic constants are treated as inhomogeneous perturbation. Thus Cijkl(r)
can be rewritten as

Cijkl(r)=C0
ijkl+

(

∑
g

η2
g(r)a

g
ipa

g
jqa

g
kra

g
lsCpqrs−C0

ijkl

)

, (2.5)

where g=1,··· ,Q and a
g
ij represents the transformation matrix for grain ‘g’ defined with

respect to a fixed coordinate system.
The position-dependent eigenstrain tensor ǫ0

ij(r) for the entire polycrystal can be spec-

ified arbitrarily (dilatational or non-dilatational) and is given by ǫ0
ij(r)=∑g η2

g(r)a
g
ipa

g
jqǫ

0,g
pq ,

where ǫ
0,g
pq is the eigenstrain associated with grain ‘g’.

Let ǫij(r) denote the total strain measured with respect to a reference undeformed
lattice. Then, assuming linear elasticity, the local stress σij(r) is given as

σij(r)=(C0
ijkl+C′

ijkl(r))(ǫkl(r)−ǫ0
kl(r)). (2.6)

To obtain the local elastic field, we solve the mechanical equilibrium equation

∂σij

∂rj
=0 ⇒ ∇jCijkl(r)

(

ǫkl(r)−ǫ0
kl(r)

)

=0. (2.7)
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The total strain ǫkl(r) can be expressed as a sum of homogeneous and heterogeneous
strains [12]:

ǫij(r)= ǭij+δǫij(r), (2.8)

where the homogeneous strain ǭij is defined such as

∫

δǫij(r)d
3r=0. (2.9)

The heterogeneous strain field δǫij(r)is defined as

δǫij(r)=
1

2

(

∂ui(r)

∂rj
+

∂uj(r)

∂ri

)

, (2.10)

where ui(r) denotes the ith component of the displacement field.
Using Eqs. (2.5), (2.8) and (2.10) in Eq. (2.7), we obtain after rearranging and simpli-

fying

C0
ijkl

∂2uk

∂rj∂rl
=∇j

[(

∑
g

η2
g(r)a

g
ipa

g
jqa

g
kra

g
lsCpqrs

)

(

ǫ0
kl(r)− ǭkl

)

]

− ∂

∂rj

[(

∑
g

η2
g(r)a

g
ipa

g
jqa

g
kra

g
lsCpqrs−C0

ijkl

)

∂uk

∂rl

]

. (2.11)

Following Hu and Chen [6], we implement an iterative perturbation scheme to solve
Eq. (2.11) as follows:

Zeroth-order approximation: We assume the elastic moduli to be homogeneous and
solve the mechanical equilibrium equation. In other words, C′

ijkl(r) is set to zero in

Eq. (2.11). Thus we obtain

C0
ijkl

∂2uk(r)

∂rj∂rl
=C0

ijkl∇j

(

ǫ0
kl(r)

)

. (2.12)

The zeroth-order displacement field is obtained by solving Eq. (2.12) in Fourier space:

ũ0
k(k)=−IGik(n)kjσ̃

0
ij(k), (2.13)

where I=
√
−1, ũ0

k(k) and σ̃0
ij(k) are Fourier transforms of u0

k(r) and σ0
ij(r), respectively,

k is the reciprocal lattice vector, kj (j = 1,2,3) denotes the jth component of k, Gik(n) is

the Green tensor whose inverse is defined as G−1
ik (n)=C0

ijklnjnl, n=k/|k|, and σ0
ij(r)=

C0
ijklǫ

0
kl(r).

Higher-order approximation: The higher order solutions for uk(r) are derived by substi-
tuting the zeroth-order displacement solution in the nonlinear term in Eq. (2.11). The nth
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order solution un
k (r) is obtained using Fourier transforms.

