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Abstract-A computer simulation study has been performed of the reaction paths for the precipitation 
of 6 ’ (Al?Li) ordered particles from a disordered matrix (z) in Al-Li alloys, using microscopic Lang&in 
diffusion equations. It is found that the precipitation of 6’ occurs either by a congruent ordering process 
followed by decomposition, or by a non-classical nucleation mechanism which requires critical fluctuations 
of both composition and order parameter, except in a narrow range of compositions near the equilibrium 
phase boundary of the disordered phase, where classical nucleation theory seems to be applicable. 
Composition and order parameter profiles across a critical nucleus were obtained for different 
compositions in the nucleation and growth regime, and compared with those obtained from the continuum 
non-classical nucleation theory. Possible origins for the discrepancies in the precipitation mechanism, 
obtained from different theoretical and experimental studies, are suggested. Copyright #J- 1996 Actu 
Metallurgica Inc. 

1. INTRODUCTION 

The precipitation process of metastable 6’ (A&Li) 
ordered phase particles from a disordered Al-Li 
solid solution, CI, has drawn considerable interest 
in recent years, due to the potential applications 
of precipitation strengthened lightweight materials 
in the aerospace industry. However, despite 
extensive research on this system, there exist 
controversies in the literature regarding the under- 
lying kinetic mechanisms for this precipitation 
process. 

ordering of the Al-Li system as predicted by 
thermodynamic stability analysis, other observations 
can only be explained by the classical nucleation 
growth mechanism [6, 71. In other related alloy 
systems, it has been found [%ll] that as the initial 
average composition of the disordered phase 
increases towards c_, precipitation of the ordered 
compound takes place by a non-classical nucleation 
mechanism, with the critical nuclei having compo- 
sitions that are significantly different from that of the 
equilibrium ordered phase. 

Based on a thermodynamic stability analysis, 
Khachaturyan et al. [I] proposed that when the 
Li composition, c, is above c- [see Fig. l(b)], the 
disordered phase undergoes a congruent ordering 
process, i.e. an ordering reaction without any 
compositional changes, followed by spinodal de- 
composition of the congruently ordered single phase 
into Li-rich and Li-lean ordered regions, with the 
low-Li regions spontaneously becoming disordered 
after their compositions reach the instability limit, c,, 
for the ordered phase. When c was between c- and 
c’, a congruent ordering reaction, taking place by 
classical nucleation and growth, was proposed, again 
to be followed by spinodal decomposition. And when 
c was below c’ it was proposed that the precipitation 
process follows the classical nucleation and growth 
mechanism. 

Recently, we extended the continuum non-classical 
nucleation theory of Cahn and Hilliard for isostruc- 
tural decomposition to the case of precipitation of 
ordered intermetallics from a disordered matrix [I 21. 
It was shown that it is only when the matrix 
composition is near the phase boundary of the 
disordered phase, that the composition and order 
parameter values inside the nucleus are close to those 
of the equilibrium ordered phase, and that the critical 
profiles become increasingly diffuse as the ordering 
instability line is approached. In contrast to 
thermodynamic stability analysis, which predicted a 
region of congruent nucleation and growth, it is 
found that the critical nucleus consists of both 
composition and order parameter fluctuations 
through the entire composition range, from the 
disordered phase boundary to the ordering instability 
line. 

While some of the experimental works [2-51 The continuum non-classical nucleation theory is 
claimed to have confirmed the existence of congruent purely a thermodynamic analysis of the saddle points 
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1. (a) Computed AI-Li phase diagram and (b) free 
energy-composition curves for T = 465 K. 

