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Abstract-Nonlinear relaxation of a sharp density profile typical of layered semiconductor 
junctions is studied using an irreversible statistical mechanical technique, the Path Probability 
Method, taking into account nearest neighbor correlations. The vacancy mechanism and the pair 
approximation are used. It isfound that atoms near a sharp density profile diffuse up against the 
density gradient. Our numerical examples demonstrate that in this range there is a possibility that 
the atom flux can go either down along or up against the local chemical potential #.) gradient. 
However, the calculations do not deny the possibility of modifying the definition of p in such a way 
that the atoms always flow toward the direction of decreasing 6~. 

INTRODUCTION 

In the first of this series (1) we studied equilibrium properties of nanoscale layer structures. 
We showed how the layer profile varies with temperature and the layer thickness, and how the 
phase separating temperature decreases as the layer thickness decreases. The present paper is the 
sequel of the previous study into the time dependent behavior. 

Due to recent advances in epitaxial growth technology, very sharp and defect free 
heterojunctions can be fabricated. These junctions are not in equilibrium, although they look 
stable. The junction profile can change under disturbances, for example by thermal means or by 
elastic stresses. When the temperature of ajunction is raised by whatever means to the range which 
is high enough, the junction profilerelaxes. Since a layer structure is made of many steepjunctions, 
the basic process involved in the relaxation of a layer structure is the atomic interdiffusion. In the 
present paper we study the isothermal relaxation of a junction profile. 

We work with a pseudobinary alloy semiconductor of the composition AxB r-xc. One of the 
fee sublattices of the zinc-blende structure is fully occupied by the C component, and the other fee 
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sublattice is shared by A and B components. Assuming that the C component is practically 
immobile, we work on the composition relaxation of theAand B components in an fee lattice. We 
assume the vacancy mechanism for the substitutional diffusion. We also assume that the pair 
interaction is of the phase-separating kind, so that no ordered structure comes into consideration. 

In the previous paper (l), we used an analytical statistical mechanical technique, the Cluster 
Variation Method (CVM) (2). The present paper employs the Path Probability Method (PPM) (3) 
which is the time-dependent version of the CVM. This analytical technique is suited to the present 
purpose for several reasons. Compared with numerical simulation methods, analytical methods 
lead to the accuracy which would be easily obscured by fluctuations in simulations. The present 
paper is concerned about validity of the linear theories in cases when the composition gradient is 
steep and a system is far from equilibrium, as is encountered at the early stages of relaxation from 
an initial sharp profile. 

THEORETICAL BACKGROUND 

Conventional Treatment of Interdiffusion 

The classical theory for atomic interdiffusion is Fick’s laws. The first law states that the atom 
flux is linearly proportional to the concentration gradient when the gradient is small. When the 
gradient is large, we need to include the square gradient term as in the Cahn-Hill&d equation (4). 
Tsujimoto (5) showed that this equation leads to overshooting of the concentration profile near the 
sharp junction in early stages of interdiffusion. In a previous paper (6) we examined the same 
equation and showed that the square gradient term is essential in producing the overshooting. 
Since the need arises later, we briefly summarize Ref. 6. 

The free energy of the system with a one-dimensional variation of the concentration c(x) is 
written as 

F = A (Wx)) +K @$‘) dx 

where A is the cross-sectional area normal to the x direction, fn(c) is the local free energy density 
and K is a constant. The continuity equation is 

Ww) = JJ(x:t) 
at t3x E21 

where J(x;t) is the atomic flux toward the x direction. The next step is an important approximation 
for J(x;t) written as 

J(x; t) = -M$ & 
( 1 

[31 

where the mobility coefficient M is assumed constant. From these equations we obtain the Cahn- 
Hilliard equation (4) for c(x;t): 
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We call attention to two points. One is the approximation for writing J(x:t) as in [3]. The other 
is the use of a single function, the concentration density c(x;t), in describing the state of the system. 
To examine these two points is the theoretical interest of the present paper. 

