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Abstract-Thermodynamic stability of nanoscale thin films is analyzed theoretically using 
equilibrium statistical mechanics. A model binary system with a miscibility gap is treated in fee 
using the pair approximation of the Cluster Variation Method. Eachfilm has equal total numbers 
of A and B atoms, and has an interphase boundary (IPB) around the center of a film at low 
temperatures. The composition profile across thefilm is calculatedfor dtperent temperatures and 
thicknesses. The result reveals that the composition inside a film is practically the same as that 
of the corresponding bulk fee system, and the surface composition is close to that of the two- 
dimensional surface lattice. For a fixed temperature, the mutual solubility of two components 
increase as the film thickness decreases, and becomes totally miscible for very thin films. For a 
given thickness, the miscibility increases with the temperature, and the critical temperature Te of 
phase separation is determined as a function offilm thickness. 

INTRODUCTION 

In Paper I of this series (1) we studied thermodynamic stability of a nanoscale layer structure 
of a phase-separating binary alloy. The layers are repeated periodically, and hence the structure 
is theoretically infinitely thick. We calculated the composition profile for different temperatures 
and different layer thicknesses, and showed how the phase-separating temperature depends on the 
unit layer thickness. The present paper examines the similar physical properties on a thin film of 
finite thickness containing one interphase boundary. The main feature of the present study of finite 
thickness films is the surface effect, which was not present in Paper I, and cannot be ignored in real 
systems. 

As was done in Papers I and II (2), the model we work on is an A-B alloy without vacancies 
on an fee lattice with a repulsive effective interaction between A and B atoms. We assume the 
composition of 50 atomic percent each, and hence the problem is mathematically equivalent to the 
Ising model. We choose the boundary conditions of the film in such a way that on one surface of 
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the film the structure is A-rich while on the other surface B-rich, and the boundary between the two 
phases, which is called the interphase boundary (IPB), exists around the center of the film. The 
calculation is done using the pair approximation of the Cluster Variation Method (CVM) (3), as 
was done in Paper I. Although the system is fee, the pair approximation is qualitatively reliable 
since no sublattice structure occurs. 

It is worth noting the restrictions of the model we work with. The first is that relaxation of 
the lattice near the surface and near the junction is neglected. The relaxation is due either to 
segregation of vacancies or to the local change of the lattice constant. The vacancy effect can be 
taken into account in the same framework as the present paper, but we have not done it. To take 
into account the lattice constant relaxation effect is left as the future challenge to the continuous 
displacement treatment recently being developed (45). The second restriction is that the spinodal 
decomposition within the plane parallel to the junction is neglected. The paper is only concerned 
about giving the phase boundary information. 

A related work was reported by a Mexican group (6) using a similar CVM treatment. Their 
main interest was the magnetic effect. 

CVM FORMULATION OF A FILM WITH FREE SURFACES 

Different from Paper I, the film has two free surfaces, and hence needs a special care to treat 
the region near the surfaces, although most of the formulation remains the same as I. The layer 
is placed in the [lOO] orientation. Different from I, this paper uses the position coordinate m 
different from the numbering of lattice planes n. The position for a plane n is at m = 2n. This is 
done in order to make the bond positions between two planes by cdd numbers, m = 2n+ 1 as shown 
in Figure 1. 

Figure 1. The gradient direction, the lattice plane number 2n and the bond number 2n+ 1. 
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When we assume the symmetric geometry across the thickness, we classify two cases, one 
with an even number of planes and the other odd. In the even number case, the center of the IPB 
is between two planes, and we call this the inrerstitirzf center case (7) for short. In the odd number 
thickness case, we have the atomic center IPB (7). As an illustration of the formulation, we report 
equations for the even number of planes with the interstitial IPB. We call the total number of planes 
in the film the thickness and write it as nh. The positions of the lattice planes are from m = 2 to 
2nh in units of the lattice constant. The center of the IPB is at the bond position m = nh+ 1, bebW43n 
the lattice planes at m = nh and nh+l. 

