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Abstract
We developed a phase-field model to study the stress-driven grain boundary
migration in elastically inhomogeneous polycrystalline materials with arbitrary
elastic inhomogeneity and anisotropy. The dependence of elastic stiffness
tensor on grain orientation is taken into account, and the elastic equilibrium
equation is solved using the Fourier spectral iterative-perturbation method.
We studied the migration of planar and curved grain boundaries under an
applied stress. The relation between grain boundary migration velocity and
driving force is found to be linear in the steady-state regime. Our study shows
that the stress distribution depends on the relative misorientation between the
grains and the nature of the applied load. As a consequence, the mechanism
of grain boundary migration is different when the load is applied parallel or
perpendicular to a grain boundary. The bulk mechanical driving force for grain
boundary migration is provided by the difference in the level of stress in the
adjoining grains which arise due to difference in elastic moduli. We further
show that under certain conditions an applied stress may act as a precursor to
abnormal grain growth.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many technologically important materials are polycrystalline, containing an assembly of
grains separated by grain boundaries. The temporal and spatial evolution of a grain structure
takes place through migration of grain boundaries, leading to the evolution of microstructure
characteristics such as grain size, morphology and topology. As the microstructure controls
the physical and mechanical properties of a material, grain boundary migration and grain
growth kinetics has always been a subject of intense interest. Although most of the studies
on grain growth are focused on curvature-driven grain boundary migration [1], there has been
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increasing interest in the effect of external loads such as applied stress, magnetic and electric
fields. For example, there have been several experimental studies to understand the stress-
driven migration of both low and high-angle grain boundaries [2–6]. Winning et al studied the
motion of planar and curved tilt boundaries under the influence of mechanical shear stress [4, 5].
They observed that externally imposed stress can induce the motion of both low- and high-angle
grain boundaries. Based on the measured activation enthalpies, they attributed the motion of
planar grain boundaries to the movement of grain boundary dislocations. Their study shows
that the mobility of grain boundaries does not depend on the angle of misorientation except
for a sharp change during the transition from low- to high-angle boundaries.

There have been a number of atomistic molecular dynamics (MD) simulations of stress-
induced grain boundary migration. Schonfelder et al employed MD to study the intrinsic
migration behavior of flat, high-angle grain boundaries under an applied strain [7]. They
concluded that the velocity-driving force relationship is linear up to 4% of applied strain.
Using MD simulations, Zhang et al studied elastically driven migration of flat grain boundaries
in a system where the driving force for boundary migration does not change with time [8].
They determined the activation energy for grain boundary migration and the mobility of a
grain boundary at different temperatures. They observed that the grain boundary velocity
is a nonlinear function of the driving force, especially at low temperatures. Based on MD
simulations of grain boundary motion under a shear stress, Ivanov and Mishin concluded that
the stress–velocity relation is nonlinear at low temperature and high velocities and becomes
approximately linear at high temperatures and low velocities [9]. More recently, various
MD simulation schemes have been developed and used to study grain boundary migration in
bicrystals. Different types of driving forces, such as curvature driving force originating from
capillary effect, difference in the strain energy densities between grains, an artificial driving
force by changing the potential energy of atoms, and random walk of planar grain boundaries
induced by thermal fluctuations, have been employed to study the migration of grain boundaries
(see [10] for an excellent overview of the MD based techniques).

MD simulations are ideal for determining the mobility of a grain boundary under applied
stress and atomistic mechanisms of grain boundary migration. However, the computational cost
and the length and time scales involved in MD make it difficult to directly simulate the migration
of grain boundaries in multigrain systems, i.e. grain growth. On the other hand, the phase-field
method has emerged as a powerful tool for studying microstructural evolution at the mesoscale
(see reviews [11–13] for detail). They are continuum models and can provide useful insight into
the mesoscale mechanisms of grain boundary migration under an applied stress. These models
have been extensively used to study curvature-driven grain growth [14–17] and the effect of
elastic stresses on microstructural evolution during coherent phase transformations in solids
(see [13] and references therein). However, many of the existing models use the homogeneous
elastic modulus approximation. Although homogeneous modulus approximation is sufficient
to explain several morphological features such as shape change of coherent inclusions with
size and their alignment along elastically favorable directions, the assumption is not valid
when the microstructure exhibits large elastic inhomogeneity. For example, to study stress
effect on grain growth, we need to take into account the dependence of the elastic stiffness
tensor on the orientation of each grain constituting the polycrystal. In this paper, our aim is to
establish a phase-field model in which both curvature and mechanical driving forces are taken
into account. Such a model will be useful to study microstructural evolution in polycrystalline
systems under applied load.