We comment on a related important relation which holds when c(x;t) is the sole function, 
even for non-linear cases, as was described by Cahn.(7). The integrand of F can be of any function 
of c: f(c(x;t)). The time derivative of F leads, using the continuity equation [23 and after a partial 
integration, to 

-J(x) dx IO where p(x) = 9. PI 

cl(x) is the chemical potential. The inequality in [5] represents the second law of thermody- 
namics. Since this inequality is to hold for any functional form of c(x;t), [5] requires at any 
location x 

$J(x) IO. WI 

It is significant to point out that even when f(x) depends not only on c(x) but also on the pair 
correlation y(ij)‘s at x, as will be discussed below, if the local equilibrium holds and y(ij)‘s become 
functions of c(x), i.e. when y(ij)‘s are slaved by c(x) using Cahn’s terminology, then the inequality 
[6] holds, as the necessary consequence of the second law (7). We will show in a later section an 
example in which [6] breaks down. 

Correlations in Irreversible Statistical Mechanics 

In equilibrium theories of cooperative systems, correlations of atomic configurations in 
local clusters play the essential role. In time-dependent theories, nearest neighbor pair correlations 
were taken into account in the diffusion theory in many papers (8) by one of the authors and Sato. 
The main interest of these papers was, different from the present one, on the diffusion coefficient, 
and thus the treatments were limited to the small driving forces, although the basic formulation was 
applicable to large deviations from equilibrium. In these treatments, the independent variables to 
describe the state of an alloy system include the pair probabilities yv(ij;t) for nearest neighbor 
i-j pairs at av position, in addition to the concentration x&t) for the i species at an n lattice point. 
We use the discrete lattice description in the rest of the paper, and replace the continuous distance 
variable x by the lattice position n and the bond position v, both discrete; x is used as the 
composition variable, replacing the previous c. 

The particular feature to be noted in our diffusion papers (8), in which the state is not far from 
equilibrium, is that it is not necessary to assume, but rather the theory derives, that the gradients 
of local chemical potentials p,,(j)‘s are the driving forces for the fluxes J”(i), including j # i. This 
result supports Onsager’s irreversible thermodynamics (9) that [3] holds when the system is not 
far from equilibrium. On the other hand, when the state is far from equilibrium, our previous 
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diffusion theory (8) says that the driving force for J,(i) cannot be simply written as Vp&)‘s. In 
this paper we use the word “linear” diffusion when the diffusion process is near equilibrium. 

In studying diffusion in the non-linearregime near a junction with steep gradient, we propose 
to go a step beyond the prevailing treatments based on the sole variable c(x;t). which is based on 
a point cluster, and examine the significance of correlations. As the first step in this direction, we 
report the effect of the pair correlations y(ij;t) in this paper. To work with a cluster larger than the 
point is particularly meaningful because the atomic migration in fee ordered structures requires a 
still larger tetrahedron cluster as the basis of CVM and PPM. 

MODEL AND THEORY 

We study isothermal relaxation of a layer structure of a binary atomic system A-B on a fee 
lattice as is described in the Introduction. Atoms relax from the initial density profile of sharp step- 
functions. The theoretical method we use is the Path Probability Method (PPM) (3) in the pair 
approximation, which is known to lead to the same kinetic differential equations as those derived 
by the Master Equation Method &IBM) (10) based on the pair variables. The PPM is most suited 
for our purposes because it is closely tied to the CVM (2) for equilibrium, and also it can avoid 
possible human errors which may occur when the kinetic difference-differential equations are 
written intuitively in MBM. 