We write the point probability variables at m = 2n as x(i;2n), where i = 1 and 2 for A and B 
species, respectively. Since each lattice point has nearest neighbors within the same plane and in 
neighboring planes, we have two kinds of pair variables. Those inside a lattice plane are written 
as y,(ij;2n), and those connecting two neighboring planes as yu(ij;2n+l). The subscript n in yn 
stands for “normal” and has no relation to the plane number n. 

The steps of the formulation are essentially the same as those in Paper I. We need several 
modifications. The first modification is on the constraint relations, which are written for inside 
points and for end points separately. 

For inside points from n=2 through nh-2, 

x(i;2n)= Cy,(ji;2n-l)=Cy,(ij;2n+l) 
j j 

U.4 

For end points 

Cy,(ji;2n-l)+Cy,(ij;2n+l) =Cy,(ij;2n) Ml 
J j j 

At n=l, x(l;m = 2) = Cy,(ij;3) = Ey,(ij;2) PaI 
j j 

At n=nh, x(l;m=2nh)=CyU(ji;2nh-l)=zy,(ij;2nh) WI 
j j 

In addition to these constraint equations, we need the normalization for y’s for each location. The 
constraints are treated using Lagrange multipliers. 

The second modification is for the entropy expression. When we construct the entropy using 
the concept of the correlation correction factor, which was introduced and discussed in detail in 
a recent publication (8), it is derived on an ensemble as follows. kg is the Boltzmann constant. 

[3 .a1 

In this expression, W(2n) is the number of ways of distributing Aand B atoms on the m=2n lattice 
points in the ensemble with the prescribed probability distributions x(i;2n) and is written as 
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N! 

W(2n) E n(Nx(i;2n)!) 
i 

Ml 

where N is the number of lattice points in a plane parallel to the IPB. Since the number of systems 
in an ensemble drops out from the formulation, we did not write it explicitly in eqs. [3]. Gn(2n) 
is the correlation correction factor for an intra-plane bond at 2n, with the probability y,,(ij;2n), and 
has the form 

n(Nx(i;2n)!)n(Nx(j;2n)!) 

G,(2n)= i 
n(Ny, (ij:2n)!) N! 
ij 

r3.c1 

Gu(2n+l) is the corresponding factor for an inter-plane bond at 2n+l, with y,(ij;2n+l): 

n(Nx(i;2n)!) n(Nx(j;2n + 2)!) 

G,(2n+l)- i 
n(Ny”(ijl2n + l)!)N! 
ij 

WI 

Inwriting [3.a], thepowers2and4arethemultiplicityofthecorrespondingbonds. Inthelastfactor 
in [3.a] for the product over G, the factor for n=nh factor does not appear because of the end cut 
off. 

The energy of the film is written, using the pair-wise energies &(ij), as 

$=22 C (‘j)y (‘j*2n) +4x C (‘j)y,(ij;2n+l) .;l.;i n 1, ] “:-l’(;; 1 ] E41 

As is usually the case when there are no vacancies, the controlling energy combination is the 
effective potential E defined by 4s = 2e( 12) - E( 11) - ~(22) > 0. This is positive when the system 
is phase-separating as in the present case. 

Using the entropy in [3], the energy in [4], and the constraint terms with Lagrange 
multipliers, we construct the free energy. Minimizing it with respect to individual y,(ij;2n) and 
yu(ij;2n+l), we obtain the following basic equations. We use p= l/knT. The first group is for yn’s. 

y,(ij;2n) = exp(P3L(2n)-P&(ij))x(x(i;2n)x(j;2n))”’12exp(2K(i;2n)+ 2K(j;2n)) 

for n=2 to nh- 1 WI 
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y,(ij;2nh)=exp(gh(2nh)-p&(ij))x(x(i;2nh)x(j;2nh))5’6exp(2K(i;2nh)+2x(j;2nh)) 
[5.cl 

The second group is for yu’s. 

yu(ij;2n+1) =exp(ph(2n+1)-@(ij))x(x(i;2n)x(j;2n+2))1”12 

y,(ij;2nh - 1) = exp(gh(2nh -l)-P&(ij))x(x(i;2n-2)x(j;2n))11’12 

In both groups, (a) and (c) are on the surfaces and (b) is for the interior. These equations can be 
interpreted intuitively. The h factor is for the normalization of each y. The p&part is the Boltzmann 
factor. Then comes the product of the two x’s on the two ends of the bond. The power of the x 
product depends on the coefficients of the entropy expression. y is the Lagrange multiplier for [ 1 .a] 
among y,,‘s, and K is for [lb], [2.a] and [2.b] among yn’s and yu’s. 