Recently there have been several approaches to treat the effect of elastic inhomogeneity
in solids [18–27] in phase-field models. Jou et al studied microstructural evolution in
elastically inhomogeneous two-dimensional binary alloy [18] where they solved the elastic
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field for arbitrarily shaped precipitates using the boundary integral method together with
a small scale preconditioner. Moulinec and Suquet proposed an efficient algorithm based
on Fourier series to compute the overall response of nonlinear composites with complex
microstructures [19]. In their method they calculated Green’s function of linear elastic and
homogeneous comparison material and used an iterative procedure to solve the mechanical
equilibrium equation when elastically inhomogeneous constituents are considered. They
further improved their iterative method using a scheme based on augmented Lagrangian
method and applied their scheme to calculate the response of linear and nonlinear composites
with arbitrary ratio of elastic constants between the constituent phases [20, 21]. Lebensohn
presented a formulation to compute the local response of elastic and viscoplastic anisotropic
3D polycrystals based on fast Fourier transform (FFT) algorithm [22]. His formulation
is an extension of the FFT method proposed by Suquet and co-workers [19–21] and
takes into account elastic heterogeneity arising due to directional properties of grains with
different crystallographic orientations. Zhu et al studied microstructural evolution during
phase separation and coarsening in systems with strong elastic inhomogeneity [27]. They
solved the two-dimensional inhomogeneous elastic equilibrium equations using the conjugate
gradient method. Wang et al developed a phase-field microelasticity theory to model
elastically and structurally inhomogeneous solids [23, 24]. Their theory is based on the
estimation of strain energy of an elastically inhomogeneous solid by numerically computing
the effective stress free strain for an equivalent elastically homogeneous system. Hu and
Chen developed an iterative-perturbation method based on Fourier spectral implementation
to study microstructural evolution in elastically inhomogeneous and anisotropic systems [25].
Yu et al demonstrated the efficiency of the iterative-perturbation scheme through numerical
experiments and mathematical justification [26].

In this study, we extended the iterative-perturbation method developed by Hu and
Chen [25] to compute stress distribution in elastically inhomogeneous polycrystals. This
allows us to compute the stress distribution for any arbitrary structurally and elastically
inhomogeneous microstructures. We integrated our method with the multi-order parameter
phase-field model for grain growth developed by Fan and Chen [15] to study stress-driven
grain boundary migration. Since our main objective is to develop the phase-field model for
studying microstructural evolution in elastically inhomogeneous polycrystalline systems, we
focus on simple examples to test our approach. However, our model can be used to study grain
growth and texture evolution in complex polycrystalline systems in two and three dimensions
under applied load.

The paper is organized as follows: in section 2 we describe our phase-field model to study
stress-driven grain boundary migration in elastically inhomogeneous polycrystals. In section 3
we present the salient results from our study and summarize our important findings in section 4.

2. Formulation

2.1. Elastic stress distribution in polycrystals

In the phase-field model developed for grain growth [15, 28], a polycrystalline microstructure
is described using a set of Q continuous, non-conserved order parameter fields ηg(r, t)

(g = 1 . . . Q). The order parameter fields represent grains of a given crystallographic
orientation.

In a polycrystalline material, the elastic moduli depend on the relative orientation of
different grains and hence are always inhomogeneous. Since the grains are rotated with
respect to a fixed coordinate system, the elastic stiffness tensor for each grain is obtained by
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transforming the tensor with respect to the fixed coordinate system. Let Cijkl represent the
stiffness tensor for a single grain in a fixed reference frame. Then, the position-dependent
elastic stiffness tensor for the entire polycrystal in terms of the order parameter fields is
given by

Cijkl(r) =
∑

g

�g(r)a
g

ipa
g

jqa
g

kra
g

lsCpqrs, (1)

where amn(m, n = 1 . . . 3) is the transformation matrix representing the rotation of the
coordinate system defined on a given grain ‘g’ with respect to the fixed reference frame.
We use a function �g(r) = η2

g(r) to distinguish between the grain interior and the grain
boundaries. The function is chosen arbitrarily with the assumption that the grain boundary is
elastically softer than the interior. Cpqrs denotes the stiffness tensor of the reference medium.
aij is expressed in terms of the Euler angles θ , ψ and ζ (in three dimensions):

a11 = cos θ cos ζ − sin θ sin ζ cos ψ, a12 = sin θ cos ζ + cos θ sin ζ cos ψ,

a13 = sin ζ sin ψ, a21 = − cos θ sin ζ − sin θ cos ζ cos ψ,

a22 = − sin θ sin ζ + cos θ cos ζ cos ψ, a23 = cos ζ sin ψ,

a31 = sin θ sin ψ, a32 = − cos θ sin ψ, a33 = cos ψ,

(2)

where 0 � θ � 2π , 0 � ψ � π , 0 � ζ � 2π . In addition, the elastic constants may depend
on additional variables such as concentration and order parameters. However, in this work, we
focus on the effect of elastic inhomogeneity stemming from the different grain orientations in
a grain structure.