ũn
k (k)=−IGik(n)kj





(

∑g η2
g(r)a

g
ipa

g
jqa

g
kra

g
lsCpqrs

)

(

ǫ0
kl(r)− ǭkl

)

−
(

∑g η2
g(r)a

g
ipa

g
jqa

g
kr a

g
lsCpqrs−C0

ijkl

)

∂un−1
k (r)
∂rl





k

. (2.14)

The number of iterations required to refine the displacement solution depends on the
accuracy required by the problem. Generally, except for cases with extremely large elastic
inhomogeneity, fewer than three iterations are required to achieve convergence of the
displacement solution.

When a system is under a constant strain, the homogeneous strain ǭij is equal to the
applied strain. However, when the boundaries of the system are allowed to relax, the
homogeneous strain is obtained by minimizing the total elastic energy. We derive a gen-
eral expression for homogeneous strain assuming that a constant stress is applied to the
system. When the system is subjected to an applied stress σa

ij, the total elastic energy of

the system is given by [13]:

Fel =
1

2

∫

V
Cijkl(r)[ǭij+δǫij(r)−ǫ0

ij(r)][ǭkl+δǫkl(r)−ǫ0
kl(r)]dV. (2.15)

Minimization of total elastic energy with respect to homogeneous strain yields

∂Fel

∂ǭij
=0

⇒ σa
ij = ǭkl

1

V

∫

V
Cijkl(r)dV+

1

V

∫

V
Cijkl(r)δǫkl(r)dV− 1

V

∫

V
Cijkl(r)ǫ

0
kl(r)dV

⇒ ǭkl = 〈Sijkl〉
(

σa
ij+〈σ0

ij〉−〈δσij〉
)

, (2.16)

where 〈Sijkl〉=〈Cijkl〉−1, 〈Cijkl〉=(1/V)
∫

V
Cijkl(r)dV, 〈σ0

ij〉= 1
V

∫

V
Cijkl(r)ǫ

0
kl(r)dV, and 〈δσij〉

= 1
V

∫

V Cijkl(r)δǫkl(r)dV. Thus, our model can be applied to solve mechanical equilibrium
equation in constrained as well as unconstrained systems.

All the parameters in our computation of residual stress distribution have been non-
dimensionalized using characteristic length and energy units. In what follows, we present
the values of all the parameters in their dimensionless form.

Using our model we have computed the residual stress distribution in polycrystalline
systems in two and three dimensions, arbitrarily shaped cavities and cracks with zero
elastic modulus, multilayers and composites. The effective elastic constants are calcu-
lated using the following assumptions:

i. the elastic modulus changes sharply across the grain boundaries (i.e. no modulus
difference between the grain boundaries and the interior);

ii. the excess volume associated with the grain boundaries is negligible (i.e. no volume
difference between the grain boundaries and the interior).
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It should be noted that assumptions (i) and (ii) are valid when the volume fraction
of the grain boundaries in the polycrystal is small. Stress distribution in a polycrystal
depends strongly on the variation of elastic constants across the grain boundary. Large
stress concentrations at the grain boundaries should affect the overall elastic properties
of the polycrystal. Moreover, grain boundaries can be associated with excess volume
compared to the grain interior which may lead to relaxation of stress across the grain
boundaries. When the volume fraction of the grain boundaries is small i.e. the average
grain size is large (of the order of microns) we use a sharp interface assumption to de-
scribe the variation of elastic moduli across the grain boundary.

On the other hand, when the volume fraction of the grain boundaries is high (i.e. av-
erage grain size of the order of nanometers), assumption (i) is relaxed and the effect of
grain boundaries on the calculation of effective elastic properties is taken into account. In
this case we assume that the elastic moduli vary smoothly across the grain boundary. As
a result, the calculation of effective elastic properties is sensitive to the width of the grain
boundary. Further, the grain boundaries are assumed to be elastically softer regions than
the grain interior in our calculation. However, in both cases we neglect the volume differ-
ence between the grain boundaries and the grain interior in absence of any experimental
data regarding the excess volume associated with the grain boundaries.