on the free energy hypersurface in the coordinates of 
composition and order parameter profiles, i.e. the 
properties of a critical nucleus. Although the 
thermodynamic stability analysis of Khachaturyan 
utilized the kinetic argument that ordering, which 
requires atomic diffusion of the order of atomic 
lattice spacing, occurs much faster than phase 
separation, which requires a diffusion distance of the 
order of the precipitate size, it is again mainly a 
thermodynamic analysis. In order to predict the 
actual kinetics which take place during the precipi- 
tation of order intermetallics from a disordered 
matrix and the relative growth rates of compositional 
heterogeneities and long-range order, a kinetic theory 
must be employed. In this paper, the microscopic 
diffusion equations of Khachaturyan [13], in combi- 
nation with a thermal noise term, will be applied to 
the particular case of the precipitation of 6’ (Al,Li) 
ordered particles from a disordered f.c.c. matrix. The 
main purpose is to obtain a fundamental understand- 
ing of the precipitation process in different compo- 
sitional regimes within the two-phase field, and to 
suggest possible reasons for the differences obtained 
in different experimental and theoretical studies on 
this system. 

2. THE MICROSCOPIC DIFFUSION THEORY 

In the microscopic diffusion theory, the atomic 
configuration and the morphologies of an alloy are 
described by a single-site occupation probability 
function, P(Ar, t), which is the probability that a 
given lattice site, r, is occupied by a given atom 
of type A (e.g. Li in AllLi alloys), at a given time t. 
The rates of change of these probabilities are then 
described by the Onsager-type diffusion equations 
as being linearly proportional to the thermodynamic 
driving force [ 131: 

(1) 

where the summation is carried out over all N 
crystal lattice sites of a system, L(r - r’) is the 
proportionality constant which is related to the 
probability of an elementary diffusion jump from site 
r to r’, per unit of time, T is temperature, k, is the 
Boltzmann constant, cA is the atomic fraction of 
the A component, and F is the total free energy of 
the system, which is a functional of the single-site 
occupation probability function. 

Kinetic equation (1) is deterministic and hence 
cannot describe processes that require thermal 
fluctuations, such as nucleation. Therefore, in 
order to be able to study the nucleation and 
growth and spinodal processes on the same footing, 
we introduce a random noise term, <(r, t), to 
the kinetic equation (1) to simulate the thermal 
fluctuations: 

where c(r, t) is assumed to be Gaussian-distributed 
with average zero, and uncorrelated with respect to 
both space and time, i.e. it obeys the so-called 
fluctuation dissipation theory [ 14, 151: 

<5(r, t)> = 0 

<5(r, t)&r’, 1’)) = 

- 2kBTL(r - r’)6(t - t’)S(r ~ r’) (3) 

where (. .) denotes an averaging, (t(r, t)) is the 
average value of the noise over space and 
time, (<(r, t)t(r’, t’)) is the correlation and 6 is 
the Kronecker delta function. The noise term 
is similar to that introduced by Cook to the 
CahnHilliard equation [16]. With the noise term, 
equation (2) becomes stochastic and is, in fact, the 
microscopic version of the continuum Lang&in 
equation [ 171. 

The corresponding growth rates in the amplitudes 
of composition modulations, p(k, t), at a given wave 
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vector, k, can be easily obtained by taking the Fourier 
transform of equation (2), i.e. 

where &k, t), Z(k), [6F/6P(Ar, t)lr, and ((k, t) 
are the Fourier transforms of P(Ar, t), L(r), 
[6F/dP(Ar, t)], and <(r, t), respectively. 

3. COMPUTER SIMULATION 

3.1. Application to an f.c.c. lattice 

In the mean-field approximation, the total free 
energy of a system is given by 

F = i c 1 W(r - r’)P(r)P(r’) 
I r- 

+ k,T C [P(r)ln P(r) + (1 - P(r))ln(l - P(r))] (5) 

where W(r - r’) is the effective interchange inter- 
action energy given as the sum of the A-A and B-B 
pairwise interaction energies, minus twice the A-B 
pairwise interaction energy: 

W(r - r’) = WAA(r - r’) 

+ W&r - r’) - 2W.,,(r - r’). (6) 

