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Abstract--The continuum non-classical nucleation theory of Cahn and Hilliard for isostructural 
decomposition has been extended to the case in which the precipitate and matrix not only have different 
compositions, but also have different structures. The particular example of precipitation of ordered 
intermetallics from a disordered matrix is considered. It is found that a critical nucleus consists of 
fluctuations of both composition and long-range order parameter profiles. It is shown that only when the 
composition of the initial disordered matrix is near the phase boundary of the disordered phase, are the 
composition and order parameter values inside the critical nucleus close to those of the equilibrium 
ordered phase, and that the critical profiles become increasingly diffuse as the composition of the 
disordered matrix approaches the ordering instability line. Based on the non-classical nucleation theory, 
the size of critical fluctuations, the critical free energy change and the nucleation rate are estimated for 
the specific case of the precipitation of metastable 6' ordered phase from a disordered matrix in the AI-Li 
alloy. Copyright ~" 1996 Acta Metallurgica Inc. 

1. INTRODUCTION 

Cahn and Hilliard [1] developed a cont inuum model 
taking into account the diffuse nature of  interfaces, 
and studied the composit ion profiles of  a critical 
nucleus, as a function of  matrix composit ion from 
close to its equilibrium composit ion (c,), to the 
spinodal composit ion (c,) (see Fig. 1). They found 
that, for matrix composit ions near c~, the compo-  
sition within a critical nucleus was almost identical to 
that of  the equilibrium precipitate phase (c~). As the 
matrix composit ion increases from c~, the profiles of  
a critical nucleus became increasingly diffuse, with the 
composit ion within the nucleus approaching that of  
the matrix. Based on this study, they concluded that 
classical nucleation, which required the nucleus 
composit ion to be uniform and equal to cp, was 
operative only when the matrix composit ion of  the 
alloy was close to c~. They also found that the radius 
of  the critical nucleus diverged to infinity not only 
near c~, as predicted by the classical nucleation 
theory, but also near c~,. More  recently, LeGoues 
et al. [2] used a discrete lattice model [3] to calculate 
the profiles of  the occupation probabilities (which 
refer to the probability that a given lattice site is 
occupied by an atom of a given type) for a critical 
nucleus, and found that at high temperatures and low 
supersaturations their profiles matched very well with 
those obtained using the Cahn-Hi l l ia rd  continuum 
model. Only at intermediate composit ions are there 
some differences between the profiles obtained from 

the continuum and discrete models. They found 
qualitative agreement with the continuum model for 
the variation of  the radius of  the critical nucleus with 
composition, as well. More  details concerning the 
non-classical nucleation theory can be found in the 
review papers [4-6]. 

It should be emphasized that all previous works on 
non-classical nucleation, including the two men- 
tioned in the previous paragraph, are concerned with 
isostructural decomposition, in which the precipitate 
phase and the matrix have the same structure and 
only differ in their compositions. However,  in most of  
the important  alloy systems, such as Ni-AI  and AI-Li  
two-phase alloys, the precipitate phase is an ordered 
intermetallic and the matrix is a disordered phase, i.e. 
the precipitate and matrix not only have different 
compositions but also have different structures 
related by ordering. In these cases, a critical nucleus, 
or  critical fluctuation, has to be characterized by both 
the composit ion and long-range order parameter 
profiles. Therefore, the main objective of  this paper 
is to extend the original non-classical nucleation 
theory of  Cahn and Hilliard for isostructural 
decomposit ion to the case in which the precipitate 
and matrix phases differ in both structures and 
compositions. We will apply the non-classical theory 
to a particular example, i.e. precipitation of  the LI :  
ordered (AI~Li) particles (6') from an f.c.c, disordered 
matrix (~) in the AI-Li  alloy system, in which the 
elastic energy contribution to nucleation can be 
ignored. 
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2. THE THEORY where 

In the original diffuse-interface theory of Cahn and 
Hilliard [1], the total free energy, F, of a system which 
is inhomogeneous in composition, c. is written as 

