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AbstractÐSolute segregation and antiphase boundary (APB) migration in a B2-ordered single phase were
studied using computer simulations based on the microscopic master equations in the point approximation
with both ®rst- and second-neighbor pair interactions. It is shown that the degree of segregation at APBs
is highly anisotropic; for the particular case of a cylindrical APB along the z-directions, it is found that
maximum segregation occurs along the �1 1 0�-direction and is essentially zero along the �1 ÿ1 0�-direction.
Despite the strong segregation anisotropy, however, it is demonstrated that the decrease in the square of
the radius of the cylindrical antiphase domain in single-phase B2 is linearly proportional to time, t. It is
also shown that the mobility of an APB at a given temperature is strongly composition dependent. # 1999
Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

The migration of antiphase boundaries (APBs) in a

B2-ordered single phase has been investigated both

experimentally [1±5] and theoretically [6±9]. For

example, Krzanowski and Allen [2±5] studied the

e�ect of solute segregation on the APB migration in

Fe-rich Fe±Al alloys and found that solute segre-

gation at APBs dramatically reduced their mobili-

ties. Recently, employing a continuum model

derived from the Bragg±Williams model, Maugis [7]

and Kirkaldy and Savva [9] demonstrated that

there is solute segregation even at the stoichiometric

composition of the B2 phase. Furthermore, they

showed that the degree of segregation is highly ani-

sotropic. This poses an interesting question of how

the anisotropy of segregation may a�ect the anti-

phase domain morphology, and the mobility and

kinetics of domain boundary migration. Within the

B2 single-phase ®eld, Allen and Cahn [1], Lifshitz

[10], and Kirkaldy and Savva [9] assumed that the

relationship between the APD (antiphase domain)

size and time t is linear regardless of the compo-

sition. On the other hand, Dobretsov et al. [6]

investigated the motion of APB in a B2-ordered

single phase using computer simulations based on

the thermally activated direct exchange model to

describe inter-site jumps of atoms and mean-®eld

approximation to account for the atom±atom corre-

lation. They demonstrated that the strong segre-

gation of the alloy majority component (e.g. the Fe
in Fe-rich alloys) at the APB results in a time

dependence of the mobility at non-stoichiometric
compositions whereas it is independent of time at
the stoichiometric composition. This implies that

the linear relationship between the square of the
antiphase domain radius and time is only true at
the stoichiometric composition.

The main objective of this paper is to investigate
the kinetics of APB migration in a B2-ordered
single phase, in particular, the e�ect of segregation

anisotropy and the e�ect of composition on the
boundary kinetics and mobility. For this purpose,
we developed a three-dimensional computer simu-
lation model based on microscopic master equations

using either the point or the pair approximations
with a second-neighbor interaction model. In this
model, the anisotropic solute segregation at a mov-

ing antiphase boundary is automatically taken into
account and the e�ect of composition on the kin-
etics of domain coarsening can be systematically

investigated.

2. MODEL

We consider a b.c.c. lattice whose unit cell is

shown in Fig. 1. It is divided into two sublattices, a
and b. These two sublattices are related by a lattice
translation along the �1, 1, 1�-direction by a vector

a0=2�111�, where a0 is the lattice constant of the
conventional b.c.c. unit cell. In a b.c.c. binary alloy,
A and B atoms can occupy either the a- or b-sub-
lattice. Under a certain condition (temperature and
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composition), A and B may have a preference to
occupy either the a- or b-sublattice. For instance,
for composition c � 0:5 at low temperatures, there

is a higher probability of ®nding A atoms on the a-
sublattice and B atoms on the b-sublattice, or vice
versa, resulting in the so-called B2-ordered phase.
At high temperatures, due to the mixing entropy

e�ect, A (or B) atoms have the same probability of
occupying a- and b-sublattices, forming a disor-
dered phase.

In the microscopic master equation method, the
structural state of an alloy at a given temperature
and composition is described by a set of multiparti-

cle distribution functions or cluster probabilities
[11]. These multiparticle distribution functions
satisfy the normalization conditions [12]; for

example, summing the single-site distribution func-
tion Pa(r) [occupation probability of a-type atom
(A or B) on site r] over all lattice sites gives

SrPa�r� � Na

where Na is the total number of a-type atoms in the
alloy.

