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AbstractÐThe morphological evolution and coarsening kinetics of L12 ordered (Al3Li) precipitates (d') in a
f.c.c. disordered matrix (a) were investigated using computer simulations based on microscopic di�usion
equations. The e�ective interatomic interactions were ®tted to the phase diagram using a two-neighbor
mean-®eld model whereas the kinetic parameter in the microscopic di�usion equation was ®tted to the
chemical di�usion coe�cient in the equilibrium disordered phase. The coalescence or encounter among pre-
cipitates which belong to any one of the four di�erent antiphase domains of the L12 ordered phase is auto-
matically taken into account. Volume fractions ranging from 20 to 65% were studied. Structure, scaling
and particle-size distribution (PSD) functions were calculated. It is shown that the PSDs become increas-
ingly broad and their skewness changes sign from negative to positive with increasing precipitate volume
fraction. It is found that the cube of the average particle radius varies approximately linearly with time in
the scaling regime for all the volume fractions studied, with the rate constant increasing with volume frac-
tion. During coarsening, the volume fraction is not constant, approaching the equilibrium value asymptoti-
cally with time. The results are compared with existing analytical theories and experimental measurements.
# 1998 Acta Metallurgica Inc.

1. INTRODUCTION

In general, precipitation of second-phase particles

from a given matrix can be characterized by two

stages. The ®rst stage involves phase transform-

ations, driven by the reduction in the bulk free

energies. They may take place either by a nuclea-

tion-and-growth mechanism if the parent phase is

metastable, or by a continuous mechanism if the

matrix is unstable, with respect to its transform-

ation to the precipitate phase. The second stage

involves the coarsening of precipitate particles, dri-

ven by the reduction in the total interfacial energies

between precipitates and matrix. During coarsening,

the volume fraction of the precipitate phase is close

to the equilibrium value determined from the lever

rule. In recent works, the phase transformation

paths leading to the precipitation of d' (Al3Li)

ordered particles from a disordered matrix (a) in

Al±Li alloys using microscopic Langevin di�usion

equations were studied [1]. In this paper, attention

is focused on the coarsening kinetics of d' particles
after phase transformations.

The ®rst formal theory of coarsening was devel-

oped more than 30 years ago by Lifshitz and

Slyozov [2], and Wagner [3], i.e. the so-called LSW

theory which predicts that the cube of average par-

ticle size, hRi, is linearly proportional to time t, i.e.

hRi3=Kt, where K is the rate constant, and the par-

ticle sizes normalized by the average size have a

unique distribution which is independent of time.

LSW theory assumes that precipitates are spherical

and the particle density is very low so that the typi-

cal interparticle distance is large compared to the

average size. Coarsening of real alloy systems, how-

ever, is complicated by many other factors including

the ®nite volume-fraction, nonspherical shapes of

particles, the elastic interactions between precipi-

tates, and applied load. Therefore, there have been

many attempts to modify the LSW theory by taking

into account some of the factors, in particular the

e�ect of volume fraction, as summarized in a num-

ber of review articles (see, e.g. Ref. [4]). Examples

of these attempts include those of Ardell [4],

Tsumuraya and Miyata [5], Asimov [6], Sarian and

Weart [7], and Aubauer [8] by solving the di�usion

equation using more realistic di�usion geometry,

and those of Brailsford and Wynblatt [9], Voorhees

and Glicksman [10], Marqusee and Ross [11],

Tokuyama and Kawasaki [12], and Marsh and

Glicksman [13] by using statistical approaches.

Davies et al. [14] developed the so-called Lifshitz±

Slyozov encounter modi®ed (LSEM) theory by tak-

ing into account the e�ect of particle coalescence or

encounter through the addition of a source term to

the continuity equation for the PSDs. Despite these

advances, in general, the agreement between theor-

etically predicted and experimentally measured

Acta mater. Vol. 46, No. 11, pp. 3915±3928, 1998
# 1998 Acta Metallurgica Inc.

Published by Elsevier Science Ltd. All rights reserved
Printed in Great Britain

1359-6454/98 $19.00+0.00PII: S1359-6454(98)00058-5

{To whom all correspondence should be addressed.

3915



volume-fraction dependence of PSDs and the rate

constant in the cubic growth law is not satisfactory.
The d'+ a two-phase alloy in Al±Li is a rela-

tively simple system for studying coarsening kinetics

because d' particles have a very small lattice mis-
match with the matrix, and thus there is a negligible
elastic strain energy contribution to coarsening.

Most experimental studies showed that the average
radius, hRi, of d' particles as a function of time, t,

follows the cubic law, consistent with the classical
LSW theory and its later modi®cations. However,
there is still no single theory which can satisfactorily

describe all aspects of coarsening. For example,
Mahalingam et al. [15] conducted a systematic
study of the coarsening kinetics of d' precipitates up
to a volume fraction of 0.55 and found good agree-
ment between the measured PSDs and those pre-

dicted by the LSEM model of Davies et al. [14],
after appropriately normalizing the theoretically
predicted curves. However, the variation of the rate

constant with volume fraction was found to be clo-
ser to that predicted by Ardell's modi®ed Lifshitz±
Slyozov±Wagner (MLSW) theory [16]. More

recently, Kamio and Sato [17] conducted a similar
study on the coarsening kinetics of d' precipitates,
and found that at low volume fractions (<30%),
the variation of the rate constant with volume frac-
tion was closest to that predicted by the LSEM

model, while an inspection of their PSDs shows
that they are better described by Ardell's MLSW
theory.

