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Abstract- The thermodynamic stability of periodic layer-structures is analyzed theoreti- 
cally using equilibrium statistical mechanics. While the system itself is not in complete 
thermodynamic equilibrium, it can be stable under appropriate constraint conditions and its 
stability can be determined by minimizing the free energy in the constrained state. A model binary 
FCC system with a miscibility gap is treated using the pair approximation of the Cluster Variation 
Method. A symmetric system with an overall average composition 50 atom % A and 50 atom % 
B is considered. It is shown that the equilibrium compositions of two phases in a periodic layer- 
structure depend strongly on the periodicity when the composition wavelength is decreased down 
to a few nanometers. The result reveals that the mutual solubilities of two materials increase 
signtficantly as the layer-thickness decreases. In an extreme case, they may become totally 
miscible. 

INTRODUCTION 

Usual treatment of thermodynamic stability and phase equilibria of a system considers only 
the bulk free energies of various phases involved. At constant temperature and pressure, the 
equilibrium compositions or mutual solubilities among the phases are determined by the condition 
that the chemical potential of each component is uniform throughout the system. The surface and 
interphase interfacial energy contributions to the total free energy are completely ignored. For 
systems of macro-scale size (>> the correlation length), such a treatment is totally appropriate and 
adequate. However, as the size of the system decreases, for example, down to the nanoscale, as 
in nano-crystalline particles and nanoscale or atomic-scale thin films, the usual thermodynamic 
treatment becomes problematic. There is a high percentage of atoms located at or affected by the 
interfaces or the interfacial regions. The contribution from the surface and interfacial energy to 
the total free energy may become comparable to the bulk free energy and hence can not be ignored. 
As a result, the phase stability and phase diagram of a nanoscale system could be dramatically 
different from the corresponding macroscopic ones. A clear indication of the importance of the 
surface and interfacial energy contribution is the shift of phase transition temperatures in some 
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nanoscale systems (1). For example, the melting temperature of nanoscale metallic particles was 
found to decrease sharply as the size decreases (2). The ferroelectric transition temperature of 
ferroic materials decreases as the grain size or the thickness of a thin film is reduced (3). In the 
extreme case, the ferroelectric phase transition may totally disappear. Such a shift of phase 
boundary or phase transition temperature due to the small size is called the “size effect” (1). It has 
drawn much attention recently due to the technological desire to fabricate increasingly small 
electronic devices. 

Modem experimental techniques such as Molecular Beam Epitaxy (MBE) are now able to 
synthesize atomic- or nanoscale thin films as well as multi-layer structures made up of alternating 
layers of different materials. For multilayer structures, the stability against interdiffusion and 
coarsening becomes a critical issue at finite temperatures. It is qualitatively clear that the stability 
of such layers against interdiffusion is determined by both thermodynamics and kinetics. Similar 
to the phase boundary shift due to the particle size, the phase stability of such atomic scale and 
nanoscale layer-structure should strongly depend on the layer-thickness. In particular the mutual 
solubilities among the phases should be strong functions of layer-thickness in those nanoscale 
layer structures. However, the rate of interdiffusion to reach the thermodynamic equilibrium is 
determined by the interdiffusion kinetics. We will consider only the thermodynamic stability of 
nanoscale layer-structures in this paper. The highly nonlinear kinetics of interdiffusion and 
coarsening of the layer-structure will be discussed in another publication. 

We consider a model system which is a periodic layer structure made up of a and p phases. 
We assume a and p phases have the same zinc blende structure with one of the FCC sublattices 
fully occupied by C atoms. The other FCC sublattice is occupied by either A atoms in the pure a 
phase or B atoms in the pure p phase. We assume that at low temperatures a and p phases have 
very limited mutual solubility and at very high temperatures they are mutually soluble, i.e., the 
phase diagram of the system (AxBr,C) exhibits a miscibility gap. The main objective of this paper 
is to determine the dependence of phase diagram (temperature-composition diagram) on the layer- 
thickness. If the as-deposited layers are pure a and p phases, the mutual solubility determined from 
the miscibility gap is an indication of the thermodynamic stability of layer-structure against 
interdiffusion. It may be qualitatively expected, at a given temperature, that the mutual solubilities 
of the two phases should increase as the layer-thickness decreases. 