We place the density gradient of the fee lattice along the [ 1001 direction as in Figure 1. 
Around a lattice point in an n plane, there are four nearest neighbor bonds in the n plane, four v- 
1 bonds and four v bonds. In order to make the calculation easier to handle, we assume the vacancy 
density is statistically the same for every lattice point and is x,(0$) =x(O) = 10e5. This assumption 
excludes the phenomenon of vacancy accumulation near the boundary, but it is decided that this 
exclusion is not harmful for the present purposes of studying the behavior of relaxation of sharp 
junctions. This condition makes the fluxes of Aand B components satisfy a constraint relation JA 
+ Jn = 0. 

In using PPM (3) we define two sets of variables. One is the “state” variables to describe 
the state of the system at time t, and the other is the “path” variables to describe the change of state 
in a short time interval At. Using these variables we construct the path probability function which 
describes the probability that a change defined by the path variables occurs in At. A maximum of 
the path probability function leads to the most probable direction the system changes into. Since 
the procedures for deriving these equations are standard (3) the details are omitted. After the 
difference-differential equations for the state variables are derived, integration was done using the 
Euler technique. The computer round-off errors are negligibly small. 

RESULTS 

In order not to obscure the main points of concern, we made the jump probabilities of 1 and 
2 atoms the same, and made ~11 = ~22, but chose 4s = &tt+ ~22 - 2&12 > 0, where Eij > 0 is defined 
as the energy needed to break the i-j bond. Since E > 0, A-rich and B-rich phases separate at low 
temperatures. Taking account of the critical temperature of the phase separation at 2e/(kT,) = 0.182 
for fee, we choose 2&/(kT) = 0.15 for our calculations so that T > Tc and the equilibrium profile is 
uniform throughout the system. 
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Figure 1. The gradient direction. the lattice plane number n and the bond number v. 
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Figure 2. Relaxation of the composition profile obtained by integration. The initial 
composition is xn(l)=O. 15 at the flat bottom, and 0.85 at the flat top. Other curves 

are at the time steps 450, MOO, 1OOOO,3OWO, lCKKXIO,15oooO, 2CKlOUO 
and 3OOOOO in an arbitrary time interval. 
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Figure 2 is an example of how the composition changes. The initial profile is a square-shape 
layer structure in which x,,(i=l) = 0.15 and x,&i=l) = 0.85 alternate with the layer thickness h, 
which we choose h = 10. The initial profile and the jump probabilities are designed for examining 
the symmetric case. We notice overshooting above 0.85 and below 0.15 in early time steps. Only 
one peak and one dip are observed around each junction. The peak gradually moves away from 
the junction toward the center of the hill. These properties are the same as what Tsujimoto (5) and 
the present authors (6) obtained previously using Cahn-Hilliard equation [4]. As time elapses, the 
profile smooths out toward the final uniform profile: x&t+-) = 0.5. 

In order to examine whether x,( 1) overshoots into unphysical negative region or not, the case 
when the initial profile is x,( 1) = 0.001 and XIIL~I( 1) = 0.4 was studied as shown in Figure 3. We 
see satisfactorily that near the bottom of xn( 1) there is no overshooting into the negative values, 
although we verified numerically that the curve does dip slightly within the positive range. This 
result is different from Tsujimoto’s (5) the reason being that our free energy curve behaves 
correctly near xn = 0. 

Flux and the Chemical Potential Gradient 

The overshooting in Figure 2 indicates that the net flux Jv=t.5( 1)R of the species #l from n=l 
to n=2 is positive. If Onsager’s irreversible thermodynamics for the “linear” diffusion is to hold 
for this bond, we expect the discrete version of [3]: 

J, (1)R = - M $ 

Plane Position n 

Figure 3. Relaxation of the composition profile obtained by integration. The initial 
composition is x,(1)=0.001 at the flat bottom, and 0.4 at the flat top. Other curves 
are for the time steps 500, 1000, and 2000 in the same time interval as Figure 2. 