In recent years, there has been increasing inter-
est in using computer simulations to study coar-

sening kinetics. Computer simulations could be
the ultimate bridge between theories and exper-
imental observations. On the one hand, systems

in a computer simulation can be made su�ciently
simple to allow direct comparison with analytical
theories; and on the other hand, it is now poss-

ible to include many of the factors which a�ect
coarsening in a computer simulation and therefore
to make direct contacts with experiments. Most

of the previous computer simulations employed
either the sharp-interface front-tracking model for

directly solving the di�usion equations in a sys-
tem with many coarsening particles or the di�use-
interface model through the numerical solution of

Cahn±Hilliard equations. The main limitation of
the front-tracking model is due to the moving
boundary problem, although a recent work using

a multipole method was able to simulate volume
fractions of the precipitate phase as high as 40%

in two dimensions (2D) [18]. Moreover, it does
not take into account the coalescence, which
becomes increasingly frequent with increasing

volume fraction. The Cahn±Hilliard equation is
basically a nonlinear di�usion equation which was
initially applied to study the kinetics of spinodal

decomposition. Since it is a di�usion equation, it
also automatically describes the coarsening process

after spinodal decomposition. One of the advan-

tages of the Cahn±Hilliard equation over sharp-
interface approaches is the avoidance of the mov-
ing boundary problem. The position of bound-

aries is speci®ed by locations at which the values
of the concentration are between that correspond-
ing to the precipitate phase and that correspond-

ing to the matrix phase. However, when the
volume fraction of the precipitate phase increases

above the percolation limit, the particles coalesce
and both phases become interconnected.
Therefore, it cannot be directly applied to model-

ing the kinetics of coarsening in d' + a two-phase
alloys in which the precipitate phase is dispersed
even if the volume fraction is above 50%.

This paper employs a computer simulation
approach based on the microscopic di�usion

equations [19] to model the coarsening behavior
of d' particles in a disordered Al±Li matrix. The
model can be applied to all stages of the precipi-

tation process including nucleation, growth and
coarsening [20]. It can describe simultaneously

atomic ordering and compositional phase separ-
ation and allows arbitrary morphologies [20].
Elastic energy contribution to the morphological

evolution and coarsening can also be
incorporated [21, 22]. More importantly, the e�ect
of volume fraction, the coalescence of two in-

phase ordered particles to form a larger one, or
the separation of two close-by out-of-phase par-

ticles by the disordered matrix, are automatically
taken into account. An alternative to using the
microscopic di�usion equations is to employ the

continuum di�use-interface ®eld kinetic
model [23, 24] by using a three-component long-
range order ®eld and a composition ®eld to

describe the structure and composition of the L12
ordered domains [25, 26]. It is a continuation of

the systematic investigation on the early stages of
the precipitation process of ordered d' particles
from a disordered matrix [1, 27]. As a ®rst

attempt, a projected 2D model from a three-
dimensional (3D) f.c.c. lattice was employed, i.e.
all the interatomic interactions were taken into

account in 3D, although the simulations were
performed on the project 2D square lattice of a

3D f.c.c. lattice. The structure and scaling func-
tion, as well as the PSDs and their skewness, are
analyzed from the simulated two-phase micro-

structures as a function of time up to a volume
fraction of 0.65 of the d' phase. In particular,
it will be demonstrated that as the volume frac-

tion increases, the rate constant increases, the
PSDs become increasingly broad, and the skew-

ness of the PSDs changes sign from negative to
positive. The results on the coarsening kinetics
of L12 ordered precipitates obtained from the

computer simulations were compared with existing
theoretical models and experimental measure-
ments.
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2. THE COMPUTER SIMULATION MODEL

2.1. Microscopic di�usion equations

In this study, the morphology of a two-phase
alloy is described by a single-site occupation prob-
ability function, P(r,t), which is the probability that

a given lattice site, r, is occupied by a solute atom
(e.g. Li in Al±Li alloys), at a given time t. The rates
of change of these probabilities are then described

by the OÈ nsager-type di�usion equations as being
linearly proportional to the thermodynamic driving
force [19]

dP�r; t�
dt

� Co 1ÿ Co� �
kBT

X
r 0

L�rÿ r 0� @F

@P�r0; t� �1�

where the summation is carried out over all N crys-

tal lattice sites of a system, L(rÿ r') is the propor-
tionality constant which is related to the probability
of an elementary di�usion jump from site r to r',
per unit of time, T the temperature, kB the
Boltzmann constant, Co the overall solute compo-
sition, and F the total free energy of the system,

which is a function of the single-site occupation
probability function.
Since the total number of atoms is conserved, the

sum of the single-site occupation probabilities over

all the lattice sites is equal to the total number of
solute atoms in the systemXN

r�1
P�r; t� � CoN:

Summing both sides of equation (1) over all atomic

sites r and using the fact that the total number of
solute atoms is a constant, gives the following iden-
tity: X

r

L�r�
X
r 0

@F

@P�r0; t� � 0: �2�

Since the second summation in equation (2) is non-
zero for nonequilibrium systems, the conservation
condition for the total number of atoms requires

that the ®rst term be zero, i.e.X
r

L�r� � 0: �3�

2.2. Microscopic Langevin equations

It is easy to see that kinetic equation (1) is deter-
ministic and hence cannot describe processes which
require thermal ¯uctuations, such as nucleation.

Therefore, in order to study the coarsening beha-
vior over a wide range of volume fractions, includ-
ing the region of the two-phase ®eld where d'
precipitates formed by a nucleation and growth
mechanism, a random noise term, x(r,t), was intro-
duced to the kinetic equation (1) to simulate the
thermal ¯uctuations

dP�r; t�
dt
�Co 1ÿCo� �

kBT

X
r 0

L�rÿr0� @F

@P�r 0; t��x�r; t� �4�

where x(r,t) is assumed to be Gaussian-distributed
with average zero and uncorrelated with respect to

both space and time, i.e. it obeys the so-called ¯uc-
tuation dissipation theorem [28]

hx�r; t�i � 0

hx�r; t�x�r 0; t0�i � ÿ2kBTL�rÿ r 0�d�tÿ t0�d�rÿ r 0� �5�
where angular brackets denote averaging, hx(r,t)i is
the average value of the noise over space and time,
hx(r,t)x(r',t')i the correlation, and d the Kronecker
delta function. The noise term is similar to that

introduced by Cook to the Cahn±Hilliard
equation [29]. With the noise term, equation (4)
becomes stochastic and is, in fact, the microscopic

version of the continuum Langevin equation [30].