F = f[ f lc )  + (Kd2)Vc)2]&x 

whereflc) is the local free energy density and K~ is the 
composition gradient energy coefficient. The increase 
in the free energy arising from a composition 
fluctuation in an alloy with average composition co, 
is then given by 

AF = f[Af(c) + (K,/'2)(Vc)"]d~x 

~ / =  /(~.c) - riO.cO - (~ - c,,) 
\ / o , ,  v 

(6) 

where f is the local free energy density which is a 
function of both composition and order parameter, c0 (1) 
is the average matrix composition, K,, and K, are the 
gradient energy coefficients for order parameter and 
composition, respectively. Here ~1 is the long-range 
order parameter, such that it varies from 0 for a 
completely disordered phase, to c for a completely 
ordered phase. Krzanowski and Allen [7] have used 
a similar scheme to calculate the interfacial energy of 
a flat anti-phase boundary between two ordered 
domains with solute segregation. If we assume that 

(2) the system is isotropic and the critical nucleus has 
spherical symmetry, we can write equation (5) as 

where 

4 f  = f l c )  - . f i e , , )  - (c  - c , , ) ( ? f / &  ),,,. (3) 

If  one assumes that nucleation in a metastable 
solution takes place by overcoming the minimum 
energy barrier, a critical nucleus is defined as the 
spatial composition fluctuation which has the 
minimum free energy increase among all fluctuations 
which lead to nucleation. If the interfacial energy is 
isotropic, the critical fluctuation is expected to have 
a spherical symmetry. In this particular case, the 
composition profile corresponding to the critical 
nucleus can be obtained by solving the following 
Euler equation in spherical coordinates, 

d'~c + 2K~dc ~Af 
K'~r'- r d r -  &--S (4) 

subject to the boundary conditions, 

d c / d r = O a t  r=0 ;  c = c ,  and d e / d r = 0  at r =  ~:. 

The free energy increase corresponding to the critical 
fluctuation can then be obtained by substituting the 
solution from equation (4) into the spherical 
coordinates equivalent to equation (2). 

However, the above theory is applicable only to the 
case in which a critical nucleus differs from the matrix 
only in composition. For precipitation of an ordered 
phase from a disordered matrix, we have to consider 
both the composition and structural differences 
between the nucleus and the matrix. Therefore, we 
have to consider the free energy functional as a 
function of both composition and long-range order 
parameter profiles. In this case. the increase in free 
energy, upon the formation of a fluctuation described 
by both composition and long-range order parameter 
profiles, is given by 

Af = f [A f  + (K,,/2)(Vq)'- + (K/2)(Vc)2]&x (5) 

0 
AF = 4 n J [ A f +  (K,/2)(dq/dr): 

+ (Kc/2)(dc/dr)"]r'-dr, (7) 

where r is the radial distance from the center of the 
fluctuation. The critical composition and order 
parameter profiles satisfy the Euler equations in 
spherical coordinates, given by 

Kd'c__ 2 K d c _  ?Af  
dr: H r dr &" 

d-'q 2 K d  q ¢~Af 
K"-a-7 + --7-. Tr = & '  (8) 

subject to the boundary conditions 

c(r)=co and q ( r ) = 0 a t r = 3 : ,  

and 

dc and dr/ 
d--r ~ r = 0  at r = 0 .  

These are coupled, non-linear second-order differen- 
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Fig. 1. Hypothetical  free energy-composit ion curve for a 
system exhibiting isostructural  decomposit ion.  
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tial equations, which have to be solved numerically 
for a given set of L K¢ and K,,. 