It should be noted that the phase-field model takes into account all the five degrees of
freedom of the grain boundaries. Misorientation of the grain boundaries is specified by
assigning three Euler angles to each grain. Since our phase-field model is based on free
energy minimization with respect to the grain order parameters, the inclinations of the grain
boundaries are automatically determined during the simulations. Hence our model does not
require additional parameters to describe the inclinations of the grain boundaries.

The spatially dependent elastic stiffness tensor, Cijkl(r), can be written as a sum of
a constant homogeneous part C0

ijkl and a position-dependent inhomogeneous perturbation
C ′

ijkl(r). When the homogeneous part is assumed to be isotropic, the homogeneous elastic
constants can be expressed in terms of two independent elastic constants, bulk modulus K and
shear modulus µ:

C0
ijkl = Ciso

ijkl = Kδij δkl + µ

(
δikδjl + δilδjk − 2

d
δij δkl

)
, (3)

where d represents the dimensionality of the system and δij is Kronecker’s delta function.
Otherwise, the homogeneous part can also be approximated as the mean between the

maximum and minimum values of Cijkl(r):

C0
ijkl = 1

2 (max(Cijkl(r)) + min(Cijkl(r))). (4)

The remaining elastic constants are treated as inhomogeneous perturbation. Thus Cijkl(r) can
be rewritten as

Cijkl(r) = C0
ijkl +

(∑
g

η2
g(r)a

g

ipa
g

jqa
g

kra
g

lsCpqrs − C0
ijkl

)
, (5)

where g = 1 . . . Q and a
g

ij represents the transformation matrix for grain g defined with respect
to a fixed coordinate system.
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Let εij (r) denote the total strain measured with respect to a reference undeformed lattice.
Then, assuming linear elasticity, the local stress σij (r) is given as

σij (r) = (C0
ijkl + C ′

ijkl(r))(εkl(r) − ε0
kl(r)). (6)

Here, the position-dependent eigenstrain tensor ε0
ij (r) is a local plastic strain which can arise

from many different processes such as phase transformations, thermal expansion mismatch
and plastic deformation.

To obtain the local elastic field, we solve the mechanical equilibrium equation

∂σij

∂rj

= 0, i.e. ∇jCijkl(r)(εkl(r) − ε0
kl(r)) = 0. (7)

The total strain εkl(r) can be expressed as a sum of homogeneous and heterogeneous
strains [29]:

εij (r) = ε̄ij + δεij (r), (8)

where the homogeneous strain ε̄ij is defined such that∫
δεij (r) d3r = 0. (9)

The heterogeneous strain field δεij (r) is defined as

δεij (r) = 1

2

(
∂ui(r)

∂rj

+
∂uj (r)

∂ri

)
, (10)

where ui(r) denotes the ith component of displacement field.
Using equations (8) and (10) in equation (7) we obtain

∇jCijkl(r)

[
ε̄kl +

1

2

(
∂uk(r)

∂rl

+
∂ul(r)

∂rk

)
− ε0

kl(r)

]
= 0. (11)

Equation (11) can be rewritten using equation (5) as

∇j

[
C0

ijkl +

(∑
g

η2
g(r)a

g

ipa
g

jqa
g

kra
g

lsCpqrs − C0
ijkl

)]

×
[
ε̄kl +

1

2

(
∂uk(r)

∂rl

+
∂ul(r)

∂rk

)
− ε0

kl(r)

]
= 0. (12)

Rearranging and simplifying equation (12), we obtain

C0
ijkl

∂2uk

∂rj ∂rl

= ∇j

[(∑
g

η2
g(r)a

g

ipa
g

jqa
g

kra
g

lsCpqrs

) (
ε0
kl(r) − ε̄kl

)]

− ∂

∂rj

[(∑
g

η2
g(r)a

g

ipa
g

jqa
g

kra
g

lsCpqrs − C0
ijkl

)
∂uk

∂rl

]
.

(13)

Following Hu and Chen [25], we implement an iterative-perturbation scheme to solve
equation (13) as follows:

Zeroth-order approximation. We assume the elastic constants to be homogeneous and solve
the mechanical equilibrium equation. In other words, C ′

ijkl(r) is set to zero in equation (13).
Thus we obtain

C0
ijkl

∂2uk(r)

∂rj ∂rl

= C0
ijkl∇j (ε

0
kl(r)). (14)
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The zeroth-order displacement field is obtained by solving equation (14) in Fourier space:

ũ0
k(k) = −IGik(k)kj σ̃

0
ij (k), (15)

where ũ0
k(k) and σ̃ 0

ij (k) are Fourier transforms of u0
k(r) and σ 0

ij (r), respectively, k is the
reciprocal lattice vector, kj is the j th component of k, Gik(k) is the Green tensor whose
inverse is defined as G−1

ik (k) = C0
ijklkj kl , and σ 0

ij (r) = C0
ijklε

0
ij (r).