2.3. Microscopic Langevin equation in Fourier space

With the equations describing the evolution of

real-space single-site occupation probability distri-
bution function P(r,t), the corresponding growth
rates of the amplitudes of composition modulations,

PÄ(k,t), at a given wave vector, k, can be easily
obtained by taking the Fourier transform of
equation (4), i.e.

d ~P�k; t�
dt

� Co�1ÿ Co�
kBT

~L�k� @F

@P�r; t�
� �

k

�x�k; t� �6�

where PÄ(k,t), LÄ(k), {@F/@P(r,t)}k, and x(k,t) are the
Fourier transforms of P(r,t), L(r), @F/@P(r,t), and

x(r,t), respectively. For example

~P�k; t� �
X
r

P�r; t� exp �ÿikr�:

Since

~L�k � 0� � ~L�0� �
X
r

L�r�

the conservation condition [equation (3)] in the reci-
procal space becomes

~L�0� � 0: �7�

2.4. Application to a f.c.c. lattice

In the mean-®eld approximation, the total free

energy of a system is given by

F � 1

2

X
r

X
r 0

W�rÿ r 0�P�r�P�r 0� � kBT
X
r

P�r� lnP�r� � 1ÿ P�r�ÿ �
ln 1ÿ P�r�ÿ �� � �8�

where W(rÿ r') is the e�ective interchange energy
given as the sum of the A±A and B±B pairwise
interaction energies, minus twice the A±B pairwise
interaction energy
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W�rÿ r0� �WAA�rÿ r 0� �WBB�rÿ r 0�
ÿ 2WAB�rÿ r 0�: �9�

Although it has been well known that, for a f.c.c.

lattice, the above mean ®eld free energy incorrectly
gives a second-order order±disorder phase tran-
sition at composition C= 0.5 where it is supposed

to be ®rst order, yet with the proper choice of W1

and W2, it can provide a reasonably good approxi-
mation of the low-temperature two-phase (a + d')
®eld [31]. Moreover, a more accurate free energy
density function is not expected to signi®cantly
change the coarsening kinetics as along as it pro-
vides the appropriate interfacial energy and the

thermodynamic factor in the chemical di�usion
coe�cient.
Using equations (8) and (6)

d ~P�k; t�
dt

�Co�1ÿ Co�
kBT

L�k�

~V�k� ~P�k; t� � kBT ln
P�r; t�

1ÿ P�r; t�
� �" #

k

8<:
9=;

� x�k; t� �10�
in which VÄ(k) is the Fourier transform of W(r), and

for a f.c.c. lattice, is given by

~V�k� � 4W1

ÿ
cosph � cos pk� cos ph�
cos pl � cos pk � cos pl �

� 2W2

ÿ
cos 2ph� cos 2pk� cos 2pl

�� � � � �11�
where W1 and W2 are the ®rst-nearest and second-

nearest neighbor e�ective interchange energies, re-
spectively, and h, k, and l are related to the recipro-
cal lattice through

k � kx; ky; kz
ÿ � � 2p ha�1 � ka�2 � la�3

ÿ �
with a*

1, a
*
2 and a*

3 being the unit reciprocal lattice

vectors of the f.c.c. lattice along [100], [010], and
[001] directions, respectively, and va*

1v = va*
2v =

va*
3v = 1/ao (ao is the lattice parameter of the f.c.c.

lattice).
By assuming atomic jumps between nearest

neighbor sites only and using the condition that the
total number of atoms in the system are conserved

[equation (7)], for a f.c.c. lattice, the following
equation can be written [19]

~L�k� � ÿ4L1

�
3ÿ cosph � cos pkÿ cos pk � cos pl
ÿ cospl � cos ph� �12�

where L1 is proportional to the jump probability
between the nearest-neighbor sites at a time unit.

2.5. 2D approximation of a 3D problem [1]

Although it is straightforward and desirable to
perform 3D simulations using the microscopic dif-
fusion equations outlined above, a 2D simulation

is much less computationally intensive, and the

analysis and visualization of the atomic con®gur-

ation and multiphase morphologies are much

easier. As a result, all the results reported in this

paper were obtained using 2D projections of a

3D system. It is equivalent to assuming that the

occupation probabilities do not depend on the

coordinate z along the [001] axis. The L12
ordered structure of the d' particles and its pro-

jection are shown in Fig. 1.

The 2D projection of a f.c.c. lattice along the

[001] direction, is a square lattice whose lattice par-

ameter is half of that of the f.c.c. lattice. Therefore,

a lattice vector r in the 2D square lattice can be

written as

r � x 0 b1 � y 0 b2 � x 0

2
a1 � y 0

2
a2

where b1 and b2 are the unit cell vectors of the

square lattice, and a1 and a2 are the unit cell vectors

of the f.c.c. lattice on the projected plane. The cor-

responding reciprocal lattice vector k for the square

lattice is

k 0 � 2p h 0 b�1 � k 0 b�2
ÿ � � 2p 2h 0 a�1 � 2k 0 a�2

ÿ �
where b*

1 and b*
2 are corresponding reciprocal unit

cell vectors for the square lattice, and a*
1 and a*

2 are

the reciprocal unit cell vectors for the lattice de®ned

by the real space unit cell vectors, a1 and a2.

Therefore, on the projected 2D square lattice,

the kinetic equation in the reciprocal space is given

by

d ~P�k 0; t�
dt

�Co�1ÿ Co�
kBT

L�k 0�

~V�k 0� ~P�k 0; t� � kBT ln
P�r; t�

1ÿ P�r; t�
� �" #

k 0

8<:
9=;

� x�k 0; t� �13�
with

~V�k 0� � 4W1

ÿ
cos 2ph 0 � cos 2pk0�cos 2ph0�cos 2pk0�

� 2W2

ÿ
cos 4ph0 � cos 4pk 0 � 1

�� � � � �14�
and

Fig. 1. (a) L12 unit cell. (b) The projection of the L12 unit
cell.
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~L�k 0� � ÿ4L1

�
3ÿ cos 2ph 0 � cos 2pk 0 ÿ cos 2pk0

ÿ cos 2ph 0
�
: �15�

2.6. Numerical solution to the kinetic equations

Numerically, a simple Euler technique was used
to solve the microscopic Langevin equations in the

reciprocal space [equation (3)]. The real space prob-
abilities are then recovered by back Fourier trans-
forms. Following the spatial distribution of these

probabilities with time yields all the information
concerning the dynamics of atomic and morpho-
logical evolution along a transformation path

including order 4 disorder, compositional cluster-
ing, and coarsening.