3. APPLICATION TO AI-Li ALLOY 

The case of the precipitation of metastable LI:  
ordered 6'(ALLi) particles from an f.c.c, disordered 
matrix in the A1 Li alloy system is particularly suited 
to this study, since isotropic interfacial energy is a 
very good approximation for this system and the 
elastic energy can be ignored. Furthermore.  this 
system has been extensively studied recently [8]. 
which provides the necessary input information for 
the diffuse-interface model. For simplicity, we chose 
the mean field free energy in a second-neighbor 
interaction model as the local free energy density 
function [9], 

. llCal) = 2@[(12W~ + 6 W)c-" 

+ 3 ( - 4 W ,  + 6g'_,)q:] 

kBT- 
+--g~-v, [(c + 3q)ln(c + 3q) "a 

+(1 - ( c +  3r/))ln(1 - (c + 3q)) 

+ 3(c - tl)ln3(c - q) 

+3(1 - (c - ~l))ln(1 - (c - r/))] (9) 

where W~. 145 are first- and second-neighbor effective 
interchange energies, 11 is the long-range order 
parameter for the LI:  phase, c is the average 
composition, kB is the Boltzmann constant, c, is the 
volume per atom and T is the temperature. Although 
it has been well understood that the above mean field 
free energy incorrectly gives a second-order order-  
disorder phase transition, when it is supposed to be 
first order, at composition c = 0.5, yet with the 
proper choice of 14"~ and W:. it can provide a 
reasonably good approximation of the low-tempera- 
ture two-phase (:~ + 6') field, which is of  practical 
interest and of interest to the present study [9]. 
Moreover. a more accurate free energy density 
function is not exlSected to change the main 
conclusions of this paper- - tha t  is. while the exact 
values for the order parameter and composition of 
the critical nucleus might be different, the qualitative 
features of the profiles and their dependence on 
temperature and composition would remain the 
same. 

The gradient energy coefficients K,, and K~ can also 
be expressed in terms of the effective interchange 
energies and the interatomic distances [10] 

K, = -~Yp,.7 w, 

K, = - @ _ p ; W , e  , , ,  (10) 
D--  7- 
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Fig. 2. The metastable two-phase field calculated from the 
free energy model (9). with interaction parameters from Ref. 
[11]: thick solid lines--the equilibrium phase boundaries: 
dashed line--disordering instabilit 3 line of the ordered 
phase (T_): thin solid line--the locus along which the free 
energies of the ordered and disordered phases are the same 
(To); and dot~lashed line--the ordering instability line ( T_ I. 
The approximate location of experimental points is also 

shown (after Ref. [9]). 

where k0 is the superlattice vector for the L l: ordered 
phase, p~, p,. etc. are the distances between nearest. 
second-nearest, etc. neighbors, and ri is the corre- 
sponding lattice vector. 

For  convenience, we obtained the values of g"~ and 
IV_, from Ref. [11], which gives 1t '1-  40.435meV/ 
atom and W_,~ -31 .59meV atom. The gradient 
energy coefficients, K, and K~, calculated from this set 
of interchange energies, are equal to 14.422 and 
-2.83meV(nm)Z/atom. respectively. The low tem- 
perature part of the equilibrium phase diagram 
obtained using this free energy function is shown in 
Fig. 2, in which the dot-dashed line ( T )  represents 
the ordering instability line below which a disordered 
phase is absolutely unstable with respect to ordering, 
the thin solid line (T,,) is the locus along which the 
ordered and disordered phases have the same free 
energy, the dashed line (T+) is the disordering 
instability line above which an ordered phase is 
absolutely unstable with respect to disordering, and 
the solid lines are equilibrium phase boundaries. 

With the local free energy density function, and the 
values of K,, and K~, equations (8) were then solved 
using the subroutine COLSYS, developed by Ascher 
et al. [12], which is designed to solve ordinary 
differential equations for systems of non-linear 
boundary-value problems. It uses the method of 
spline collocation at Gaussian points, in conjunction 
with a damped Newton's  method, to solve non-linear 
problems. The subroutine subdivides the boundary 
interval into finer and finer grids until a user-specified 
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Fig. 3. Composition (dot~lashed) and order parameter 
(solid) profiles, at T = 465K. 
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Fig. 5. Composition (dot-dashed) and order parameter 
(solid) profiles, at c=  0.12. 

tolerance is satisfied. To speed up the calculation, an 
initial guess of the profile was supplied• In our case, 
we assumed the initial profiles to be Gaussian with 
average at r = 0. 