First-order approximation. We substitute the zeroth-order displacement solution in the
nonlinear term in equation (13) and rearrange the terms:

C0
ijkl

∂2u1
k(r)

∂rj ∂rl

= ∇j

{(∑
g

η2
g(r)a

g

ipa
g

jqa
g

kra
g

lsCpqrs

)
(εo

kl(r) − ε̄kl)

}

− ∂

∂rj

[(∑
g

η2
g(r)a

g

ipa
g

jqa
g

kra
g

lsCpqrs − C0
ijkl

)
∂uo

k(r)

∂rl

]
.

(16)

The solution u1
k(r) is obtained in Fourier space:

ũ1
k(k) = −IGik(k)kj




(∑
g

η2
g(r)a

g

ipa
g

jqa
g

kra
g

lsCpqrs

)
(εo

kl(r) − ε̄kl)

−
(∑

g

η2
g(r)a

g

ipa
g

jqa
g

kra
g

lsCpqrs − C0
ijkl

)
∂uo

k(r)

∂rl




k

. (17)

Higher-order approximation. The higher-order solutions for uk(r) are derived in a similar
way as the first-order approximation.

C0
ijkl

∂2un
k(r)

∂rj ∂rl

= ∇j

{(∑
g

η2
g(r)a

g

ipa
g

jqa
g

kra
g

lsCpqrs

)
(εo

kl(r) − ε̄kl)

}

− ∂

∂rj

[(∑
g

η2
g(r)a

g

ipa
g

jqa
g

kra
g

lsCpqrs − C0
ijkl

)
∂un−1

k (r)

∂rl

]
.

(18)

The solution un
k(r) is obtained using Fourier transforms.

ũn
k (k) = −IGik(k)kj




(∑
g

η2
g(r)a

g

ipa
g

jqa
g

kra
g

lsCpqrs

)
(εo

kl(r) − ε̄kl)

−
(∑

g

η2
g(r)a

g

ipa
g

jqa
g

kra
g

lsCpqrs − C0
ijkl

)
∂un−1

k (r)

∂rl




k

. (19)

The number of iterations required to refine the displacement solution depends on the
desired accuracy for the problem. Generally, except for cases with extremely large elastic
inhomogeneity, fewer than three iterations are required to achieve convergence of the
displacement solution.

2.2. Calculation of homogeneous strain

When a system is under a constant strain, the homogeneous strain is equal to the applied
strain. However, when the boundaries of the system are allowed to relax, the homogeneous
strain is obtained by minimizing the total elastic energy. We derive a general expression for
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homogeneous strain assuming that a constant stress is applied to the system. When the system
is subjected to an applied stress σ a

ij , the total elastic energy of the system is given by [30]

Fel = 1
2

∫
V

Cijkl(r)[ε̄ij + δεij (r) − ε0
ij (r)][ε̄kl + δεkl(r) − ε0

kl(r)] dV − ∫
V

σ a
ij ε̄ij dV. (20)

Minimization of total elastic energy with respect to homogeneous strain yields

∂Fel

∂ε̄ij

= 0,

⇒
∫

V

Cijkl(r)ε̄kl dV +
∫

V

Cijkl(r)δεkl(r) εdV −
∫

V

Cijkl(r)ε0
kl(r) dV − V σ a

ij = 0,

⇒ σ a
ij = ε̄kl

1

V

∫
V

Cijkl(r) dV +
1

V

∫
V

Cijkl(r)δεkl(r) dV − 1

V

∫
V

Cijkl(r)ε0
kl(r) dV,

⇒ ε̄kl = 〈Sijkl〉(σ a
ij + 〈σ 0

ij 〉 − 〈δσij 〉),

(21)

where 〈Sijkl〉 = 〈Cijkl〉−1, 〈Cijkl〉 = (1/V )
∫
V

Cijkl(r) dV , 〈σ 0
ij 〉 = 1

V

∫
V

Cijkl(r)ε0
kl(r) dV

and 〈δσij 〉 = 1
V

∫
V

Cijkl(r)δεkl(r) dV .
Thus our model can be applied to solve mechanical equilibrium equation in constrained

as well as unconstrained systems.