2.7. Generation of thermal noise

To generate random numbers which satisfy the
¯uctuation-dissipation theorem, ®rst, a random

number, m, is generated at any given lattice point at
a given time step from a normal distribution, a
Gaussian with average 0.0 and standard deviation

1.0. The Fourier transform of the random numbers
are then multiplied by a factor to obtain the desired
variance

x�k; t� � pf
�������������������������
2kBTL�k�Dt

p
m�r; t� �16�

where Dt is the time step increment. The coe�cient,
pf, is a constant which is introduced as a correction
factor that takes into account the fact that the cor-

relation equations have been derived from linearized
kinetic equations which are strictly valid only at in-
®nitely high temperatures, and the current simu-

lations are being performed using a non-linear
kinetic equation at ®nite temperatures [30]. It also
serves to ensure that the noise term does not
become too large, so that numerical stability can be

maintained. In this work, the focus is on coarsening
kinetics, so the noise terms were introduced entirely

for the purpose of nucleating ordered particles
when the parent disordered phase is metastable.

3. THE THERMODYNAMIC MODEL

In this paper, a two-neighbor interaction model is
assumed for the Al±Li system and the values for
the interaction parameters W1 and W2 are 40.435

and ÿ31.59 meV, respectively [1, 27]. The variation
of the interatomic interaction parameters with com-
position was ignored. The low-temperature part of

the a + d' two-phase ®eld using these interaction
parameters is reproduced in Fig. 2, in which the
dot-dashed line (Tÿ) represents the ordering
instability line below which a disordered phase is

absolutely unstable with respect to ordering, the
thin solid line (To) is the locus along which the
ordered and disordered phases have the same free

energy, the dashed line (T+) is the disordering
instability line above which an ordered phase is ab-
solutely unstable with respect to disordering, and

the thick solid lines are equilibrium phase bound-
aries. The free energy curves for the ordered and
disordered phases as a function of composition at
T = 1928C are shown in Fig. 3. According to Figs 2

and 3, at this temperature the equilibrium compo-
sition (of Li in atomic or mole fraction) of the dis-
ordered phase (a), Ca, is 00.068; the equilibrium

composition of the metastable ordered phase d', Cd',
is 00.223; the composition at which the disordered
phase becomes absolutely unstable with respect to

d' ordering, or the ordering instability composition,
Cÿ, is 00.131; the composition at which the d'
ordered phase is absolutely unstable with respect to

disordering, C+, is 00.106; and the composition at

Fig. 2. The computed Al±Li phase diagram with a two-
neighbor mean-®eld model. The labels for the di�erent

lines in the diagram are explained in the text.

Fig. 3. The free energy vs composition curves at
T = 1928C. The labels are explained in the text.
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which the ordered and disordered phases have the
same free energy, Co, is00.109.

Based on the interaction parameters, a value of
0.0166 J/m2 at T = 1928C was obtained for the
interfacial energy between the d' precipitates and

the disordered matrix along the h1, 0, 0i directions.
In the calculation, both the ordered and disordered
phases are assumed to have the equilibrium

compositions. Since the interfacial energy along the
h1, 0, 0i direction is the lowest, this value represents
the minimum interfacial energy. However, at ®nite

temperatures, the interfacial energy anistropy is
small, and hence it is expected that this value is a
good approximation. The value, 0.0166 J/m2, is in
good agreement with an early experimentally

reported value of 0.014 J/m2 [32], but is signi®cantly
higher than a more recently obtained value of 0.005
J/m2 both experimentally [33] and theoretically

using ®rst-principle calculations [34]. It should be
emphasized that the main conclusions of the paper
on the volume-fraction dependencies of PSDs,

scaled structure functions, and coarsening rate con-
stants, are not a�ected by the exact values of the
interfacial energy, although the absolute value of

the coarsening rate constant are roughly pro-
portional to the magnitude of interfacial energy.

4. RELATION OF MICROSCOPIC AND
CONTINUUM DIFFUSION EQUATIONS

In order to compare the simulation results with
experimental measurements and analytical theories,
the kinetic parameter employed in the microscopic

model needs to be related to the phenomenological
di�usion coe�cient in the continuum model. To
accomplish this, the relation between the micro-
scopic and continuum di�usion equations is con-

sidered in the disordered state. In the disordered
state, the solution to equation (4), PÄ(k,t), has sig-
ni®cant values only around k = 0, with vkv of the

order of 2p/d, where d is a typical size of compo-
sition domains, i.e. PÄ(k,t) at small k is the Fourier
transform of the macroscopic composition pro®le,

C(r). At small k, the LÄ(k) function can be expanded
as [23, 35]

~L�k� � ~L�0� � @ ~L�k�
@ki

 !
k�0

ki

� 1

2

@2 ~L�k�
@ki@kj

 !
k�0

kikj � � � � �17�

where LÄ(0) is the value of LÄ(k) at k = 0, which is
zero from the conservation condition for the total
number of solute atoms. In the expansion (17), the

Einstein summation convention is invoked. The sec-
ond term in equation (17) is zero by symmetry con-
sideration. Therefore, the ®rst nonvanishing term
for LÄ(k) at k close to 0 is the third term

~L�k� � ÿMijkikj �18�
where

M � ÿ 1

2

@2 ~L�k�
@ki@kj

 !
k�0
:

Substituting equation (18) into equation (6) and

ignoring the noise term, gives

d ~P�k; t�
dt

� ÿMCo�1ÿ Co�kikj
kBT

dF
dP�r; t�
� �

k

: �19�

Its Fourier original

d ~P�r; t�
dt

�MCo�1ÿ Co�
kBT

rirj dF
dP�r; t�
� �

�20�

is the real space macroscopic Cahn±Hilliard

equation [36] for the composition pro®le since for

the disordered state, the single-site occupation prob-

ability function, P(r,t), is the same as the local com-

position, C(r,t). For an isotropic system, it is

@C�r; t�
@t

�MCo�1ÿ Co�
kBT

r2 dF
dC�r; t�
� �

: �21�

Therefore, the expansion constant M can be related

to the chemical di�usion coe�cient through

D �MCo�1ÿ Co�
kBT

@2f �C�
@C 2

 !
C�Ca

�22�

where Ca is the composition of the disordered

matrix. In equation (22), the mean ®eld free energy

per lattice site for the disordered matrix phase is

given by [27]

f �C� � 1

2
12W1 � 6W2� �C 2

� kBT
�
C lnC � 1ÿ C� � ln 1ÿ C� �� �23�

where W1, W2 are ®rst- and second-neighbor e�ec-

tive interchange energies, C the solute composition,

kB the Boltzmann constant, and T the temperature.