We solve y’s and the Lagrange multipliers from the equations in [5] and [6] together with 
the constraints in [ 11, [2] and the normalization conditions. These are a set of non-linear algebraic 
equations, and can be solved numerically using the Natural Iteration Method (NIM) (9). The NIM 
is slower than the Newton-Rathson method if the latter can be formulated, but has the advantage 
that no further transformations are needed after [5] and [6], and also that the guaranteed 
convergence was proved. Since we are working with the symmetric case, we choose the initial 
state of the iteration to satisfy the required symmetry. For example, we may start with a relatively 
simple distribution: 

x( 1;2n) = 0.8 for n=l ton1 
x( 1;2n) = 0.2 for n=nt+l to nh [71 

where nl = ntJ2. Convergence of the iteration is fast. 

RESULTS 

The critical point of the miscibility gap in a bulk system of fee calculated based on the pair 
approximation is kuTJ& = 10.970. In Figure 2 we plot the density profile of Aatoms (i=l) for six 
different thicknesses for kuT/& = 8.0 (< knTJ&). The abscissa n counts the lattice planes, while 
the ordinate is x( 1; 2n) at the coordinate m = 2n. At the IBP center, x( 1; 2n) is equal to 0.5, which 
occurs at the inferstiM center m = -1, which lies between n = -1 and n = 0 planes. 
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Figure 2. The composition profile x( 1; 2n) of A atoms for kBT/E=8.0 for six different 
thicknesses, nh=8, 12, 16,20,30 and 40. The abscissa n counts the lattice plane, 

and 2n in x( 1; 2n) is the coordinate of the plane identified by n. 

Figure 2 shows the following features. (i) In relatively thick films the inside part of x( 1; 2n) 
is practically equal to the bulk 3-D value. (ii) The 3 lattice planes near the surface and the 3 planes 
near the IBP center bend down. (iii) The surface of the film is the 2-D plane, and this influences 
the x( 1; 2n) value. Since the x( 1; 2n) for a 2-D plane is smaller than the bulk 3-D value for this 
temperature, the surface segregation is smaller so that x( 1; 2n) bends down near the surface on 
the left-hand side. We see the reverse case in Figure 3. (iv) When the film thickness is 2x6 and 
smaller, the profile never takes the 3-D value. (v) For this temperature, nhl6 cases are not plotted 
in Figure 2 since the film does not phase separate and x( 1; 2n) = 0.5. 

In Figure 3 we plot profiles for different temperatures for four thicknesses. The nh=20 
curves in (a) show that the end effect and the IPB center effect are felt deeper for higher 
temperatures, i.e. for inner curves. Curves in Figure 3 indicate that the profile becomes flatter as 
the temperature increases. Comparison of (d) with the rest of Figure 3 indicates that the 
segregation near the surface reverses in (d). This reversal is due to the anchoring of the surface 
density at or near the value for the 2-D surface plane. The temperature at which the curve becomes 
flat, i.e. x(1; 2n) = 0.5 for all n, is the critical temperature Tc. Tc thus determined are plotted with 
circles in the lower curve in Figure4 against the film thickness nh. The plots indicate how the curve 
asymptotically approaches the bulk value kBTJE = 10.97 as the thickness increases. We compare 
this result with the periodic layer case, Figure 5 of Paper I, which is plotted with squares in Figure 
4. 
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Figure 3. The composition profile x( 1; 2n) for different thicknesses nt,. (a) is for nt,=20, and 
knT/& for the curves are from outside to inside 8,9 and 10. (b) is for nh=12, for knT/& of 