2.3. Microstructural evolution

For a static grain structure, the position-dependent elastic stiffness tensor Cijkl(r) is evaluated
once using equation (1). However, for an evolving grain structure Cijkl(r) is evaluated at every
time step. Here we outline the governing equations for grain growth under an applied stress
or strain. When elastic energy contribution is taken into account, the modified Cahn–Allen
equation is given by

∂ηg(r, t)

∂t
= −Lg(µch + µel), (22)

where Lg is the relaxation coefficient, µch = δFch/δηg , µel = δFel/δηg , Fch and Fel are the
chemical and elastic parts of the free energy. µch is given as

µch = ∂f (ηg)

∂ηg

− 2κg∇2ηg, (23)

where f (ηg) is the bulk free energy density and κg is the gradient energy coefficient associated
with the order parameter field ηg(r, t). µel is obtained as

µel = δFel

δηg

= δFel

δη2
g

· δη2
g

δηg

= 2ηg

δFel

δη2
g

.

(24)

If we ignore the modulus and volume differences between the grain boundaries and the interior,
i.e. Cijkl(r) changes sharply across the grain boundaries and set ε0

ij (r) = 0, the elastic driving
force µel(r) is given by

µel(r) = ηg(r)a
g

ipa
g

jqa
g

kra
g

lsCpqrs(δεij (r)δεkl(r) + ε̄ij ε̄kl + 2δεij (r)ε̄kl), (25)

where ηg(r) = 1 within grain ‘g’ and zero elsewhere. The modified governing equation for
grain growth is used to study migration of grain boundaries under applied stress in elastically
inhomogeneous polycrystals.
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Figure 1. Schematic of the bicrystalline simulation cell. The x-direction is normal to the grain
boundary and the surfaces normal to the x-direction are stress-free. The right grain is rotated by
an angle 45◦ with respect to the left grain. The cell is periodic along all three directions.

3. Results and discussion

The simulations of stress-driven migration of planar and curved grain boundaries are carried
out by solving the modified Allen–Cahn equation (equation (22)). The mechanical equilibrium
equation (equation (7)) is solved in the reciprocal space to obtain µel. The time-dependent
Allen–Cahn equation is then solved using a finite difference scheme. Periodic boundary
conditions are employed in the simulations. The parameters used in our simulations are non-
dimensionalized using characteristic length, time and energy units. In what follows, we present
the values of all the parameters in their dimensionless form.

To gain useful insight into the mechanism of grain boundary movement, we considered
bicrystalline systems containing planar and curved grain boundaries. We further extended
our study to general multigrain systems. In all the examples given below, the homogeneous
strain (i.e. the macroscopic strain) and the elastic energy density are calculated using the
following assumptions: (i) the elastic modulus changes sharply across the grain boundaries
(i.e. no modulus difference between the grain boundaries and the interior) and (ii) the excess
volume associated with the grain boundaries is zero (i.e. no volume difference between the
grain boundaries and the interior).

First, we consider a bicrystal separated by a planar grain boundary. The simulation cell
geometry and coordinate system are shown schematically in figure 1. The grains are oriented
at 0◦ and 45◦, respectively, with respect to a fixed reference frame. In other words, the
misorientation angle between the two grains is 45◦. The two grains are described using two
order parameters, η1(r, t) and η2(r, t), respectively, such that η1 = 1, η2 = 0 within grain I
and η1 = 0, η2 = 1 within grain II. η1 and η2 have finite non-zero values at the grain boundary.
Grain boundary migration under applied strain/stress is described by solving the temporal
evolution equations for η1(r, t) and η2(r, t).

The simulation cell is assumed to be periodic along all three directions. The cell is then
subjected to a biaxial applied strain, εyy = εzz = 0.01, while the directions normal to the
x-axis are assumed to be stress free, i.e. σxx = σyx = σzx = 0. We have assumed the bicrystal
to be elastically anisotropic with cubic elastic constants, C11 = 450, C12 = 150, C44 = 300.

8
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Figure 2. (a), (b) Time snapshots of grain boundary motion when the simulation cell is subjected
to biaxial strain εyy = εzz = 0.01. The boundaries normal to the x-axis are stress free, i.e.
σxx = σyx = σzx = 0. (c) Total elastic energy of the bicrystalline system subjected to biaxial
strain as a function of time. (d) Elastic energy density profiles plotted across the grain boundary at
different times during migration.

If the bicrystal is assumed to be elastically isotropic, the elastic driving force to move the grain
boundary is zero. The simulation geometry is similar to the one described by Zhang et al [8]
for their study of elastically driven grain boundary migration using MD simulations, except
for the fact that we assume periodic boundary conditions along all three directions.

We observed that the addition of elastic energy leads to the reduction of the equilibrium
values of order parameters within each grain, which in turn affects the elastic energy density
within each grain. This problem can be alleviated if we make µel(r) dependent on a function
H(η) instead of η such that the value of the function is always maintained at the equilibrium
values 0 and 1 within the bulk of each grain.