Therefore

D�MCo�1ÿCo�
kBT

12W1�6W2� kBT

Ca�1ÿ Ca�
� �

: �24�

Using equation (12) for LÄ(k), M is given by

M � ÿ 1

2

@2 ~L�k�
@ki@kj

 !
k�0
� L1a

2
o �25�

where L1 is the nearest-neighbor jump probability

given in equation (12) and ao the lattice parameter

of the f.c.c. lattice. Therefore, in terms of the phe-

nomenological chemical di�usion coe�cient, L1 in

the microscopic model is given by
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L1 � DkBT

Co�1ÿCo�a2o 12W1�6W2� kBT

Ca�1ÿCa�
� � : �26�

5. RESULTS AND DISCUSSION

Computer simulations were performed for several
representative compositions within the a + d' two-
phase ®eld labeled by small circles in the phase dia-

gram at T = 1928C (Fig. 2). They are listed in
Table 1 together with the corresponding equilibrium
volume fractions of the d' phase. The last column in

Table 1 represents the volume fractions determined
from the asymptotic dependence of volume fraction
on time during coarsening obtained from the simu-

lations as it will be discussed later.
In the simulation, reduced time, given by

t* = tL1, was employed. According to expression
(26), L1 is a function of overall composition, Co.

However, for convenience

Co�1ÿ Co�=kBT � 1=680 �meV�
in the kinetic equation (6) and in equation (26) for

all the compositions, which merely results in a
rescaling of the time. Using equation (26) with
D = 6.47�10ÿ15 cm2/s, ao=4� 10ÿ8 cm [37, 38],

the interaction parameters described in the last sec-
tion, and Co(1ÿCo)/kBT = 1/680 (meV), L1=2.95/
s is obtained. The time step size is Dt* = 0.005 for

all the compositions.

System sizes with 512�512 and 1024�1024 lat-
tice points were employed. For all compositions,

the initial condition for the single-site occupation
probability function corresponds to the completely
disordered phase, which was obtained by assigning

the average composition to occupation probabilities
at each lattice point, plus a small random noise.
For CLi=0.10 and 0.12, the initial disordered state

is metastable and hence a noise term is added to
provide a su�cient number of critical nuclei of d'
phase particles. Since the nucleation and growth

rates of precipitate are of no interest here, the
same noise distribution was added at each time step
for the initial 1000 time steps for CLi=0.10 and
0.12. The value used for pf in equation (16) is 0.01.

During the subsequent growth and coarsening,
the noise term was removed. For CLi=0.135, 0.15,
and 0.17, the initial disordered state is unstable

with respect to L12 ordering and therefore the
initial random perturbation is su�cient to initiate
ordering and precipitation of L12 ordered domains.

However, in previous work, it was shown that with
the thermal noise term included, the size of the con-
gruently ordered domains is smaller, and hence the

number of particles is larger, compared to that
obtained without the thermal noise [1]. Therefore,
for these compositions, the same noise distribution
was also kept on for the initial 1000 time steps to

increase the number of particles in the system.

5.1. Morphological evolution

Figure 4 shows an example of microstructural
evolution for CLi=0.10 obtained using 512�512
lattice points. The gray-levels in Fig. 3 represent the
local compositions, with white representing high

values and black representing low values. The local
compositions were calculated by locally averaging
occupation probabilities over nearest- and next-

nearest neighbor sites. In this representation, the
white particles in Fig. 3 are ordered d' particles and
black is the disordered matrix. Coalescence between

two close-up particles may or may not take place,

Table 1. Alloy compositions and corresponding volume fractions
investigated in this study

Li composition in
atomic fraction

Equilibrium volume
fraction of d' phase

(%)

Volume fraction
derived from the
simulation (%)

0.10 20.5 20.1
0.12 33.3 33.1
0.135 42.9 42.9
0.15 52.6 52.3
0.17 65.4 65.2

Fig. 4. Snap-shots of d' precipitate morphologies in an Al±Li alloy with CLi=0.10 at four di�erent time
steps during a computer simulation using 512� 512 lattice points.
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depending on whether or not they belong to the
same kind of antiphase domains. For this compo-
sition, the volume fraction is relatively low, so the

coalescence event is rare. The dumbbell particle at
time step 200,000 is a result of coalescence. It can
also be seen that some close-by particles, separated

by the disordered phase, remain separated until the
smaller ones ®nally dissolve. As expected, during
the coarsening process, large particles grow and
small particles disappear as a function of time, with

the volume fraction of the d' phase approximately
constant. The two-phase microstructures as a func-
tion of volume fraction obtained using 1024� 1024

lattice points are shown in Fig. 5. Although the
interfacial energy is nearly isotropic, the shape of
the particles becomes increasingly non-spherical as

the volume fraction of precipitates increases (Fig. 5).
The predicted volume fraction dependence of the
two-phase morphology is in excellent agreement

with that observed by Mahalingam et al. [15].

5.2. Structure function analysis

It has been shown that a two-phase morphology
during coarsening can be characterized by a time-

dependent structure function [39±43]. Following
Ref. [43], the structure function is de®ned as

S�k; t� � 1

N

X
r

X
r 0

C�r0 � r; t�C�r 0; t� ÿ C 2
o

h i
eÿikr

* +
�27�

where N is the total number of lattice points, C(r)
the local composition, and Co the overall compo-

sition. By performing a ``circular'' averaging of the

structure function

S�k; t� �

X
S�k; t�

kÿDk=2<jkj<k�Dk=2X
1

kÿDk=2<jkj<k�Dk=2

�28�

where k= vkv. The normalized structure function is

de®ned as

s�k; t� � S�k; t�P
k

S�k; t� �
S�k; t�

N C 2�r�
 �ÿ C 2
o

� � �29�

where angular brackets denote averaging over all

lattice points.