Using equations (5) and (4), we have 

(7) 

in which v(k) is the Fourier transform of W(r), and 
for an f.c.c. lattice, is given by 

p(k) = 4W,(cos rrh ‘cos Irk + cos nh ‘cos nl 

+ cosrck ‘cos 7~1) + 2 W,(cos 2zh 

+ cos 2nk + cos 27~1) + (8) 

where W, and W, are the first-nearest and second- 
nearest neighbor effective interchange interaction 
energies, respectively, and h, k and 1 are integers, 
related to the reciprocal lattice through 

k = (k,, k, , kl) = 2n(ha: + ka 2* + la:) 

with a?, a?, and a.? being the unit reciprocal lattice 
vectors of the f.c.c. lattice along the [loo], [OlO], 
and [OOl] directions, respectively, and ]a:] = ]a?] = 
]a:] = l/a0 (a0 is the lattice parameter of the f.c.c. 
lattice). 

By assuming atomic jumps between nearest 
neighbor sites only and using the condition that the 
total number of atoms in the system is conserved, 

for an f.c.c. lattice, we can write [13] 

Z(k) = - 4L,[3 - cos nh.cos nk 

- cosnk.cos ~1 - cos nf.cos nh] (9) 

where L, is proportional to the jump probability 
between nearest-neighbor sites per unit of time. 

3.2. Two-dimensional (2-D) approximation of a 3-D 
problem 

Although it is straightforward and desirable 
to perform 3-D simulations using the microscopic 
diffusion equations outlined above, a 2-D simulation 
is much less computationally intensive, and the 
analysis and visualization of the atomic configuration 
and multiphase morphologies are much easier. 
Consequently, all the results reported in this paper 
were obtained using 2-D projections of a 3-D system. 
A test simulation using a 3-D system yields essentially 
the same results on the precipitation mechanism that 
we are interested in. It is equivalent to assuming that 
the occupation probabilities do not depend on the 
coordinate z along the [OOl] axis. The formulation 
of the kinetic equations on a 2-D projection of a 
3-D f.c.c. lattice presented below was suggested by 
Khachaturyan [18a]. 

The 2-D projection of an f.c.c. lattice along the 
[OOl] direction is a square lattice whose lattice 
parameter is half that of the f.c.c. lattice. Therefore, 
a lattice vector r in the 2-D square lattice can be 
written as 

r = x’b, + y’bz = % a, + $ a2 

where b, and bz are unit cell vectors of the square 
lattice, and a, and a* are the unit cell vectors of 
the f.c.c. lattice on the projected plane. The corres- 
ponding reciprocal lattice vector k for the square 
lattice is 

where bt and bf are corresponding reciprocal unit 
cell vectors for the square lattice, and a: and a? are 
the reciprocal unit cell vectors for the lattice defined 
by the real space unit cell vectors, a, and a2. 

Therefore, on the projected 2-D square lattice, the 
kinetic equation in the reciprocal space is given by 

(10) 

with 

I’(k) = 4 W, (cos 2nh’.cos 2nk’ + cos 2zh’ 

+ cos 2nk’) + 2 Wz(cos 47th’ 

+cos4nk’+ I)+... (11) 
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and 

L(k’) = - 4L,[3 - cos 2nh’~cos 2nk’ 

- cos 2nk’ - cos 2nh’]. (12) 

3.3. Generation of‘ thermal noise 

To generate random numbers which satisfy the 
fluctuation-dissipation theorem, first a random 
number, p, is generated at any given lattice point 
at a given time step from a normal distribution, a 
Gaussian with average 0.0, and standard deviation 
1.0. The random numbers are then multiplied by a 
factor to obtain the desired variance 

5(r, t) = pf 
2ks TL, At 

2 a E ArJ> (13) 

where At is the timestep increment, a, is the lattice 
parameter of the square lattice and L, is the 
exchange probability defined earlier. The coefficient, 
pr, is a constant which is introduced as a correction 
factor that takes into account the fact that the 
correlation equations have been derived from 
linearized kinetic equations which are valid only at 
infinitely high temperatures, and the current simu- 
lations are being performed using a non-linear kinetic 
equation at finite temperatures [17, 181. It serves 
to ensure that the noise term does not become too 
large, and is chosen such that numerical stability is 
maintained. 