H(η) is defined as follows: H(η) = 2η3 − 3η2; H(η) = 0 when η = 0; H(η) = 1 when
η = 1; and ∂H/∂η = 0 when η = 0, 1.

Under applied biaxial strain, the grain boundary movement at two different times is shown
in figures 2(a) and (b). The boundary moves toward the grain oriented at 45◦ (designated as
grain II). Finally, the unfavorably oriented grain (grain II) dissolves under the action of a biaxial
applied strain. The boundary moves in such a way as to decrease the total elastic energy of
the system (figure 2(c)). Elastic energy density profiles across the grain boundary at different
times are shown in figure 2(d). At any given time, the elastic energy density is constant within
each grain and increases sharply from grain I to grain II. In this case, the difference between
the stored elastic energy densities between the two grains provides the driving force for grain
boundary migration:

F = F II
e − F I

e , (26)

where F represents the elastic driving force, F I
e , F II

e are the elastic energy densities in grains
I and II, respectively.
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The grain with lower elastic energy density grows at the expense of the grain with higher
elastic energy density. In this particular case, the driving force remains roughly constant
through the entire simulation except at the very late stages when the driving force decreases
with time. The reduction in driving force at the late stages is an artifact of the periodic boundary
conditions and finite system size employed in our simulations. When the energetically
unfavorable grain disappears from the system, the grain boundaries tend to merge causing
the driving force to reduce. This is why the relationship between the total elastic energy
and time steps becomes nonlinear at the late stages (figure 2(c)). The velocity of the grain
boundary (v) is measured to be a constant (2.23 × 10−4) in nondimensional units). From the
simulations, the average driving force is found to be 0.01426 (in nondimensional units). The
mobility of the grain boundary (M) is estimated to be 0.01564 by assuming that the velocity
is linearly proportional to the driving force (v = MF).The mobility can also be defined as
the derivative of velocity with respect to driving force in the small driving force limit [8]:

M =
(

∂v

∂F

)
F=0

. (27)

Using linear elasticity, the difference in stored energy densities between the two grains is given
by [8]:

F = (C11 − C12)(C11 + 2C12)
2Ca sin2(2θ)

C11[4C11(C11 − C12 + Ca) − (C11 + C12)Ca(1 − cos(4θ))]
ε2, (28)

where θ represents the misorientation between the two bounded grains, ε is the magnitude of
applied strain, Ca = 2C44 − C11 + C12 is a measure of anisotropy in the system. Plugging
in the elastic constants and the misorientation angle in equation (28) we obtain the driving
force to be 0.015625 (nondimensional units). Thus we obtain good agreement between the
analytically obtained driving force and that obtained from the simulation.

We also compared the elastic energy density and the elastic potential (defined by
fe = (CI

ijkl − CII
ijkl)ε

el
ij (r)εel

kl(r)) when an elastically anisotropic bicrystalline system is
subjected to a uniaxial applied stress, perpendicular and parallel to the grain boundary,
respectively. The elastic constants of the system are assumed to have cubic symmetry
(C11 = 450, C12 = 150, C44 = 300). The anisotropy parameter AZ(=2C44/(C11 − C12))

is 3 which indicates that the 〈1 0 0〉 directions are the elastically soft directions. The temporal
evolutions of elastic energy density and elastic potential when stress σa

xx = 1.5 is applied
normal to the grain boundary are shown in figures 3(a) and (b). In this case, the stored elastic
energy density in grain I is larger than in grain II, although the former is growing and the latter is
shrinking with time (figure 3(a)). However, if we take into account the elastic potential profiles,
the advancing grain I has a lower elastic potential than the shrinking grain II (figure 3(b)). On
the other hand, when stress is applied parallel to the grain boundary, both the elastic energy
density and elastic potential are lower in the advancing grain I than the shrinking grain II
(figures 3(c) and (d)). Thus, we may infer that the difference in elastic potential between the
two grains is a more appropriate measure of the mechanical driving force.