Figure 6 shows an example of the normalized
and circularly averaged structure function s(k,t) at

ten di�erent time steps for composition CLi=0.10

obtained using a 1024�1024 lattice simulation. The
lines are spline ®ts to the simulation data. As

expected, with increasing time, the maximum value

of the structure function increases and shifts to
lower k, indicating an increase in the real-space

average precipitate length scale.

The typical length scale, hRi, which corresponds

to the average d' particle size, can be characterized
by either hRiÿ10kmax(t), the position of the maxi-

mum in s(k,t), or k1(t), the ®rst moment of the

structure function [41], with the nth moment of
s(k,t) being de®ned as

kn�t� �
P

kns�k; t�P
s�k; t� : �30�

It was found more convenient to de®ne the typical

length scale as the inverse of the ®rst moment of
s(k,t), because the position of the maximum in

Fig. 5. Morphologies of d' precipitates as a function of composition or volume fraction obtained by
computer simulations using 1024� 1024 lattice points.

Fig. 6. Structure functions as a function of k at ten di�er-
ent time steps for CLi=0.10.
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s(k,t) cannot be very precisely determined and it

depends on the resolution with which s(k,t) is

measured. With this de®nition of the typical length

scale, the scaling function g(kR) is [42]

g�kR; t� � g�k=k1; t� � k21�t�s�k; t�: �31�
If the structure function does indeed scale, then

g(k/k1; t) = g(k/k1) is expected.

The scaling function for CLi=0.10 collected from

six di�erent times, but represented with the same

markers, is shown in Fig. 7. It can be seen that the

data points from di�erent times fall on the same

master curve, indicating that the scaling regime had

been attained. k1 in Fig. 7 is the ®rst moment of k

as de®ned in equation (30). The scaling function

obtained from this simulation was compared with

that obtained by Che et al. for the Al±9.3% Li

alloy at 1308C [45] in Fig. 8. For the simulation,

the data in Fig. 7 were renormalized using kmax (the

k value at which the structure function is a maxi-

mum) for k and gmax (the maximum value for the

structure function) for g(k/k1); for the experimental

results, the data points were obtained by examining

Fig. 4 in Ref. [45] using human eyes, and the values

for the structure function were also normalized by

its maximum. It is rather surprising that except for

a few data points in the small k region, the agree-

ment between the experimentally measured scaling

function and that obtained in the present simulation

is excellent.

The volume fraction dependence of the scaling

function was also investigated. The full width at

half maximum of the scaling functions obtained

from di�erent volume fractions are listed in Table 2.

It should be pointed out that there is a di�erence in

the values for the full width at half maximum,

depending on whether the ®rst moment of the struc-

ture function or the maximum position is used as

the measure of the inverse of the typical length

scale of the two-phase morphology. In order to

compare with data obtained from other sources, the

data given in Table 2 were renormalized using kmax

although the initial scaling functions were obtained

using the ®rst moment as the measure for the length

scale. The data points of Fig. 5 from Ref. [45] were

Fig. 7. Scaling function as a function of k/k1 obtained
from six time steps at late stages of coarsening for

CLi=0.10.

Fig. 8. Comparison of scaling functions obtained from ex-
periments by Che et al. [45] and the present simulation by
normalizing the scaling function using its maximum value

and k using kmax.

Table 2. Full width at half maximum of the scaling function of
volume fraction obtained from the simulation

Equilibrium volume fraction (%) Full width at half maximum

20.5 0.83
33.3 0.75
42.9 0.73
52.6 0.74
65.4 0.77

Fig. 9. Full width at half maximum of scaled structure
function as a function of volume fraction adapted from
Fig. 5 of Ref. [45]. The open circle represents the datum

estimated from Fig. 4 of Ref. [45].
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re-plotted in Fig. 9 with the simulation results

included as solid circles. The open circle labeled as
``Che et al.'' is the data point estimated from Fig. 4
of Ref. [45] by using the same type of estimate as in
the present simulation, which has an excellent

agreement with the simulation results as it should
be based on Fig. 8. It may be noted that the present
simulation results show a systematic increase in the

full width of half maximum beyond 50% volume
fraction. According to Fig. 9, the experimental data
points by both Che et al. [45] and Shaiu et al. [46]

fall in between those obtained in the present quasi-
2D simulation and those obtained by Akaiwa and
Voorhees using a sharp-interface continuum model
in 3D.

5.3. Particle size distributions (PSDs)

PSDs were obtained from simulations using a
system size of 1024� 1024 lattice points. The size of

a precipitate was determined by counting the total
number of lattice points within a particle at which

the local composition is larger than (Ca+Cd')/2,

and hence the unit of the size is ao/2 (the lattice

parameter of the projected 2D square lattice) where

ao is the lattice parameter of the original 3D f.c.c.

lattice. The averaged relative frequency curves

(where the frequency within an interval is assigned

to the center of the interval) are shown in Fig. 10

for the composition CLi=0.10. There were about

600 particles left after 200,000 time steps. The dis-

tributions were found to be approximately indepen-

dent of time, indicating that the steady state regime

had been reached. The coe�cient of size variation

(which is the ratio of the standard deviation to the

mean) was relatively constant for the time steps

shown in Fig. 10, which also implies that steady

state had been attained.

A statistical analysis of the distributions for each

volume fraction was performed and the data on the

skewness are shown in Fig. 11. According to

Fig. 11, the skewness changes sign from negative to

positive as volume fraction increases, becoming zero

at about 0.40 volume fraction. A comparison of the

PSDs for CLi=0.10 and 0.17 is given in Fig. 12.

The lines are drawn by hand as a guide to the

human eye (note that the long tail is towards the

left for CLi=0.10 and towards the right for

CLi=0.17 in Fig. 12). It is also shown that the PSD

for CLi=0.17 is broader than that for CLi=0.10.

As a matter of fact, the PSDs systematically

broaden and the maximum values for the PSD sys-

tematically decrease as volume fraction increases,

consistent with several theoretical and experimental

results. For CLi=0.10, the maximum particle radius

is approximately 1.6 times the average size, very

close to that predicted by the original LSW theory.