3.4. Numerical solution to the kinetic equations 

For many cases, in particular for those involving 
long-range interactions, it is desirable to solve the 
kinetic equations in the reciprocal space [19]. Thus, 
the numerical simulation procedure consists of (1) 
generating the initial single-site probability distri- 
bution, P(Ar,O); (2) calculating L(k) and p(k) from 
atomic mobilities and interatomic interactions; (3) 
computing dp(Ak, t)/dt from equation (7); (4) 
integrating the kinetic equation using the explicit 
Euler’s method; and (5) Fourier transforming 
&Ak, t) back into real space to produce the 
single-site occupation probability for each site as a 
function of time, and thus the kinetics of atomic 
ordering and compositional clustering, as well as the 
morphological evolution. 

4. RESULTS 

In this paper, a two-neighbor interaction model 
is assumed for the Al-L1 system and the values 
for the interaction parameters W, and W, were 
calculated from the V(0) and V(k,) values reported 
by Schmitz and Haasen [20], as 40.44 meV/atom 
and - 3 1.59 meV/atom, respectively. The variation 
in the interatomic interaction parameters with 
composition was ignored. The low-temperature part 
of the a + 6’ two-phase field using these 
interaction parameters is reproduced in Fig. l(a), 

in which the dot-dashed line (T_) represents the 
ordering instability line below which a disordered 
phase is absolutely unstable with respect to ordering, 
the thin solid line (To) is the locus along which the 
ordered and disordered phases have the same free 
energy, the dashed line (T,) is the disordering 
instability line above which an ordered phase is 
absolutely unstable with respect to disordering, and 
the thick solid lines are equilibrium phase boundaries. 
The free energy curves for the ordered and disordered 
phases as a function of composition at T = 465 K 
are shown in Fig. l(b). According to Fig. l(a) and (b), 
at this temperature the equilibrium composition (of 
Li in atomic or mole fraction) of the disordered phase 
(cx), c,, is - 0.068; the equilibrium composition of the 
metastable ordered phase 6’, cg., is -0.224; the 
composition at which the disordered phase becomes 
absolutely unstable with resect to S’ ordering, or the 
instability composition, c-, is -0.131; the compo- 
sition at which the 6’ ordered phase is absolutely 
unstable with respect to disordering, c+, is -0.1.6; 
and the composition at which the ordered and 
disordered phases have the same free energy, c’, is 
-0.109. Computer simulations were performed for 
several representative compositions within the c( + 6’ 
two-phase field, namely 0.078, 0.10, 0.12, and 0.15 at 
T = 465 K. In all simulations, the initial condition for 
the single-site occupation probability function corre- 
sponds to the completely disordered phase, which 
was obtained by assigning the occupation probability 
at each site equal to the average composition. 
All employed supercells consisting of 64 x 64 unit 
cells on the projected 2-D square lattice. Periodic 
boundary conditions are applied. 

4.1. c = 0.15 

For this composition, the timestep size was 0.005, 
and the simulations were run for 40,000 timesteps, 
without thermal noise. The temporal evolution of 
the atomic configurations and the development of 
a two-phase morphology are shown in Fig. 2 
at different timesteps. The occupational probability 
of Al is represented by a gray scale on which 
black indicates 0 and white 1.0. Since the alloy with 
composition c = 0.15 at T = 465 K lies below the 
ordering instability line, it is expected, that the 
disordered phase will initially undergo a congruent, 
spinodal ordering process, followed by spinodal 
decomposition. It can be seen from Fig. 2 that the 
initially disordered matrix undergoes a spinodal 
ordering reaction, throughout the system, producing 
a single-phase Ll, ordered microstructure, with the 
order domains being separated by antiphase domain 
boundaries (APBs). In this transient ordered single 
phase, Al and Li atoms arrange themselves in a 
fashion consistent with an Ll, projection. A check on 
the local composition of Li within the ordered 
domains in this ordered single phase shows it to be 
very close to 0.15 except at the antiphase domain 
boundaries around which some compositional redis- 
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(a) 

63 

Fig. 2. Computed microstructures for CL, = 0.15, at different times t: (a) t = 10.2, (b) t = 12.00, 
(c) t = 30.00 and (d) t = 240.00 

tribution took place accompanying the ordering 
process, which confirms the fact that the ordering is 
essentially congruent. 