Figure 3 shows examples of critical composition 
and order parameter profiles for four different matrix 
compositions, obtained at a temperature of 
T = 465K. The free energy curves for the ordered and 
disordered phases as a function of composition at this 
temperature are shown in Fig. 4, at this temperature 
the equilibrium composition (Li in atomic or mole 
fraction) of the disordered phase (~), c,, is ~0.068; 
the equilibrium composition of the metastable 
ordered phase 6', c~, is ~0.224: the composition at 
which the disordered phase becomes absolutely 
unstable with respect to 6' ordering, or the ordering 
instability composition, c_, is ~ 0•131; the compo- 
sition at which the 6' ordered phase is absolutely 
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Fig. 4. Free energy-composition curves for the ordered and 
disordered phases at T = 465K. 

unstable with respect to disordering, c,,  is ~ 0.106: 
and the composition at which the ordered and 
disordered phases have the same free energy, c', is 
~0.109. The order parameter profiles in Fig. 3 were 
actually q/c so as to make the values for the order 
parameter between 0.0 and 1.0 instead of between 0.0 
and c. As the matrix composition increases, the 
composition and order parameter values at the center 
of a critical fluctuation decrease. Of the four cases 
shown in Fig. 3, only in the case which corresponds 
to matrix composition 0.074 are the order parameter 
and composition values at the center of the critical 
fluctuation close to the equilibrium values of the 6' 
ordered phase• 

The equilibrium phase boundary of the disordered 
phase and the ordering instability line can also be 
approached by varying the temperature of the system, 
while keeping the matrix composition constant. The 
critical composition and order parameter profiles at 
four different temperatures at c = 0.12, are shown in 
Fig. 5. These critical profiles behave similarly to those 
in Fig. 3, i.e. the critical nucleus becomes increasingly 
non-classical, as the temperature is lowered from that 
close to the equilibrium phase boundary to that close 
to the ordering instability line. 

The size of the critical fluctuations is arbitrarily 
defined as the radius at which the composition is 
equal to (cN + c0)/2 for the composition profile, and 
order parameter equal to qN/2 for the order 
parameter profile, where cN and ~/N represent the 
values of the composition and order parameter at the 
center of the critical fluctuation, and co is the matrix 
composition• The estimated sizes or radii of critical 
fluctuations as a function of matrix composition are 
plotted in Fig. 6. The size increases and diverges as 
the matrix composition approaches both the disor- 
dered phase boundary and the ordering instability 
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Fig. 6. The variation of the critical radius with composition: 
circles---classical; triangles---estimated from the critical 
composition profile; and squares--estimated from the 

critical order parameter profile. 

line. For comparison, the radius obtained using the 
classical nucleation theory is also plotted. For  
calculating the size of a classical nucleus, the 
interfacial energy is first calculated from a flat 
boundary between the equilibrium disordered phase 
and the 6' ordered phase. Then the driving force for 
nucleation is estimated by drawing a tangent line to 
the free energy curve of the disordered phase at the 
matrix composition, and calculating the largest 
difference between the free energy curve of the 
ordered phase and this tangent line. Finally, the free 
energy change for an ordered phase particle is 
calculated from the interracial energy and the driving 
force, by assuming that the particle is spherical. The 
size of the critical nucleus can then be calculated by 
maximizing the free energy change with respect to the 
radius of the particle. 