On the other hand, the cuto� in particle sizes

occurs at02.5 times hRi for CLi=0.17.

Although the simulations were performed in a

projected 2D system and the LSEM theory is devel-

oped for 3D systems, the fact that there is a change

Fig. 10. Particle size distributions at ®ve di�erent time
steps for CLi=0.10.

Fig. 11. The variation of skewness of the particle size dis-
tributions with volume fraction.

Fig. 12. Comparison of particle size distributions at two
di�erent compositions or volume fractions.
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of sign in the skewness of the PSDs as a function of
volume fraction obtained in the simulation, is con-

sistent with the LSEM theory and other experimen-
tal studies on this system: Mahalingam et al. [15]
reported a change from negative to positive at a

volume fraction between 0.27 and 0.46, while
Kamio and Sato [17] reported a skewness close to
zero at a volume fraction of 0.30. The only theoreti-

cal models which predict this change in skewness
are the LSEM model [14], and the recently reported
Brailsford Wynblatt encounter modi®ed (BWEM)

model [47]. The LSEM model takes into account
the fact that during coarsening, two particles may
coalesce, which changes the size distribution in such
a way as to take two particles out of the smaller

size ranges, and put one particle into the larger size
range. This leads to broader PSDs than those pre-
dicted by Lifshitz and Slyozov [2], as well as to a

change in the skewness of the distribution from
negative to positive at a volume fraction of about
0.40±0.45. However, none of the existing theories

have taken into account the e�ect of antiphase
domains on the probability of coalescence. The
LSEM model assumes that any two particles that

meet will coalesce. For the L12 ordered phase, how-
ever, there is a 75% probability that two particles
will be in antiphase relation, and will not coalesce.
It has been suggested [47] that this can be taken

into account by multiplying the ``encounter inte-
gral'' of the LSEM model by 0.25. However, this
implies that the PSD curves of the LSEM model

that were earlier valid for a volume fraction
Q = 0.8, will now be valid for Q = 0.2. This
changes all the predictions of the LSEM model

with regard to the volume fraction at which the
skewness becomes zero (0.4±0.45) and other statisti-
cal measures.
Since the simulations were performed in a pro-

jected 2D system, it is relevant to discuss some of
the existing 2D theories and simulation studies. A
study of two of the most widely quoted 2D theor-

etical models [48, 49] and all previous 2D computer
simulations shows that none of them predict the
observed change in skewness as a function of

volume fraction. However, at low volume fractions,
the PSDs obtained from the simulations are very
similar to those obtained earlier by Akaiwa and

Meiron [18] and Chakrabarti et al. [43]. Akaiwa
and Meiron used a sharp interface model for their
simulations and did not take into account the par-
ticle coalescence while Chakrabarti et al. employed

the Cahn±Hilliard equation which takes into
account coalescence but did not distinguish di�erent
antiphase domains.

5.4. Kinetics of coarsening

Essentially all existing theories and experimental
evidence demonstrated that the cube of the average
precipitate particle size during coarsening of sec-
ond-phase particles is linearly proportional to time

in the scaling regime, i.e.

hRi3 ÿ R3
o � Kt �32�

where hRi is the average radius at a given time, Ro

the initial average particle size at t = 0, and K the

rate constant for coarsening.

The variations of the cube of average particle size

with time obtained from the computer simulations

are shown in Fig. 13 for the ®ve compositions stu-

died. The size of the domains was calculated in real

space by a brute force technique that counted the

number of lattice points within a given domain.

The average radius of domains was then taken to

be proportional to the square root of the average

area. It can be seen that the cube of average size

varies with time approximately linearly for all the

volume fractions studied. Straight lines are linear

®ts at di�erent volume fractions. There is a sys-

tematic increase in the slopes of the lines as the

composition or volume fraction increases.

By converting the length unit (in ao/2) to real

unit and time steps or reduced time t* to real time

[related by L1 in equation (26)], the rate constants

obtained from the slopes of linear ®ts in Fig. 13 for

di�erent volume fractions were listed in Table 3. In

agreement with previous theories and experimental

observations, rate constant increases with volume

fraction. The rate constant as a function of volume

fraction is plotted in Fig. 14 along with the predic-

Fig. 13. The cube of the average size as a function of time
for di�erent compositions. The units for t* and R are

explained in the text.

Table 3. Rate constant as a function of volume fraction obtained
from the simulation

Equilibrium volume fraction (%) Rate constant (10ÿ29 m3/s)

20.5 1.84
33.3 3.24
42.9 5.28
52.6 6.82
65.4 12.27
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tion from Ardell's theory [49] in cylindrical coordi-

nates and the experimental measurements by

Mahalingam et al. in Al±Li alloys [15]. The rate

constant in Ardell's theory [49], modi®ed based on

the work of Calderon et al. [50], is given by

K � 3LaD

�Cd 0 ÿ Ca�
hui3
z

�33�

where D is the di�usion coe�cient, Cd' and Ca the

equilibrium compositions of the precipitate phase

and the matrix, respectively, hui a constant of order

of magnitude unity given by the ratio of average

particle radius to the critical particle radius of the

LSW theory, x is also a constant dependent on

volume fractions. Both hui and x are tabulated in

Ref. [49]. La in equation (33) is a capillary length

given by [50]

l a � Vd 0s
@2f =@C 2
ÿ �jC�Ca

Cd 0 ÿ Ca� � �34�

where s is the interfacial energy, f the free energy

of the solid solution per lattice site given in

equation (23), and Vd' the volume of the precipitate

phase per lattice site.