We have used L2 norm to measure the error during the refinement procedure. The
error, based on the L2 norm, is defined as follows:

error=∑
r

√

(un+1
x (r)−un

x(r))
2+(un+1

y (r)−un
y(r))

2+(un+1
z (r)−un

z (r))
2, (2.17)

where un+1
x (r), un+1

y (r) and un+1
z (r) are the components of displacement obtained after

(n+1)th iteration and un
x(r), un

y(r) and un
z (r) are the components of displacement obtained

after nth iteration. The iterations are stopped when the error falls below a specified toler-
ance value. This is used as the convergence criterion for the refinement of displacement
solutions.

The tolerance value is set to be 10−6 for refinement of displacements; decreasing the
tolerance to a smaller value does not affect the accuracy of the solutions. For a system
containing cylindrical cavity, the number of iterations required for convergence of the
solutions is found to be approximately seven. However, the number of iterations required
for convergence of solution increases with the increase in the size of the cavity.

3 Results and discussion

First we consider the example of a cylindrical cavity contained in a uniaxially stressed
elastically isotropic solid and compare our numerical solution with the analytical results
to prove the accuracy of our method. The system containing cavity is subjected to a
uniform tensile stress σa

xx = 0.01 along the x-axis. We assumed plane strain condition to
compute the residual stress distribution. The system size is chosen to be 1024x1024 grid
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points with grid spacing ∆x=∆y=1.0. The diameter of the cylindrical cavity is 80 length
units. The elastic constants of the solid are assumed to be C11 = 450.0 andC12 = 150.0
and the cavity has zero elastic modulus. The computed residual stress fields inside and
around the cavity, (σxx−σa

xx)/σa
xx, σxy/σa

xx and σyy/σa
xx are shown in Fig. 1(a)-(c). The

maximum variation in the stress field is observed around the interface. The numerically
computed stress fields along mutually perpendicular x-x and y-y sections through the
center of the cavity are in very good agreement with the corresponding analytical so-
lutions available from literature [14] (Fig. 1(d), (e)). Since the system has a cylindrical
symmetry, it suffices to show the solutions for one quadrant.

Next, we outline a procedure to calculate effective elastic constants of arbitrary elas-
tically inhomogeneous microstructures. When a material containing inhomogeneities
(such as grain boundaries, voids, precipitates) is subjected to an applied strain field, the
effective stress field in the material is measured using Eq. (2.6). For a given homogeneous
strain and an eigenstrain distribution, the stress field is given by

σel
ij (r)=Cijkl(r)

(

δǫij(r)+ ǭij−ǫ0
ij(r)

)

. (3.1)

The average stress in the material σav
ij is calculated as

σav
ij =

1

V

∫

V
σij(r)dV. (3.2)

The effective elastic stiffness tensor C
e f f
ij (in Voigt notation) is obtained by measuring

the overall stress response when the system is subjected to applied strain (constrained
system):

σav
i =C

e f f
ij ǭj. (3.3)

To ensure the correctness of our method and to test the sharp interface assumption
for the variation of elastic moduli across the interface, we calculated the effective elastic
moduli of a three-dimensional multilayered composite using our method and compared
them with the analytically obtained elastic moduli [15]. The multilayered composite,
shown in Fig. 2, is composed of alternating elastically isotropic layers stacked perpen-
dicular to the x-axis. The elastic moduli of the materials constituting the red and blue
layers are isotropic but they vary in magnitude (C11=450, C12=150 for the red layer and
C11=225, C12=75 for the blue layer). The solutions converged after the first iteration and
we obtained an excellent match between the computed effective elastic constants of this
transversely isotropic composite and the corresponding analytical values (see Table 1).