Once congruent ordering has taken place, the 
disordered phase begins to grow, primarily at the 
APBs. It is clear from Fig. 2 that simultaneously 
with the growth of the disordered phase from the 
APBs, the ordered regions begin to separate into 
solute-rich and solute-lean regions, exactly as 
predicted by the phase diagram. The solute-lean 
regions finally reach a composition which is below c+, 
and undergo a spontaneous disordering reaction. 
Clearly, however, the growth of the disordered 
phase is much faster at the APBs than within the 

ordered domains [19]. Thereafter, coarsening sets in, 
and the disordered phase that is locked within an 
ordered domain begins to disappear. Also, smaller 
domains begin to disappear, to be replaced by larger 
domains. 

That congruent ordering precedes compositional 
decomposition is also proved by Fig. 3, where the 
average absolute value of the long-range order 
parameter over the whole system as well as the 
average absolute deviation of the local composition 
from the overall average composition (0.15) are 
plotted against time. The fact that the order par- 
ameter reaches a high value before the local 
composition has deviated from the average compo- 
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Fig. 3. Variation in order parameter and composition 
deviation with time, for CL, = 0.15. 

sition indicates that congruent ordering has indeed 
taken place first. The local composition as a given 
lattice site was obtained by averaging over a square 
of nine lattice sites on the 2-D square lattice. The 
decrease in the average long-range order parameter 
after attaining a high value is consistent with the fact 
that as the disordered phase grows in size, the volume 
fraction of the ordered phase decreases. 

4.2. c = 0.12 

Figure 4 shows a series of simulated pictures for 
cL, = 0.12, a composition that lies between c’ = 0.109 
and c_ = 0.13 1. The occupation probability of Al is 
depicted on a gray scale on which black is 0, and 
white 1.0. Based on the thermodynamic analysis, in 
this region, the disordered phase is expected to 
undergo congruent ordering by a nucleation and 
growth mechanism [l]. Indeed, our simulation 
showed that random noise introduced to the initial 
occupation probability distribution decays as simu- 
lation proceeds. Therefore, random thermal noise 
was added to the kinetic equation according to the 
fluctuation-dissipation theorem for a certain period 
of time, to promote the nucleation of ordered 
domains. A nucleus is considered to be critical if it 
continues to grow when the noise term is switched off 
and if it disappears when the noise term is switched 
off one timestep too soon. Once a critical nucleus is 
identified, the composition and order parameter 
profiles are analysed. With pr in expression (13) equal 
to 0.13 and At equal to 0.0002, a critical nucleus was 
found to form after 22,000 timesteps. After the 
formation of stable nuclei, the noise term was 
switched off, At was raised to 0.005, and the growth 
of the ordered domains was followed for another 
40,000 timesteps. 

It is apparent from Fig. 4, that ordered domains 
nucleate and grow, until a mixture of two equilibrium 
phases is reached, but that one does not observe a 

congruently ordered single-phase microstructure 
before compositional phase separation. This fact is 
also shown in Fig. 5, in which the average long-range 
order parameter and average compositional fluctu- 
ation are plotted vs time. The sudden drop in the 
values of the composition and long-range order 
parameter before their significant growth is due to the 
switch-off of noises and due to the fact that the local 
averaging using only nine lattice points contains 
artificial contributions from the random noise. The 
fact that both curves increase at the same time, after 
the noise term has been switched off, indicates that 
decomposition and ordering take place simul- 
taneously. This is contrary to what is predicted based 
on thermodynamics in the composition range [ 11, but 
seems to be consistent with our recent prediction 
using non-classical nucleation theory [12]. 