To calculate the phase diagram for such nanoscale layer-structures, we can employ the 
equilibrium statistical mechanics method, namely, the pair approximation of the Cluster Variation 
Method (CVM) (4) although the structure is only metastable. CVM has been extensively used in 
the equilibrium phase diagram calculations for alloy systems including multicomponent semicon- 
ductor alloys. However, as far as the authors are aware of, this is the first CVM work which 
includes the interfacial energy contribution in the phase diagram calculation. As we discussed 
above, the interfacial energy contribution becomes crucial for atomic- and nanoscale systems. We 
expect the results will also shed light on other related problems, such as the solubility of impurities 
as a function of the grain size in nanocrystahine materials. 

CVM FORMULATION OF THE LAYERED STRUCTURE 

In the CVM method, we first have to specify state variables which describe the thermody- 
namic state of a system and then the equilibrium state of the given system is obtained by 
minimizing the total free energy with respect to the state variables. Since the system that we 
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Figure 1. Designation of the lattice plane, n, and the bond, v, in the (100) 
layer-structure of the FCC lattice. 

consider is a pseudobinary alloy, AC-BC, with AC and BC having the same crystal structure, we 
only need to specify state variables related to atoms A and B. We employ the pair approximation 

for the thermodynamic description in which the state variables are the point variables, x(i), and 

the pair variables y(d), where i, j = A or B. It is reminded that the classical Bragg-Williams model 
considers only the point variables, and also that the tetrahedron cluster is not needed to obtain 
reasonably accurate results since the system exhibits phase separation instead of ordering although 
the lattice is FCC. It is assumed that the layer-structure is along the (100) direction of the FCC 
sublattice. Therefore, the point and pair variables vary along this direction. To distinguish the 
atomic pairs within a (100) plane and the atomic pairs connecting two neighboring (100) planes, 
we number the lattice planes and bonds with n and v as illustrated in Figure 1. Therefore, there 

will be three kinds of state variables, xn(i), y,, (ij) and yv(ij). x,(i) is the probability of finding 

an i atom at a lattice point at n, y,,(q) is the probability of finding an ij pair on a bond on an nth 

plane, andy,(ij) is the probability of finding i on an n point andj on an adjacent n+l point. 
The point and pair variables are subject to the following normalization and reduction 

conditions: 

FYn(ij) =&I(i); FY"(ij) =-G): FY"-l(.$ =x,(i) ill 

To calculate the phase diagram, we use the grand potential, a, as the thermodynamic 
potential function to be minimized. In the pair approximation, the total grand potential for the 
layer-structure is given by 
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where the first and second terms are the contributions from the v and n bonds, respectively. Instead 
of directly working with the grand potential, we define a dimensionless potential 

[31 

where p is equal to l/kuT, N is the total number of lattice points on the plane, n. 

Our purpose is to minimize ‘I’ with respect to the pair variables, yV( ij) and y,, (ij), to obtain 
the equilibrium state for the layer-structure. From the normalization conditions for pair variables, 
they are subject to the following two constraints at every n and for i: 

[41 

and 

ZYu,-r(ji)+ :YJij) = 2Tyn(ij) [51 
i 

The potential function together with the constraints to be minimized is then 

+4~[L(Yv(ij))+l]-~P~[~(i)+P(j)lY,(ij) 

+4/%[l-$Y,(ij)]+4$[ no K l + k.+l(j)]yv(ii)-4~[rn(i)- m+d.Gb&i) 

wheretheLagrangemultipliers, 47,,(i) and 4 Kn(i), are for theconstraints [4] and [5], respectively, 

21, and2L, for thenormalizationconditionsin [l], L(x) = xln(x)- x, E(Q) is theenergy for the 

ij pair, and x, (I), xn+r (j) and xF]( j) are given by the reduction relations 111 . PI . 