Figure 7 shows the critical free energy, calculated 
for different compositions, for the formation of both 
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a critical nucleus, with composition. 
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~.14 

l (11) 

where Z is the Zeldovich factor, AF* is the critical 
free energy of formation of the nucleus, fl* is the 
impingement rate of atoms at the nucleus, Nv is the 
number of atoms per unit volume and k~ is the 
Boltzmann constant. The time dependency of the 
nucleation rate is incorporated into the second 
exponential, where z is an incubation time, and t is 
the time for which nucleation has been taking place. 
Using a diffusion coefficient of 0.647nm"/s [14], Z, fl* 
and z are calculated according to Ref. [13] as 

[-Ar.-]' 2± 
Z = 4~. .mk,  r j R ,  ~ 

47zR*2Dco 
fl* = a4 (13) 

(12) 

the non-classical and classical nuclei. The critical free 
energy for the former case can be calculated simply 
by substituting the gradients of the composition and 
order parameter profiles of Fig. 3 into equation (7), 
and summing over r. To calculate the latter curve, it 
is a simple matter of substituting the value of the 
critical radius into the free energy change expression. 
As expected, as the matrix composition increases, the 
critical free energy decreases. In the case of 
non-classical nucleation, the value for the critical free 
energy tends to zero as the ordering instability line is 
approached whereas in the classical case, the critical 
free energy remains finite. 

With the values for the critical radii and the critical 
free energies of formation, it is possible to estimate 
the rate of nucleation. J*, using the approach 
outlined by LeGoues et al. [13]. For both classical 
and non-classical nucleation, the nucleation rate is 
given as 

C 

Fig. 8. The variation of the nucleation rate with 
composition. 
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32~za~R*4kBT 
r -  3AF*t'~Dc~, (14) 

where D is the diffusion coefficient of solute atoms 
and a is the average of the lattice parameters of the 
nucleus and the matrix phases. The value of R* used 
was that based upon the composition profiles. 
Figure 8 shows the nucleation rates obtained using 
this approach, for both the classical and the 
non-classical nucleation mechanisms. The time 
dependency of the nucleation rate has been ignored 
for both curves. 

4. DISCUSSION 

From the above calculations, it is demonstrated 
that a critical nucleus, or a critical fluctuation, 
consists of fluctuations in both the composition and 
order parameter profiles. Therefore, we cannot 
describe the non-classical nucleus of an ordered phase 
in a disordered matrix, using the composition profile 
alone. We have also demonstrated that the order 
parameter and the composition profiles become 
increasingly diffuse as the ordering instability or 
spinodal ordering line is approached, with their 
values at the center of the nucleus getting 
progressively closer to those of the matrix and the 
spatial extent of the nucleus approaching infinity. On 
the other hand, when the matrix composition is near 
the phase boundary of the disordered phase, the 
properties of the critical nucleus (composition and 
order parameter profiles) begin to resemble those of 
the equilibrium ordered (6') phase, and we can define 
a "bulk" region of the critical nucleus and an 
"interface" between the nucleus and matrix, although 
the interface is diffuse. Therefore. it is expected that 
classical nucleation theory should apply in the 
composition region very close to the equilibrium 
phase boundary of the disordered phase. These 
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Fig. 9. The parallel tangent construction, showing that the 
driving force for nucleation is largest at a composition 

exceeding that of the equilibrium fl phase. 

results are similar to those obtained by Cahn and 
Hilliard for isostructural decomposition [1], with the 
matrix composition between the disordered phase 
boundary and the spinodal curve. 

As mentioned above, when the matrix composition 
is very close to the phase boundary of the disordered 
phase, the composition and order parameter values at 
the center of the nucleus are essentially the same as 
those of the equilibrium ordered phase. However. a 
careful examination of the critical composition and 
order parameter profiles indicates that there is a 
range of matrix compositions for which the 
composition and the order parameter values within 
the critical nucleus may exceed those of the 
equilibrium ordered phase. This behavior seems to be 
consistent with the fact that the driving force for 
nucleation is a maximum when the composition 
within the nucleus is given by the parallel tangent 
construction (Fig. 9). 