The stress distributions σxx(r), σxy(r) and σyy(r) are also compared in these two cases. In
both cases, the shear stress component within both the grains is zero throughout the simulation.
This is a sufficient condition to prevent grain boundary sliding. When stress is applied normal
to the boundary, σxx(r) = σa

xx = 1.5 in the entire system. However, the distribution of
σyy(r) is significantly different within grains I and II: σyy(r) is tensile (positive) in grain I and
compressive (negative) in grain II. As time progresses, σyy(r) decreases to zero within grain I
with the decrease in the area of grain II (figures 4(a) and (b)). When the system is subjected to
an uniaxial stress parallel to the boundary (σ a

yy = 1.5 and all other stress components are zero),
σxx(r) = 0 within each grain. Similar to the previous example, the boundary migrates toward
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Figure 3. (a), (b) Elastic energy density and elastic potential profiles plotted across the grain
boundary at different times during migration when a bicrystal is subjected to a uniaxial stress
σ a

xx = 1.5 normal to the boundary. (c), (d) Elastic energy density and elastic potential profiles
plotted across the grain boundary at different times during migration when a bicrystal is subjected
to a uniaxial stress σ a

yy = 1.5 parallel to the boundary.

grain II leading to its shrinkage. However, in this case, σyy(r) is positive (tensile) in both
grains and the magnitude of σyy(r) is larger in grain II than in grain I (figures 4(c) and (d)).
As grain II shrinks the overall elastic energy of the system decreases. The comparison of the
stress distributions suggests that two different mechanisms are in play when stress is applied
normal or parallel to the boundary.

The mechanical driving force for migration (given by the difference in elastic potential)
of a planar grain boundary is plotted as a function of time in figure 5(a) when the boundary is
subjected to uniaxial applied stress, perpendicular or parallel to the boundary. In both cases,
the driving force for grain boundary migration increases with increasing time. During the
early transient stages, the driving force changes nonlinearly with time. When steady state is
achieved, the variation of driving force with time is almost linear. In both cases, the velocity
of migration is plotted versus the driving force in the steady-state regime (figure 5(b)). In
the steady-state regime, the velocity changes linearly with the driving force. The constant of
proportionality (i.e. the mobility) is obtained from the slopes of the lines. The lines are almost
parallel which suggests that the value of mobility is independent of the direction of applied
stress. However, if the magnitude of applied stress is small, the extent of transient regime is
larger. Moreover, at the very late stages, we observe some nonlinearity in the velocity-driving
force relation which may be an artifact of the periodic boundary conditions.

It should be noted that Winning et al [4, 5] proposed a model where the grain boundaries
are modeled as dislocation networks and the grain boundary movement was caused by the

11



Modelling Simul. Mater. Sci. Eng. 19 (2011) 035002 S Bhattacharyya et al

Figure 4. (a), (b) Distribution of σyy(r) at two different time steps when a bicrystal with a
planar boundary is subjected to uniaxial stress normal to the grain boundary (along the x-axis).
(c), (d) Distribution of σyy(r) at two different time steps when a bicrystal with a planar boundary
is subjected to uniaxial stress parallel to the grain boundary (along the y-axis).

Figure 5. (a) Driving force for grain boundary migration versus time in the steady-state regime.
(b) Grain boundary migration velocity plotted as a function of driving force in the steady-state
regime. In both figures, the blue triangles and red circles correspond to the systems where stress is
applied normal and parallel to the grain boundary, respectively. In both systems, the velocity versus
driving force curves are linear and are nearly parallel to each other indicating a similar mobility of
the boundary.

movement of dislocations under shear stress. However, in our model we propose that the
difference in elastic stiffness of the misoriented grains in the direction of loading provides a
bulk mechanical energy difference which causes the grain boundaries to move.

We also studied the effect of applied stress on the motion of curved boundaries. For
this purpose we chose a bicrystalline system in which a circular grain (grain I) is placed at
the center of the simulation box surrounded by a differently oriented grain (grain II). The
relative orientations of grain I and grain II are 0◦ and 45◦, respectively, with respect to a fixed

12



Modelling Simul. Mater. Sci. Eng. 19 (2011) 035002 S Bhattacharyya et al

Figure 6. (a) Schematic of the bicrystalline simulation cell containing a curved boundary. The
central circular grain is oriented at 0◦ and the surrounding grain is oriented at 45◦ with respect to
a fixed reference frame. (b) The elastically soft circular grain grows when subjected to applied
pressure. (c) Elastic potential profiles drawn along a radial direction at various times during
migration of the curved boundary.

reference frame. The initial configuration of the system is shown schematically in figure 6(a).
We first assume both grains to be elastically isotropic with the circular grain being elastically
softer than the surrounding grain. In terms of elastic properties, the system is similar to a
two-phase system containing grains with different orientation. The elastic constants of grain
II are C11 = 450, C12 = 150 while the elastic constants of the central grain I is assumed to be
C11 = 225, C12 = 75. The system is then subjected to an applied pressure σa

xx = σa
yy = 1.5

with other stress components being zero. The elastically soft central grain grows under the
application of pressure (see figure 6(b)). In this case, there are two competing factors affecting
the growth or shrinkage of the circular grain: (a) driving force due to interfacial curvature which
causes the circular grain to shrink and (b) driving force due to reduction in elastic energy of
the system which causes the softer circular grain to grow. The critical radius of the circular
grain, rc, at which it begins to grow is obtained from a balance between the two driving forces:

rc = γ

σ 2
a

E1
− σ 2

a
E2

, (29)

where γ is the grain boundary energy, σa is the magnitude of applied pressure, E1 and E2

are Young’s moduli for the circular grain and the surrounding grain, respectively. The critical
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Figure 7. (a), (b) Time snapshots of grain boundary migration in an elastically anisotropic system
with cubic symmetry containing a favorably oriented circular grain when the system is uniaxially
stressed along the x-axis. (c), (d) Time snapshots of grain boundary migration in an elastically
anisotropic system with cubic symmetry containing a favorably oriented circular grain when the
system is subjected to shear. The solid arrows indicate the directions of applied load.

radius, rc, is estimated to be 72 length units for our system. We have taken the initial radius
of the circular grain to be greater than rc. At this size the softer circular grain can overcome
the shrinkage force due to curvature and continue to grow under applied pressure. The elastic
potential of the circular grain is lower than the surrounding grain (shown in figure 6(c)). The
difference in elastic potential provides the mechanical driving force for the circular grain
to grow.

In the previous case, we assumed the system to be elastically isotropic and inhomogeneous.
However, the system can also be elastically anisotropic, which may further increase the
mechanical driving force due to reduction in elastic energy, and may also lead to shape change
of the circular grain under applied stress. In an elastically anisotropic system, when the applied
loading direction favors the growth of a grain with positive curvature, the grain will continue
to grow and change its shape once its size exceeds the critical size. For example, figure 7(a)
shows the growth of a circular grain (with a misorientation angle of 0◦ w.r.t. a fixed reference
frame) surrounded by another grain (with a misorientation angle of 45◦ w.r.t. a fixed reference
frame) in an elastically anisotropic system with cubic symmetry (in which 〈10〉 directions are
the elastically soft directions) , when the system is subjected to a uniaxial applied stress along
the x-axis. During growth, the circular grain changes its shape to elliptical with its long axis
perpendicular to the direction of applied stress. In another example, we observe the growth of
the favorably oriented central circular grain into a square shape under the application of shear
(figure 7(b)).

Our model is also applied to study the migration of grain boundaries in multigrain systems.
Although our model can be applied to study grain growth in complex polycrystalline systems
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Figure 8. (a) A two-dimensional multigrain system subjected to applied stress along the y-axis.
Initially, all the grain boundaries are planar. (b), (c) Time snapshots of grain boundary migration
in the multigrain system.

containing several thousand grains, we provide a much simpler example of a multigrain system
containing four grains with cubic symmetry. In this system, a misorientation angle of 0◦ with
respect to a fixed reference frame is assigned to the central grain, while the surrounding
grains are assigned different orientations and the boundaries between the central grain and the
surrounding grains are assumed to be high-angle grain boundaries. The system is subjected to
an applied stress σ a

yy = 3.0, all other stress components being zero. The system considered is
shown in figure 8(a).

The evolution of the grain structure subjected to applied stress is shown in figures 8(b)
and (c). The grain boundary energy is assumed to be isotropic. Initially the boundaries are
planar (i.e. there is no driving force due to curvature). On the application of stress, the grain at
the center starts growing and the boundaries enveloping the grain develop negative curvature.
Since the central grain is favorably oriented with respect to the direction of applied stress, it
grows into the surrounding grains by developing negative curvature at the boundaries. The
local stress fields at an intermediate time are shown in figure 9. We observe that the local stress
distributions depend crucially on the relative misorientation of the neighboring grains. As a
consequence, the central grain grows at different rates along different directions.

In the case of the multigrain system, we show that application of stress may induce
negative curvature of the grain boundaries. Our study of multigrain systems is currently being
extended to more complex large-scale systems in two and three dimensions and will be reported
elsewhere.

4. Conclusions

We developed a phase-field model to study stress-driven grain boundary migration in elastically
inhomogeneous polycrystals. We studied the stress effect on migration of planar and
curved grain boundaries. We observe that the boundary mobility depends crucially on the
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Figure 9. (a), (c) Local stress distributions σxx(r), σxy(r), σyy(r) at an intermediate time
step = 5000.

misorientation between the grains, but is independent of the direction of the applied load in the
steady-state regime. The mobility value obtained from our study of planar grain boundaries
agrees well with the analytical solution. In the case of curved boundaries, application of stress
may not only induce migration of the boundaries opposing the driving force due to curvature
but may also cause the grain shape to change in elastically anisotropic systems. We observe
that applied stress can induce negative curvature of boundaries in a preferentially oriented
grain which may eventually lead to abnormal grain growth.
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