The critical composition and order parameter 
profiles across a critical nucleus are shown in Fig. 6(a) 
and 6(b). It is quite clear that the critical nucleus 
contains fluctuations in both composition and 
long-range order. For comparison, the composition 
and long-range order profiles obtained from the 
non-classical nucleation theory are also plotted (filled 
circles in Fig. 6). 

4.3. c = 0.10 

Compared to a composition of c = 0.12, nucleation 
of an ordered particle at lower compositions is more 
difficult. In a simulation, it requires an enormously 
large number of timesteps before a critical nucleus 
can form. Therefore, in order to speed up the 
formation of a critical nucleus, we added the same 
spatial distribution of noise at each timestep for the 
composition c = 0.10. We claim that since our main 
interest is in the properties of the critical nucleus 
instead of the nucleation rate, how a critical nucleus 
is formed is not very important. In fact, our test 
showed that for a composition of c = 0.12, the 
properties of the critical nucleus obtained by this 
method are similar to those obtained by thermal 
noises which are uncorrelated in both space and time 
[Fig. 7(a) and 7(b)]. 

Simulations were performed for cL, = 0.10, using 
pr = 0.012 and At = 0.005. The number of timesteps 
required to form critical nuclei was found to be 1100. 
Since in this part of the phase diagram the free energy 
of the disordered phase is lower than that of the 
ordered phase, it is expected thermodynamically that 
congruent ordering cannot take place. Indeed our 
simulation shows a typical nucleation and growth 
process for the precipitation of ordered particles. 

The variation in the local composition and local 
order parameter across the nucleus, just after it is 
formed, is plotted in Fig. 8. Both the composition and 
the order parameter near the center of the critical 
nucleus are significantly higher than those for the 
critical nuclei at c = 0.12. The corresponding profiles 
obtained using the continuum equations are also 
plotted alongside for comparison. 
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(4 (b) 

Fig. 4. Computed microstructures for CL, = 0.12, at different times t: (a) t = 4.40, (b) t = 5.40, (c) t = 14.40 
and (d) t = 194.40. 

4.4. c = 0.078 

At this composition also, a stable nucleus forms 
and grows to an equilibrium size. The noises were 
generated in the same way as for a composition of 
c = 0.10 with a slightly higher value of pr = 0.015. A 
critical nucleus was formed after 8600 timesteps. An 
analysis of the composition and long-range order 
parameter across the critical nucleus revealed that its 
composition was higher than the equilibrium phase 
composition, but then fell back to the equilibrium 
value at a later time during its growth. This is entirely 
consistent with the parallel tangent construction for 
classical nucleation, indicating that classical nucle- 
ation theory applies with greater accuracy at this 

composition than at Li = 0.10 and Li = 0.12. The 
composition within the nucleus reached at value close 
to 0.239 and the order parameter value was about 
0.98 (see Fig. 8). 

5. DISCUSSION 

It is clear from the previous results that homo- 
geneous congruent ordering precedes compositional 
decomposition when a system is below the ordering 
instability line, such as in the case for a composition 
of c = 0.15. This can be seen not only from the early 
stage morphologies of ordered domains separated 
only by APBs, but also from time dependencies 
of average order parameter and average deviation 



252 PODURI and CHEN: COMPUTER SIMULATION OF KINETICS OF ORDER-DISORDER 

0 2 104 4 lo4 6 lo4 
timesteps 

Fig. 5. Variation in order parameter and composition 
deviation with time, at CL, = 0.12. 

from overall composition. The fact that the order 
parameter reaches a high value before composition 
fluctuation can take place clearly indicates congruent 
ordering preceding decomposition. 