x[‘J(i) = Cyv(zj)- n 3 &(i)= FY&~); n j .J3k) = Cr,(ij) = Cvdii) 171 
i J 
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The Lagrange multipliers, A., and&, have special meaning: we can show that when Y is 
minimized, it is simplified as 

Minimizing Y’ s with respect to yv(ij) and yn(ij), we obtain the following basic equations, 

y&j) = exp 
{ 
PJL -P&(ij)+ &[p(i)+p(j)]+2[K,(i)+ k.(j)]}[x,(i)x,Cj$ [91 

When the system is homogeneous, rc,(i) = n,(i) = 0 and these two expressions reduce to the 

known equation for y(ij) in the FCC. The equations in [9] are nonlinear equations which have to 
be solved numerically. 

NIM SOLUTION OF THE BASIC EQUATIONS 

Because of the special nature of the layered structure we found that it is easier to solve the 
basic equations using the Natural Iteration Method @JIM) (5) than the Newton-Raphson method. 
The procedure of solving the basic equations are as follows. 

(i) Specify the Thermodynamic Conditions by Assigning Valuesfor the Temperature, thus p, and 
the Chemical Potential, p. 

In a binary system without considering vacancies, we can set p(A) + p(B) = 0, so that we 
may define p as 

10) = -K P@)=P [lOI 

In the Ising model assignment of energy parameters, we can choose p = 0 because this is the value 
for the coexistence of the two phases. 

(ii) Assign Initial Values of x,(i). yn(ij) and yv(ij). 

The NIM treatment of the equations starts with the initial guess values of 

xn(i),yn(ij) andy,(ij).Forthebinarysystemwithoutvacancies,weneedx,(A) andx,(B)forall 
n which determine the layer-thickness. As an advantage of the NIM, we do not need to start with 

xn(A) which are close to the final solution. As a matter of fact, since we are only interested in the 
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final state of the layer structure instead of the interdiffusion kinetics, we may choose any initial 
condition which satisfies the required symmetry and layer-thickness. For example 

X,(l) = 0.8 for 1 I n I nl 

C&(l) = 0.2 fornl+l I n I 24 
Wal 

can lead to a symmetric layer-structure solution in which x,, (1) > 0.5 in 1 I n I nl , and X, (1) < 0.5 

in nl + 1 I n 5 2nl. The simple choice of the initial values of y,(o) and y,,(Q) is to make them 

uncorrelated, i. e . , 

~~(ij)=di)~(j);and ~~(ij)=xdi)x,+~(j) Ulbl 

(iii) Use Minor Iterations to Solve the Lagrange Multiplier K,, 

Starting with the initial values of yn(ij) andy,(ij), we first solve I, in the minor 

iterations to satisfy [5]. When equations in [9] are used in [5], we write 

cxp[-K,(i)]C[y,(ij)+ y,l(;j)]exp[~~,(i)] = 2exp[2K,(j)]Cy,(ij)exp[-2rc,(i)a WI 
i J 

We regard K~ (i) inside the summation as the input, and I, outside the summation as the output. 

We define the increment of or, as AK,(i): 

Then [ 121 can be rewritten as 

AK,(~) = c’(i)- c(i) [I31 

exp[-AG(i)]F[&(ti)+ yV-l(.$] = 2exp[2AG(i)]Ty,(ij) u41 

For a binary system without vacancies, we can choose Ir,(B) = 0 because the sum of [5] for i = 
A and B is always satisfied due to the normalization [ 11. Then for i = B, [ 121 reduces to 

1151 

When we form a ratio of [ 141 and [ 151, we obtain 

WI 
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This equation is to be solved iteratively for K,(A) for all n. When the iteration has converged 

e’(A) = ti;(A)+ AK,(A) [I71 

(iv) Minor Iteration for ‘yn 

We solve the other Lagrange multiplier m(i) together with K,(i) in the minor iteration to 

satisfy [4]. Since the procedure is similar to that for solving K~ (i), we can skip some of the steps. 
The equation corresponding to [ 141 is 

exp(-Ay,(j))Cy,-,(jj) = exP(4%ti))~Yv(ij) 1181 
i 

where we define 

Ay,(i) = g’(i)- y:(i) [I91 

Since we define ‘yn (B) = 0, [ 181 is solved as 

The iterative relations [ 161 and [20] are handled simultaneously. 