We showed that a critical nucleus contains both 
composition and order parameter fluctuations 
throughout the entire composition range that we 
studied, including the matrix compositions between c' 
and c_. On the other hand. based on a thermodyn- 
amic stability analysis combining with some kinetic 
argument, Khachaturyan et al. [9] predicted that 
nucleation between c' and c_ would be congruent, i.e. 
a critical nucleus would only contain the order 
parameter fluctuation, while the composition was 
uniform in the nucleus, and the same as that of the 
matrix. We also compared the critical free energy 
values obtained for the two cases, i.e. for a critical 
nucleus with and without a composition fluctuation. 
To calculate the critical free energy for the latter case, 
we solved for the critical order parameter profile 
while keeping the composition uniform throughout 
the system. For matrix composition 0.12. we obtained 
a critical free energy of 14.482 meV/nm 3 for the case 
with simultaneous composition fluctuation, which is 
lower than the 21.393meV/nm 3 obtained for the case 
of congruent nucleation. However, it should be 
emphasized that this analysis of the critical 
fluctuation is purely based on thermodynamics, 
whereas Khachaturyan's argument for congruent 
nucleation took into account the fact that ordering 
occurs faster than compositional clustering. There- 
fore, it is possible that more nuclei may develop from 
energetically less favorable but kinetically more 
favorable fluctuations than the critical ones. How- 
ever, our computer simulations on the nucleation of 
6' particles in AI-Li alloys using microscopic 
diffusion equations with random thermal noise terms, 
which take into account the kinetics, seem to confirm 
that there are coupled composition and order 
parameter fluctuations in the critical nucleus even in 
the matrix composition range between c' and c_, 
although the composition fluctuation is very small in 
magnitude [15,16]. 

The critical radius, estimated from the critical 
fluctuations shown in Fig. 3, diverges as the matrix 
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composition approaches the ordering instability 
composition, c_ (see Fig. 6). This is consistent with 
the results of  Cahn and Hilliard [1] and LeGoues 
et al. [2] for isostructural decomposition, when the 
matrix composit ion approaches the spinodal compo- 
sition. However,  as Binder [5] pointed out, this is an 
artifact arising from the fact that thermal fluctuations 
are ignored in the non-classical nucleation theory. He 
showed that the inclusion of  a thermal noise term, as 
proposed by Cook [17], into the Cahn-Hil l iard  
equation, did not produce this divergence. Similarly, 
the generalized nucleation theory, based on a 
cluster-dynamics approach, proposed by Binder et al. 
[18,19] did not predict the divergence at the spinodal 
composition. We have performed computer  simu- 
lations of  the nucleation process of  6' ordered phase 
from a disordered matrix, using the microscopic 
diffusion equations with random thermal noise. 
Indeed, our simulation results showed that the size of  
nuclei is finite at matrix composit ions close to c_ 
[15,161. 

5. CONCLUSIONS 

The continuum non-classical nucleation theory of  
Cahn and Hilliard has been extended to the case of  
precipitation of  ordered intermetallics from a 
disordered matrix in which a critical nucleus has to 
be described by both composit ion and order 
parameter profiles. Critical fluctuations of  compo-  
sition and order parameter profiles across a critical 
nucleus have been computed for matrix compo- 
sitions varying from the disordered phase boundary 
to the ordering instability line. It is shown that only 
when the matrix composit ion is near the phase 
boundary of  the disordered phase, the composit ion 
and order parameter values inside the nucleus are 
close to those of  the equilibrium ordered phase, and 
the critical profiles become increasingly diffuse as the 
ordering instability line is approached. A critical 
nucleus consists o f  both composit ion and order 
parameter fluctuations through the entire compo- 
sition range from the disordered phase boundary to 
the ordering instability line. Based on the non-clas- 
sical nucleation theory, the size of  critical fluctu- 
ations, the critical free energy change and the 
nucleation rate are also estimated for the particular 

case of  precipitation of  ,'i' ordered from the 
disordered matrix in A1 ki alloy. 
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