]7] 
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between n = 1 and 2, where the local chemical potential pn is defined as 2p,, = h(l) - ~~(2). We 
now examine if [7] holds or not in detail. Since the pair approximations of PPM and of CVM are 
mutuaIly consistent, we can use the formula of the local chemical potential pn derived in CVM in 
interpreting the output of PPM. In the pair approximation of CVM for a one-dimensionally 
inhomogeneous system, the free energy F is a function of x,(i), y,(ij) and yv(ij). We expand the 
definition of the chemical potential in the equilibrium state into cases including systems away from 
equilibrium, and we define the local chemical potential p,,(i) as the change of F when a species i 
is added at n, without destroying the distribution of correlations around thepoint. Mathematically 
then p,,(i) is the partial derivative aF/&,(i) keeping independent y,(ij) and yv(ij) fixed. We then 
obtain 

2/3pn =-6/l(ert-&-llln+i#+21n 
( 

YY-1(2l)Y”-l(ll)Yll(ll) Y”(II) Y”(l2) 
n 1 Y,1(12)Y”-1(22)Yll(22) Y,W) YVW) - @’ 

Actually h in [8] is defined as the difference of two pn(i)‘s, so that F is differentiated with respect 
to (xn( l)-~(2))/2 to obtain pn. If we assumed the local equilibrium, y,(ij) and yv(ij) would be 
determined as a minimum of F keeping x,(i) fixed, and then would be slaved, i.e. would become 
a function of x(i)‘s, to be written as yO,(ij) and yOv(ij). In deriving [83, we do not assume the local 
equilibrium, and the y part in [8] contains the contribution not only from x,(i) at n but also from 
the v-l and v bonds, and hence takes into account the curvature of the density profile. Also it is 
to be noted that in the equihbrium state, pn in [8] is constant throughout the one-dimensionally 
inhomogeneous system including the interphase boundary region. 

In order to study the effect of correlations on the sign of ApJAn, we work with two initial 
distributions. In both cases x,(l;t=O)‘s am the same, but we define y(ij;t=O) differently. In tbe“local 
equilibrium initial distribution”(LEID), atomic rearrangement has occurred within the n plane and 
thev bond so that the initialF has been minimized with respect to y,(ij;t=O) and y”(ij;t=O) keeping 
xn(i;t=O) fixed, with the exception that at the discontinuous junction we assume no correlation and 
use the product: yv(ij;t=O) = x,,(i;t=O) x,+lCj;t=O). In the “no correlation initial distribution” 
(NCID), the distribution of species i and j within the n plane is random and the neighbors are not 
correlated so that we use the product form y,(ij;t=O) = x,(i;t=O) x&;t=O) and yv(ij;t=O) = x,(i;t=O) 
x,+l(j;t=O) for all n’s and v’s Note that above conditions are only for the initial distribution, and 
that after t=O, y,(ij;t) and yv(ij;t) are integrated independently from x,(i;t). 

The results of integration for the relaxation of the density profile are shown in Figure 4. We 
watch the n =1.5 bond and x,&l;t). The latter builds up and takes its maximum value of about 
0.859 at t* z 400 for LEID and t*= 500 for NCID, where t* is the number of integration steps. In 
Figure 4, the decreasing curves are the flux Jv=t.s( 1)~ and the increasing curves are (AuAn)v=t.s 
for the NCID and the LEID initial conditions. The flux curves are almost the same for the two cases. 
We note the following four significant features. 

(i). The (ApdAn)‘s for both NCID and LEID are calculated using the same & expression [8] 
and the same x,(i;t=O), the only difference being their initial pair correlation y(ij;t=O)‘s. We note 
that the bond configurations from NCID are farther away from equilibrium than those from LEID. 
The large difference between NCID and LEID curves indicates the significance of interparticle 
correlations, y(ij)‘s, in the p expression. 