However, it is important to point out that the time 
lag between the onset of congruent ordering and the 
onset of compositional decomposition is extremely 
short. Therefore, it is not surprising that Hono et al. 
[6] and Schmitz et al. [7] could not detect the 
congruent order stage in their APFIM and HREM 
studies, respectively. An estimate of the time lag 
between the two processes may be obtained by noting 
that the correspondence between real time and the 
time used in the simulations is approximately given 
by t = t*/L,, where L, is the inverse of the time it 
takes for the diffusing species to make a unit jump 
[ 191. This quantity can be estimated using [ 131 
L, - D/a:, where D is the diffusion coefficient at this 
temperature and a0 is the lattice parameter. Using 
D = 6.47 x lO_” cm’/s, and aa = 4 x 10e8 cm [2, 41, 
we obtain L, -4.0 s’. Then, the relationship 
between real time and simulation time is simply 
t = 0.25 t*. Since the time lag between the onset of 
homogeneous congruent ordering the onset of 
compositional decomposition appears to be only 400 
timesteps with a timestep of 0.005 (see Fig. 3) the 
time lag in terms of the reduced time unit is 
t* = 0.005 x 400 = 1 and in terms of the real time lag 
is 0.25 s. This is clearly too small to be reliably 
detected by currently available experimental tech- 
niques. It is entirely possible that decomposition had 
already set in even before the quenching process 
could be completed [7]. 

Our simulation results also showed that congruent 
ordering does not take place when c’ < c < c_ such 
as c = 0.12, and that ordering and decomposition 
take place simultaneously through a nucleation and 
growth process, as demonstrated by the concurrent 
growth of both the order parameter and the 
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Fig. 6. (a) Composition and (b) order parameter profiles 
across a critical nucleus for CL, = 0.12, using microscopic 

(open circles) and continuum equations. 

compositional fluctuations. However, a close look at 
the cross-sections of the critical nuclei reveals that 
they do not have the properties of the equilibrium 
ordered phase as assumed by the classical nucleation 
theory. For example, at cLI = 0.12, the composition at 
the center of a critical nucleus is only slightly higher 
than 0.12, with an order parameter of only 0.3-0.4. 
These profiles are nevertheless very similar to those 
obtained using non-classical nucleation theory in 
cylindrical coordinates (for the sake of the compari- 
son with the simulation results on the projected 
plane) (Fig. 6). Also, note that in Fig. 6(a), the critical 
nucleus composition is such that it is very difficult to 
make a distinction between “bulk” and “interface”. 
Therefore, the concepts of “bulk” free energy and 
“interfacial” free energy from classical nucleation 
theory break down at this composition. 

As the average composition of Li is decreased to 
0.1 and then to 0.078, the properties of a critical 
nucleus are increasingly closer to the classical 
description, i.e. the composition and order parameter 
values are very close to those of the equilibrium 
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Fig. 7. (a) Composition and (b) order parameter profiles 
across a critical nucleus for cL, = 0.12, using the two 

different methods of introducing noise. 

ordered phase when the average composition is near 
the disordered phase boundary. This is consistent 
with the non-classical nucleation theory of Cahn and 
Hilliard [21, 221 for isostructural decomposition and 
our recent work on precipitation of ordered 
intermetallics [ 121. As the average composition 
approaches the disordered phase boundary, the 
incipient nucleus composition becomes closer and 
closer to the equilibrium precipitate composition. The 
critical nucleus order parameter is mostly constant at 
the center, and then gradually falls towards its ends. 
Therefore, it is possible to distinguish between “bulk” 
and “interface” for this nucleus, although even here 
the interface is diffused, and not sharp. If I defined as 
the “thickness” of the interface and r is defined as the 
radius of the nucleus, then Cahn and Hilliard [21,22] 
have stipulated that classical nucleation theory is 
applicable only when l<<r. 

It should be pointed out that the values for pf in 
equation (13) were chosen quite arbitrarily to save 
computational time and to provide numerical 
stability. We have made no attempt to justify the 
values theoretically. If our main interest is in the 
nucleation rate, then the choice of the pr value will 
become very important, and has to be justified. As 

-2.0 -1.0 0.0 1.0 2.0 -2.0 -1.0 0.0 1.0 2.0 
Distance (run) Distance (nm) 
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Distance (nm) Distance (nm) 

Fig. 8. Composition and order parameter profiles across 
a critical nucleus for cLI = 0.10 and cL, = 0.078, using 

microscopic (open circles) and continuum equations. 

mentioned earlier, our main interest is in the 
determination of critical composition and long-range 
order parameter profiles as a function of composition 
and temperature. Therefore, how a critical nucleus is 
created is not very crucial and we have shown that the 
properties of a critical nucleus are very similar even 
if the ways of generating the noise are very different 
[Fig. 7(a) and 7(b)]. 