The rate constant values for Ardell's theory in

Fig. 14 were obtained by using the di�usion coe�-

cient which was used to ®t the kinetic coe�cient L1,

the interfacial energy calculated based on the inter-

change energies, the values of the second derivatives

of the free energy expression (23) evaluated at the

equilibrium composition of the disordered phase,

and the equilibrium compositions of the precipitate

and matrix from the phase diagram in Fig. 2. Since

the free energy was evaluated per lattice site of the

projected square lattice, the volume per lattice site

is given by (ao/2)
3 (area per lattice site� lattice spa-

cing of the (001) plane), where ao is the original

f.c.c. lattice parameter. It is shown in Fig. 14 that

the rate constants predicted by Ardell's theory are

consistently higher than those obtained in the pre-
sent simulation except for a volume fraction of 0.65

at which Ardell's theory is not expected to be valid
any longer. It can be noticed in Fig. 14 that the
variation of rate constant with volume fraction

obtained from the simulation has a positive curva-
ture whereas Ardell's theory predicted a negative
curvature. Interestingly, similar (positively curved)

dependence of the rate constant on volume fraction
to the simulated results was obtained by
Mahalingam et al. [15] in Al±Li alloys at 2258C,
and also predicted by the recent statistical coarsen-
ing theory by Marsh and Glicksman [13]. The ex-
perimental data included in Fig. 14 by Mahalingam
et al. [15] were obtained at 2008C which is closer to

the simulation temperature, which shows approxi-
mately linear dependence of rate constant on
volume fraction. The rate constants predicted from

the simulations show very good agreement with
those measured by Mahalingam et al. [15], which
might be accidental considering the fact the rate

constant depends on the speci®c values of both the
di�usion coe�cient and the interfacial energy.

5.5. Volume fraction dependence on time

As pointed out by Ardell [4], the volume fraction
of the precipitate phase is not a constant and
approaches the equilibrium value only asymptoti-

cally. To derive the asymptote, the overall supersa-
turation of solute atoms during coarsening is
written as

Ca ÿ Ca;e � l a

R�
� huil

a

hRi �35�

where Ca is the average composition of the matrix
at a given time, R* the critical particle size at which

the particle growth rate is zero, hui a constant of
order of magnitude unity as in equation (33), and
La a capillary length given by equation (34). To dis-

tinguish the equilibrium composition from the aver-
age composition of the matrix, in equation (35) and
the following equations, Ca,e is used to denote the

equilibrium composition.
If hRi is much larger than Ro in equation (32),

the variation of supersaturation as a function of
time can be expressed as [51]

Ca ÿ Ca;e � �kt�ÿ1=3 �36�
where the constant k is given by

k � K

hui3ÿl a�3 : �37�

The volume fraction of precipitate phase, Q, at any
given time is then given by the lever rule as

Q � Co ÿ Ca

Cd 0 ÿ Ca
� Co ÿ Ca;e ÿ �kt�ÿ1=3

Cd 0 ÿ Ca;e ÿ �kt�ÿ1=3
�38�

where Co is the overall composition of the alloy, Cd'

Fig. 14. Comparison of rate constants obtained in the pre-
sent simulation with those predicted by Ardell's two-
dimensional theory [49] and experimental results by

Mahalingam et al. [15].
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the equilibrium composition of the ordered phase.

By expanding the denominator in equation (38) and

ignoring higher order terms

Q � Qe ÿ �1ÿQe�
Cd 0 ÿ Ca;e

�kt�ÿ1=3 �39�

which shows that the volume fraction, Q,

approaches its equilibrium value Qe asymptotically

with time as tÿ1/3. Therefore, by plotting Q vs tÿ1/3,
the constant, k, can be determined from the slope

and the equilibrium volume fraction, Qe, from the

y-intercept. Figure 15 shows such a plot for compo-

sition CLi=0.10. From the linear ®t, the intercept,

00.201, is the equilibrium volume fraction. Figure

16 shows the same plot for all the compositions stu-

died. The equilibrium volume fractions obtained in

this way are listed in Table 1 in the third column.

The volume fractions determined in this analysis

are very close to those calculated from the equili-

brium phase diagram (the second column in

Table 1).

With the two rate constants, K and k, the capil-
lary length is given by [51] [from equation (37)]

l a � K

k

� �1=3
,
hui: �40�

For example, for CLi=0.10, K= 1.84�10ÿ29 m3/s,
k = 6.05�104/s (from Fig. 15 and then convert its

reduced unit to a real unit), and using the value 1.0
for hui, the capillary length is 6.7�10ÿ12 m. With
the capillary length and the thermodynamic model

[equation (23)], equation (34) can be used to calcu-
late the interfacial energy. Using the coarsening
data for CLi=0.10, a value can be obtained for the

interfacial energy, 0.0195 J/m2. Compared to the
value calculated for the (001) interfacial energy,
0.0166 J/m2, directly from the interchange energies
and the mean-®eld model (8), the value obtained

from the coarsening data is about 20% larger. This
di�erence may be due to a number of reasons. First
of all, the value 0.0166 J/m2 was calculated for a

planar (001) interface which has the lowest inter-
facial energy. Moreover, both precipitate and disor-
dered phase were assumed to have the equilibrium

compositions, which is not the case during coarsen-
ing. However, the overall agreement in the inter-
facial energies values obtained from the two

di�erent approaches is quite good. Therefore, as
suggested by Ardell, quite a reliable interfacial
energy value can be extracted based on reliable
coarsening data [51]. Furthermore, if there is a

coarsening theory to link the rate constant K and
the di�usion coe�cient as well as the interfacial
energy or the capillary length, it may be possible to

back-calculate the di�usion coe�cient based on the
coarsening data, e.g. using expression (33).

6. CONCLUSION

This paper reports a computer simulation study

of the kinetics of coarsening of the d' particles in
binary Al±Li alloys. It is found that the mor-
phologies of the d' precipitates become increasingly

non spherical and the frequency of coalescence
increases as the volume fraction increases. For all
the volume fractions studied, it is shown that
hRi30t kinetics is obeyed in the scaling regime while

the rate constant increases with volume fraction.
Quantitative values for the kinetic coe�cients and
the interfacial energy are all in good agreement

with available experimental measurements. It is
demonstrated that the PSDs become increasingly
broad and the skewness of the PSDs changes from

negative to positive with increasing volume fraction,
consistent with experimental evidence in this system.
The scaling function calculated for 020% volume

fraction also shows good agreement with recent ex-
perimental measurement in an alloy with similar
composition. The volume fraction was found to
approach the equilibrium value asymptotically.

Fig. 15. Volume fraction as a function of t* ÿ 1/3 during
coarsening in the system with CLi=10.

Fig. 16. Volume fraction as a function of t* ÿ 1/3 during
coarsening for di�erent compositions.
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