We also calculated the effective elastic constants of two- and three-dimensional poly-
crystals. Fig. 3(a) shows a two-dimensional single phase polycrystalline microstructure
containing randomly oriented and elastically anisotropic grains (having cubic symme-
try). The elastic constants of the phase are C11 = 450.0, C12 = 150.0 and C44 = 300.0. The
normalized components of the residual stress field, σxx/σa

xx, σxy/σa
xx, σyy/σa

xx, are shown
in Fig. 3(b)-(d) when the polycrystal is subjected to a uniaxial applied stress σa

xx = 0.01.
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(a) (b) (c)

(d) (e)

Figure 1: Equilibrium residual stress fields (a) (σxx−σa
xx)/σa

xx, (b) σxy/σa
xx, (c) σyy/σa

xx in a uniaxially stressed
elastically isotropic solid containing a cylindrical cavity. Stress is applied along x-axis (σa

xx = 0.01). The box
dimensions in figures (a)-(c) correspond to 400x400 length units. (d),(e) Comparison of numerically obtained
stress fields with the corresponding analytical solutions along x-x and y-y sections passing through the center
of the cavity parallel to x- and y-axis, respectively. Numerical solutions are represented by open symbols and
the analytical solutions are represented by lines.

Figure 2: A multilayered composite containing alternating layers. Both red and blue layers have isotropic elastic
constants. The elastic constants of the material comprising the red layers are C11 =450,C12 =150 and that of
the material comprising the blue layers areC11=225,C12 =75.
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Table 1: Comparison between computationally obtained values of effective elastic constants using our model
and the corresponding analytical values in a multilayered composite material.

Effective Elastic Constants Analytical Simulation

C
e f f
11 300.0 300.0

C
e f f
12 =C

e f f
13 100.0 100.0

C
e f f
22 =C

e f f
33 333.33 333.3333

C
e f f
23 108.33 108.3333

C
e f f
44 112.5 112.5

C
e f f
55 =C

e f f
66 100.0 100.0

The stress field is inhomogeneous due to the variation of elastic moduli with grain ori-
entation. The stress field near the grain boundaries is different from that of the grain
interior. The grain boundaries are associated with different levels of stress concentration
depending on the misorientation between the grains. For example, the grain boundaries
that are favorably aligned with respect to the direction of applied stress are associated
with lower stress concentration.

We have also evaluated the effective elastic properties of the polycrystal from the
mechanical response assuming no modulus and volume differences between the grains
and the grain boundaries. In the calculation of effective elastic constants, the volume
fraction of grain boundaries is assumed to be small compared to the grain interior and
sharp interface assumption is used to describe the variation of elastic moduli across the
grain boundaries.

The computed effective elastic constants are C
e f f
11 =C

e f f
22 =502.145, C

e f f
12 =97.855, C

e f f
44 =

212.057 which indicates elastically isotropic properties even though the grains have cubic

anisotropy. The Voigt averaged elastic constants are C
Voigt
11 =520.1573, C

Voigt
12 =79.801, and

C
Voigt
44 = 229.816 [16]. The computed elastic constants are close to the Voigt averaged

values which provide the upper bound of the effective elastic moduli of the polycrystal.

We also computed the effective elastic properties of a three-dimensional polycrys-
talline microstructure (Fig. 4(a)) generated using phase field method. The microstructure
is described using 100 order parameters and the computational domain size is 64×64×
64. The grains are assumed to be randomly oriented and the crystal has cubic elastic
anisotropy and the same elastic constants as the previous example. The local pressure
distribution, when the system is subjected to an applied stress σa

xx = 0.01 is shown in
Fig. 4(b).

The computed values of the effective elastic constants using sharp interface assump-
tion for the variation of elastic moduli across the grain boundaries lie close to the macro-
scopic Voigt averaged values (see Table 2). However, if we relax the sharp interface as-
sumption and take into account the effect of grain boundaries, the calculated effective
elastic moduli are smaller in magnitude. This result stems from our definition of posi-
tion dependent elastic stiffness tensor in Eq. (2.1). The values of the calculated elastic
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(a) (b)

(c) (d)

Figure 3: (a) A randomly textured polycrystal (in two dimensions) containing elastically anisotropic grains
having cubic symmetry. The polycrystal is subjected to uniform tensile stress along x-axis. (b)-(d) Equilibrium
stress fields σxx, σxy and σyy, respectively, scaled with respect to the applied stress.