9.0,9.8 and 9.97. (c) is for nh=6, for knT/& of 6.0,7.5 and 7.8. (d) is for nh=4, 
for knT/& of 4.0,5.0 and 5.17. 

e 8 

Figure 4. The lower curve with circles is the phase-separating critical point knT& plotted 
against the film thickness nt, in the present case. The upper curve with squares 

is the replot of Figure 5 in Paper I for the periodic layer structure. 
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Figure 5. Comparison of the composition profile x(1; 2n) for (a) the film and (b) the periodic 
layer cases. kBT/&=6 and the thickness is 6 lattice planes. 
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Figure 6. The “phase diagram” of the film, i.e. the maximum x( 1; 2n) for the designated 
thickness and knT/c. Curves are, from right to left: (a) the bulk phase diagram for fee; 

(b) for thickness nh=lz (c) nh=6; (d) II&; and (e) the bulk 2-D square lattice. 
The bulk curves are for comparison. 
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Another comparison is made in Figure 5. (a) is a replot of Figure 3 (c) for nh=6 for the 
temperature kBT/&=6, and (b) is the corresponding case for the periodic layer structure. The main 
difference is the effect of the free surfaces, which exists in (a) but not in (b). In the periodic layer 
case, the maximum value of x( 1; 2n) occurs at the center of the high region as is seen in Figure 5(b). 
We plotted this value against temperature for different thicknesses in Paper I, Figure4 (reproduced 
in Figure 7 in this paper), which can be regarded as the “phase diagram” of the layer structure. For 
the film case, the maximum value of x( 1; 2n) appears either at the surface as in Figure 3(d), or inside 
as in other cases of Figure 3. We plot these maximum values for different film thicknesses against 
temperature in Figure 6, which we may interpret as the “phase diagram” of the film structure of 
each thickness. For comparison, we also plot the bulk 3-D fee curve in (a), and the bulk 2-D square 
lattice values in (e). The latter is the structure of the (100) surface of fee. 

SUMMARY AND DISCUSSION 

We study the structure of thin films of a binary alloy of phase-separating interaction 
containing an IPB in it. The model is an A-B alloy of the equal atomic composition on the fee lattice 
with no vacancies. The problem is identical with that of the Ising model. The film is placed along 
the [ 1001 orientation. We calculate the composition profile and the pair correlations using the pair 
approximation of the Cluster Variation Method. 
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Figure 7. The “phase diagram” of the periodic layer case, to be compared with Figure 6. 
Reproduction of Figure 4 in Paper I. The curves are the plots of the maximum values 

of the local composition. From right to left, for the thicknesses, i.e. the number 
of planes in a half period, of (a) “0; (b) 7; (c) 5; and (d) 3. 
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The composition profiles of A atoms are plotted as functions of temperature and thickness, 
in Figures 2 and 3. At the surface, the composition is influenced by the square lattice properties 
of the (100) surface plane. The depth of the surface effect is about 3 lattice planes at low 
temperatures, and is somewhat similar as the IPB width. The critical temperature Tc of phase 
separation is calculated for each thickness as plotted in Figure 4. When we compare the profiles 
of the present thin film and the corresponding periodic layer structure (Figure 5), we clearly see 
the effect of the free surface. The maximum local density of A for a fixed film thickness varies 
between 1.0 and 0.5. Figure 5 plots the maximum local density of A against temperature for 
selected thicknesses. We can regard this plot as the “phase diagram” for a film. 

Two comments on the method are in order. The first is concerning how reliable the pair 
approximation results are. The numerical results are somewhat altered when larger size basic 
clusters are used in the formulation. However, our previous experience shows that the qualitative 
features remain the same in the phase-separating system. The second point is about the Monte 
Carlo simulation. Since the fihn is of finite thickness, M. C. is a viable technique, and can lead 
to values close to rigorous results, if sufficient time and labor are spent. The advantage of the pair 
approximation is that it is much faster and many cases can be studied in a short time. 
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