It is interesting to compare the critical nucleus size 
obtained from the simulations, with values calculated 
based on the classical nucleation theory. For 
calculating the size of a classical nucleus. the 
interfacial energy is first calculated from a flat 
boundary between the equilibrium disordered phase 
and the 6’ order phase. Then the driving force for 
nucleation is estimated by drawing a tangent line to 
the free energy curve of the disordered phase at the 
matrix composition, and calculating the largest 
difference between the free energy curve of the 
ordered phase and this tangent line. Finally the free 
energy change for an ordered phase particle is 
calculated from the interfacial energy and the driving 
force, by assuming that the particle is cylindrical. The 
size of the critical nucleus can then be calculated by 
maximizing the free energy change with respect to the 
radius of the particle, which gives r* = - o,‘AG,, 
where AC, is the driving force for nucleation (a 
negative quantity), and 0 is the interfacial energy. The 
nucleus is assumed to be cylindrical for the purpose 
of comparison with the simulations, where a 
projection scheme has been employed. These values 
are plotted in Fig. 9, together with the estimated radii 
from the non-classical nucleation theory and from the 
simulation, in which the size is estimated from the 
half-width of the composition profiles. In Fig. 9, the 
values for overall composition below the spinodal 
ordering line indicate the average size of the ordered 
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Fig. 9. Critical nucleus radius, using classical nucleation 
theory (crosses), non-classical nucleation theory (squares) 
and the current simulations (circles). Filled circles 
are estimated average sizes of ordered domains in the 

congruently ordered single phase, for c > c_. 

domains when the entire system has just attained the 
congruent ordering stage. 

While the non-classical nucleation theory predicts 
that there is a divergence in the radius of a critical 
nucleus as the overall composition approaches the 
spinodal ordering composition (c_) (see Fig. 9), our 
computer simulation with a thermal noise indicates 
that the domain size is finite both just above and just 
below the ordering instability line. This is consistent 
with the results of Binder [23], who postulated that 
the divergence in the critical nucleus radius near a 
spinodal line would vanish, if a noise term was added 
to the Cahn-Hilliard equation. Our computer 
simulations show that for average compositions 
below but near the ordering instability line, 
simulations with a thermal noise added for an 
extended period of time produce a smaller size of 
ordered domains than do simulations with only 
random noise at the initial single-site occupation 
probability distribution. This means that without the 
thermal noise term, the size of the ordered domains 
would diverge just below the spinodal ordering line as 
well. However, even with thermal noise, congruent 
ordering does take place and the domain sizes with 
and without noise are comparable at later times after 
decomposition. 

6. CONCLUSION 

A computer study has been performed of the 
kinetics of the 6’ precipitation reaction in Al-Li 
alloys. It is found that when the Li composition is 
below the ordering instability line (cm), precipitation 
involves congruent ordering followed by decompo- 
sition. However, the time lag between the onset 
of congruent ordering and the onset of com- 
positional decomposition is extremely short (shorter 
than the incubation time for ordering), making it 
almost impossible to detect the congruently ordered 

state experimentally. Below c_, 6’ forms by a 
nucleation and growth process, the nature of which 
changes from classical to non-classical nucleation, 
as the composition increases from the disordered 
phase boundary. The formation of a critical nucleus 
cannot be described using only composition fluctu- 
ations, as it requires critical fluctuations in both 
composition and order parameter values. Both 
composition and long-range order parameter values 
within the nucleus decrease as the average compo- 
sition of the system approaches the ordering 
instability line, but there is no divergence in the 
size of the critical nucleus, which characterizes the 
non-classical nucleation mechanism. 
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