(v) Major Iteration 

Using q’(1) and e’(l), we can determine the output of y”(q) and y,,(g) from [9]. First 

we set aside A’s and determine 

Y:(G) = yv(ij)exp(--P&) and Y:(U) = y&)exp(--PL) 

from which and the normalization condition (l), we obtain 

Vll 

Then we arrive at 

yV(ij) = yXij)exp(PL) 

Y&) = u,O(ij)exp(PhJ P2bl 

Wal 

The next input values x,(i) of the major iteration are calculated from these y’s as 
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[231 

It was proved that the major iteration always converges [5]. The minor iteration converges 
very fast in one step except the initial stages for each major iteration. 

(vi) Layer-thickness Constraint 

Since the layer-structure is metastable, although we start with an initial structure of desired 
layer-thickness and symmetry, fluctuation can lead, for example, to widening of the hill region and 
the accompanying narrowing of the valley, to end up with the flat elongated hill composition, since 
such change can occur keeping the p = 0 intact. In order to prevent such change, we impose the 
condition that the width of the hill region is always kept fixed as the iteration proceeds. This 
condition is written in the following form, in which we write m = nl to avoid a subscript on a 
subscript, 

&a+,(l) = 1- &n-n+1 for nlllm=nl 

PHASE SEPARATION DIAGRAM FOR A BULK FCC SYSTEM 

For a homogeneous system, the phase separation diagram is calculated using 
approximation for FCC by defining an auxiliary variable, 8, as 

e&W 
x1 =‘2cosh(68)’ z = exp(l2B) 

and the temperature is 

sinh(60) 
exP(2PE) = sinh(50) 

where 

4E = 2&(AB)-[e&q+ &(BB)] 

~241 

the pair 

n51 

WI 

Ourchoiceof the sign is that e > 0 in the present phase-separating system. We use the dimensionless 
reduced temperature as defined by 

TEkT 
& 

The critical point is given by 

[271 

z _kTc _ 
c 

2 - - = 10.969630 
E ln(6/5) 
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Figure 2. Composition profiles as a function of reduced temperature for the layer-structure 
with layer-thickness M = 7. Curves are for the reduced temperature z = kuT/& = 4,6, 

8,9 and 10, from the outermost curve to the innermost. 

THE PHASE DIAGRAMS FOR PERIODIC LAYER-STRUCTURES 

The layer-structure is not a true equilibrium structure. Any perturbation should lead to 
coarsening. Therefore, it should be kept in mind that the equilibrium compositions obtained in this 
paper are under the constraint that the system is aperiodic layer-structure. In this paper, we chose 
the simplest case that can be treated straightforwardly, namely the symmetric layer-structure, i.e., 
the cx and p phases have the same thickness and Ccr = 1 - Cg. 

An example of composition profiles, ~~(1) at different temperatures is shown in Figure 2 
for a layer-structure with layer-thickness M = 7. These curves are for reduced temperatures, z = 
4, 6, 8, 9 and 10, respectively as labeled in the figure. The hill and valley parts are chosen 

symmetric, so that every curve goes through x,(l) = 0.5 at the middle point between a hill and a 
valley. The “layer-thickness”, M, is defined as the number of lattice planes between the two 

neighboring x, (1) = 0.5 positions. 
In order to determine the dependence of the thermodynamic stability of layer-structure on 

layer-thickness, the composition profiles, ~~(1) for different layer-thickness, but at the same 
temperature, ‘5 = 8.0, are shown in Figure 3. There am several interesting observations worthy to 
be pointed out. First of all, the composition profile across a junction does not change significantly 
for the layer-thickness larger than 8, which indicates that the thermodynamic properties of the 
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Figure 3. Comparison of the layer-structure x,( 1) at z = 8.0 for different layer-thickness 