(ii). Although AMAn starting with NCID always stays positive while ANAn with LEID 
starts from negative, the corresponding flux curves are almost the same. This fact indicates that 
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Figure 4. The flux Jv( 1)~ in decreasing curves and (AMAt& based on [2] in increasing 
curves for the bond v=l .5 between the lafflce points n=l and 2 for the two choices of 

the initial pair correlation, LEID (solid curves) and NCID (broken curves). 

we cannot interpret (Ap,,/An)v=t.5 as the driving force for the flux Jv=t.~(l)~ in the initial region. 
(iii). If [7] holds, AMAn and the flux starting with LEID should become zero at the same 

t*. Actually, the former becomes zero at t*=270 and the latter at t*=600. This difference indicates 
that [7] breaks down, and can be interpreted as the measure of the “non-linearity” of diffusion. 
Another way of interpreting this difference is to go back to [6]. Between the two t*‘s, Jv and AcLn/ 
An have the same sign, and violates the inequality [6]. Therefore, the difference is the measure of 
deviation of yv(ij) from the slaved yOv(ij). In the NCID case, in which the system is farther away 
from local equilibrium, the non-linearity is larger. The breaking down of [7] observed here is based 
on the pair approximation. How far we can generalize this is discussed at the end of the section. 

(iv). The finite deviation of yv&ij) from y”v&ij) signifies that the relaxation time for the 
pair correlation is sufficiently long compared with the rate of change of the local density x,,(i) near 
the junction in this model . 

Since the density peak at n=2 gradually moves inward to n=3,4 and 5, we examined the 
fluxes and (ApdAn),, for the bonds at v=2.5,3.5 and 4.5. For these cases [7] is not significantly 
violated, and hence the non-linearity is not very large away from the sharp junction. 

It is important, however, to verify that the free energy F for the entire system does decrease 
with t*. We calculated the dimensionless quantity pF/N per lattice point averaged over the entire 
system in the two cases and plotted them in Figure 5. The curves show that F decreases 
monotonically in both LEID and NCID cases, in agreement with the general proof that the free 
energy always decreases along the natural path of the PPM (11). 
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Figure 5. Behavior of the free energy in the initial stage of relaxation for the two initial 
configurations, LEID (solid curve) and NCID (broken curve). The time steps 

are in the same interval as in Figure 2. 

Cause of the Overshooting 

Since we have found that Ap,JAn cannot be interpreted as the driving force for the atomic 
flux in the pair approximation of this work, we consider the kinetic explanation for the driving 
force. We can understand Jv( 1)~ > 0 for the v=1.5 bond as follows. We write 

Jv(~)R = ydl)R - yv(l)L PI 

where Yv( 1)~ is the probability of a species #l to jump from an n = 1 point to an adjacent n=2 point 
towards right through the v=1.5 bond, and Y,(~)L is the reverse jump towards left. The most 
probable path in the pair approximation PPM leads to the following expressions 

Y,(l)R = At 01 yv(lO;t) B{v-l,n,v;t) G{n,n+l,v+l;tl 
Y,(l)t_ = At 01 yv(Ol;t) G{v-l,n,v;tJ B(v,n+l,v+l;t} [lOI 

where 01 is the attempt frequency factor including the activation energy contribution. The bond- 
breaking contribution B{n-l,n,v;t) and the bond-forming contribution G(v-l,n,v;t) depend on yv_ 
t(ij;t), y,(ij;t), yv(ij;t) and x&t) as indicated by the arguments. The functional forms of B and G 
are written in previous papers on PPM (8) and on diffusion (6) and arc intuitively understandable, 
but the details are not needed here. 
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Since yv(l0;t) and yv(0l;t) are approximately equal to the products x&t) x(0) and x(0) 
x,+1( l;t), respectively, the yv factors in [lo] make Jv( 1)~ proportional to the negative gradient of 
x,( 1;t). When we expand yv_l, yv and yv+l up to linear terms of the gradient and neglect higher order 
terms, the contributions from the B and G factors make Jv( 1)~ proportional to -(AMAr&. When 
we cannot neglect the higher order terms of the gradient, as in the case of the bond connecting n=l 
and 2 in Figures 2 and 3, we have to consider the gradient of x,( 1;t) and the bond-breaking and the 
bond-forming effects explicitly. For Yv=1.5( l)~, a species 1 at n=l is repelled by x,=0(2) = 0.85, 
while in Yv=1.5(l)~ a species 1 at n=2 is repelled by a weaker force due to x,=3(2) = 0.15. This 
makes the contributions of the B and G factors supersede the density gradient contribution for the 
v=lS bond, and makes Yv=t.5( 1)~ larger than Yv=l.5(1)~. This is the reason why Jv=1.5( 1)~ in [!?I 
is positive against the concentration gradient. It is, in agreement with the interpretation of the 
square gradient term in thecahn-Hilliardequation [4], also that it is due to the repulsive interaction. 