(a) (b)

Figure 4: (a) A three dimensional polycrystal containing randomly oriented elastically anisotropic grains with
cubic symmetry. The polycrystal is subjected to an uniaxial stress along x direction (σxx = 0.01). (b) Local
pressure distribution p(r) (=(σxx+σyy+σzz)/3.0) in the polycrystal scaled with respect to applied stress.
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Table 2: Comparison of effective elastic constants obtained from iterative perturbation technique using sharp
and diffuse interface assumptions for the variation of elastic moduli across the grain boundary, respectively, and
those estimated using Voigt approximation for a 3D polycrystal.

Effective elastic
constants

Computed from
phase field model
(sharp interface

assumption)

Computed from
phase field model
(diffuse interface

assumption)

Estimated using
Voigt

approximation

C
e f f
11 534.713 395.751 552.1

C
e f f
22 537.13 414.104 554.0969

C
e f f
33 517.276 343.42 535.0264

C
e f f
12 97.71 15.45 89.47

C
e f f
13 117.57 93.2 108.63

C
e f f
23 115.155 89.8 106.71

C
e f f
44 245.96 187.86 256.69

C
e f f
55 248.578 168.678 258.645

C
e f f
66 226.98 128.98 239.48

constants using sharp and diffuse interface descriptions for the change in moduli across
grain boundaries are compared in Table 2. The moduli calculated using diffuse interface
assumption are also sensitive to the width of the grain boundary.

It should be noted that the number of iterations required for convergence increase
from 3 to 5, when the number of order parameters is increased ten times. Since our model
only keeps track of the nonzero active order parameters for computing the residual stress
fields in polycrystals, there is no significant increase in the number of iterations for a
corresponding increase in the number of order parameters [17].

The model developed by Wang et al. requires the evaluation of equivalent eigenstrain
which is obtained as a steady state solution of the time-dependent Ginzburg-Landau
equation [8]. On the other hand, our model is based on an iterative perturbation method.
Both of these methods can be implemented in three dimensions and can tackle problems
involving arbitrary distribution of elastic constants and eigenstrain. Since the computa-
tional time required is not explicitly mentioned by Wang et al., it is difficult to compare
the relative efficiency of the methods. However, our method does not require steady
state solution of Ginzburg-Landau equation. The accuracy of our method depends on
the number of higher-order refinements of the displacement solution (even in systems
with extremely large difference in elastic modulus such as voids and cavities the number
of higher-order corrections is approximately seven). Moreover, the equilibrium stress dis-
tribution obtained for cavities and polycrystals using our method agree well with those
obtained by Wang et al.

In a recent study Ni and Chiang used phase field microelasticity model based on the
concept of equivalent eigenstrain to predict the elastic constants of three-dimensional het-
erogeneous materials [18]. Their results show that for an infinite isotropic elastic medium
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containing a spherical void under uniaxial loading, the number of iterative time steps re-
quired for attaining convergence with a relative error less than 1% is approximately six
when the stiffness contrast (i.e. the ratio of shear modulus between phases) is 1e-3. When
the relative error is smaller, the number of time steps required for convergence increase
to a larger value. However, when our iterative method is applied to such a system under
similar conditions for convergence, the number of iterations required is two.

In summary, we have developed a phase field method to calculate residual stress dis-
tribution in arbitrary structurally and elastically inhomogeneous materials. Our method
can be applied to materials with very large modulus contrast. Moreover, our model can
be employed to calculate the effective properties of polycrystals with a high accuracy.
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