M. The right-hand side intersection of each curve with the 0.5 axis is equal 
to the M value for the curve. 
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Figure 4. The maximum value of x,( 1) at n = 0 for the M = 4,5,7 and 10 structures plotted 
against 7. The intersections with the 0.5 axis, i.e., the “critical” temperature zc. are 8.299, 

9.292, 10.088 and 10.537 for M = 4,5,7 and 10, respectively. The phase separation 
curve for the bulk fee with zc equal to 10.970 is also plotted for comparison. 
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10 

layer thickness 
Figure 5. Plot of the critical temperature 7C against the layer-thickness M. The horizontal 

line at the top is ‘TV (M + -) = 10.970 for the bulk system. 

individual layers, more or less, behave the same as the corresponding bulk. Second, as the layer- 
thickness decreases to less than 8, the composition profile across the interface changes consider- 
ably. Moreover, the highest and lowest compositions deviate significantly from the corresponding 
bulk values as the layer thickness is reduced to less than 6. Finally, it is shown that for this 
temperature, M = 4 is the smallest stable layer-structure even though under the constraint the 
periodicity is maintained at all times. 

From Figures 2 and 3, it is evident that the largest value of ~~(1) for each 7 and M curve 
appears at the position n = 0. We may interpret the highest and lowest values of the composition 
as the mutual solubilities for a particular temperature and layer-thickness. The dependence of this 
solubility as a function of temperature is plotted in Figure 4 for the layer-structure with M = 4,5, 
7 and 10. We can interpret these curves as the “phase diagrams” of the layered structures for these 

thicknesses. Since x,=0 (1) = 0.5 means that the system does not have the layer-structure any more, 

the temperature at x&l) = 0.5 in Figure 4 can be interpreted as the critical temperature, 7C, for 
each M. For comparison, the phase separation curve for the bulk fee alloy is also plotted in Figure 
4. As is expected, the curve shifts towards the higher temperature side as M increases, and the bulk 
curve is higher than any finite M curve. 

Figure 5 shows how zC varies with the layer-thickness, M. The homogeneous case is the limit 
r,(M = -) = 10.970 as shown by the horizontal line. It is shown that the critical temperature 
decreases gradually as the layer-thickness decreases for M < 8, but it decreases sharply for M c 
6. For M = 2, there is no stable layer structure. 

The important implication of the results shown from Figures 2 - 5 is that the thermodynamic 
stability of periodic layer-structures varies significantly as the layer-thickness is reduced down to 



268 R KJKVCHI AND L-Q CHEN 

a few nanometers. Our computer calculation predicted that the critical layer-thickness below 
which the bulk phase diagram is significantly modified is about 6 - 8 lattice spacings. For a typical 
FCC system with a typical lattice parameter 4 A, this critical layer-thickness is about 12 - 16 A (it 
is reminded that the lattice spacing for the (100) planes is half of the lattice parameter in the FCC 
lattice) or the critical periodicity of 24 - 32 A. It is emphasized again that the miscibility gap or 
phase diagrams for different layer-thickness were obtained under the constraint that the system is 
completely periodic and symmetric. In practical systems, such periodic structures are subject to 
instability, the coarsening resulting in the increase in average layer-thickness. It is also to be 
remembered that the numerical estimate is based on the pair approximation of CVM. 

CONCLUSIONS 

The thermodynamic stability of periodic layer-structures of a binary phase-separating alloy 
(FCC) was examined using the pair approximation of CVM of equilibrium statistical thermody- 
namics. Deriving and solving the basic equations using the standard techniques of CVM under the 
constraint of a symmetric layer shape, it is shown that thermodynamic stability of periodic 
structures decreases sharply as the layer-thickness is reduced to less than a few nanometers. A 
system with a bulk miscibility gap may totally disappear when the layer-thickness decreases down 
to one to two lattice spacing in a periodic layer-structures. 
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