Breaking-down of the Relation [7] 

We observed in (iii) above that the [7] breaks down in the non-linear regime in the pair 
approximation. It is based on the definition of pn in [8]. On the other hand, some mathematicians 
are using the existence of a function Y(r,t) which makes the flux J to be written as J = - MV’P(r,t) 
as an axiom from which many theorems are derived. Although their Y(r,t) is always a function 
of position r only and does not take into account the correlations among atoms, and also there is 
no physical reason to accept this relation as an axiom, it is legitimate to ask whether it is possible 
to modify l&, in [8] in such a way that [7] is always valid, including higher order approximation 
cases. We cannot deny the possibility. However, we present here an argument that such a 
modification is extremely difficult. 

Before we start, it may be worthwhile to remind us that Onsager’s proof (9) of the chemical 
potential gradient as the driving force was only for the linear case. Now, we note that the breaking- 
down of [7] occurs near the initial period of integration. Nevertheless, pn has to satisfy the 
following long-time requirement when the set of differential equations has asymptotically reached 
the stationary, i.e. equilibrium, state. This requirement is for all temperatures. When T c T,, the 
equilibrium state is phase-separated and there is at least one interphase boundary in the system. In 
such a structure including the IPB, p” in [8] is constant independent of n. The numerical results 
of our PPM satisfies this long-time requirement. Because of the long-time requirement, it seems 
unlikely to be able to find the pn expression which satisfies [7] for the initial period of integration. 
For higher order approximations, and hence in the rigorous limit of statistical mechanics, it seems 
more unlikely. However, we are not completely denying the possibility of finding the modified 
expression of chemical potential which always makes [7] valid. 

CONCLUSION 

The irreversible statistical mechanics based on the pair variables is ideally suited in studying 
the qualitative nature of the junction profile relaxation that exhibits strongly “non-linear” 
diffusion. Such junctions are abundant in nanoscale layer structures and other components of 
advanced materials. The present paper concludes the following, which are novel findings except 
(i). However, we emphasize that the following results are based on the pair approximation. 

(i) At the initial stage of relaxation of a sharp profile, overshooting of the profile occurs. 
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(ii) Near a sharp junction profile, the atom flux changes sign during relaxation, which gives 
a rare opportunity to examine the condition for validity of the “linear” diffusion theory. 

(iii) Near the junction, the chemical potential gradient becomes zero at a different time t* 
from that of the atom flux. There is a time period in which atoms do not flow downhill along the 
chemical potential gradient. This is the indication that the “linear” diffusion theory does not hold 
here. 

(iv) The local chemical potential gradient in non-equilibrium state depends not only on the 
density gradient but also on atomic pair correlation. 

(v) While the overshooting is occurring, the free energy of the entire system monotonically 
decreases. 

(vi) The overshooting can be understood by a kinetic reasoning as due to the repulsion of 
atoms. 

We cannot deny the possibility of modifying the chemical potential t.tn expression in [8] in 
such a way that [7] holds in the initial non-linear period of integration, but the possibility is 
considered remote because of the condition, pn = constant, to be satisfied when the system 

approaches the equilibrium state after a long-time integration. 
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