Away from equilibrium all of the multiparticle
distribution functions are at nonequilibrium and
change with time as the atomic di�usion takes place
on the lattice. For simplicity, we assumed a direct

exchange mechanism for atomic di�usion and iso-
thermal environment.
Let us consider a pair of interchange sites at r

and a nearest-neighbor site, r+d, and a set {x} of
nearby sites on which atoms interact with the two
interchanging atoms. If we have an A atom at r, a

B atom at r+d, and a set of atoms {X} at {x}, we
denote by RAB({X}) the rate at which the AB pair
interchanges under the in¯uence of the set of neigh-

boring atoms {X} on {x} up to the second neigh-
bors as shown by the numbers 1±20 in Fig. 1.
Similarly, RBA({X}) is the rate at which the BA pair
will interchange under the same environment when

the B atom is at r, and the A atom is at r+d. Then
the rate of change of the probability that the site r

occupied by an A atom is given by

dPA�r�=dt � SdSfxgPBAfX g�r, r� d, fxg�

RBA�fX g� ÿ SdSfxgPABfX g

�r, r� d, fxg�RAB�fX g�
�1�

where the ®rst and second terms on the right-hand
side are the average rates at which, on site r, A
atoms are appearing and disappearing, respectively;

Sd denotes the summation over all the nearest-
neighbor sites, d, of r; and PABfX g�r, r� d, fxg� is
the probability of ®nding an A atom on r, a B

atom on r+d, and the set {X} on the neighboring
sites {x} simultaneously. A similar equation can be
written for dPB(r)/dt since PA�r� � PB�r� � 1.

The reaction rate constant in equation (1) is cal-
culated according to [11±13]

RAB�fX g� � u expfÿ�U0 � 1=2DE �=kBT g �2�
where U0 is the average activation energy for AB
exchange, u is the vibrational frequency associated

with the AB exchange, DE is the energy di�erence
before and after an atom exchange and dependent
on the local atomic arrangements, T is the absolute

temperature and kB is Boltzmann's constant. Since
u exp�ÿU0=kBT � occurs in all con®gurations, it can
be combined with the time, t, in the kinetic
equations to give a dimensionless time, t*

t� � tu exp�ÿU0=kBT �: �3�
Therefore, the time unit of t in our simulation is
1=u exp�ÿU0=kBT � and the dimensionless time step
is 0.01.
In order to carry out the sum on the right-hand

side of equation (1), we need the joint probability
distribution, PABfX g�r, r� d, fxg�. In this paper, we
use the simplest point approximation by assuming

statistical independence among occupation prob-
abilities. In this approximation

PABfX g�r, r� d, fxg�

� PA�r�PB�r� d�PX1�x1�PX2�x2�

. . . PXn�xn� �4�

where x1, . . . , xn are the individual sites in the set
of neighboring sites around the pair, r and r+d,
and X1, . . . , Xn are the types of atoms occupying
those sites.
The summation on the right-hand side of

equation (1) is over all possible arrangements of A
and B atoms on the sites which in¯uence the atomic
interchange at r and r+d. For the b.c.c. binary

alloy with a second-neighbor interaction model
(Fig. 1), there are a total of 220 possible terms in
the summation. For each of the 220 di�erent con-
®gurations, the rate constants RAB and RBA have to

Fig. 1. The b.c.c. lattice is divided into two sublattices: a
and b. The numbers 1±20 indicate the ®rst and second

neighbors of the pair AB or BA.
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be calculated. The number of con®gurations will
increase dramatically if a longer range interaction

model is employed. However, in the point approxi-
mation, it is computationally much more e�cient to
replace the sum over products of individual single-

site probabilities using the product of sums over A
and B [12, 13], i.e.

SfxgPABfxg�r, r� d, fxg�RAB�fX g�

� PA�r�PB�r� d��PA�1�

exp�ÿ �V1
AB ÿ V1

AA�=2kBT � � PB�1�

exp�ÿ �V1
BB ÿ V1

BA�=2kBT �
	

. . . fPA�20�exp�ÿ �V1
AB ÿ V1

AA�=2kBT �

� PB�20�exp�ÿ�V1
BB ÿ V1

BA�=2kBT �g

�5�

where PA(k) and PB(k), k � 1, . . . , 20, are the
values of single-site distribution functions PA and

PB at site k around the pair r and r+d, and the
Vn

AA is de®ned as the nth neighbor interaction
between A and A atoms and the same for A±B and

B±B.
To solve the kinetic equations, we apply the

simple Euler technique

PA�r, t� Dt� � PA�r, t� � dPA�r�=dt Dt: �6�
In the traditional Bragg±Williams mean-®eld ap-

proximation the phase diagram for the b.c.c. binary

alloy can be calculated [14]. The bond energies are
chosen to be V1

AA � 1:0, V1
AB � 0:0, V1

BB � 0:0, and
V2

AA � ÿ0:86, V2
AB � 0:0, V2

BB � 0:0. Therefore, the
e�ective interaction energies are given by

w1 � V1
AA � V1

BB ÿ 2V1
AB � 1:0

w2 � V2
AA � V2

BB ÿ 2V2
AB � ÿ0:86 �7�

where w1 and w2 are the ®rst- and second-neighbor

e�ective interchange energies and the interactions
beyond the second coordination shell are neglected.
The free energy per lattice site can then be obtained
for the B2 phase of the b.c.c. structure as follows:

F � 1=2fc2V0 � �Z�2V1 � kBT��c� Z�ln�c� Z�

� �1ÿ cÿ Z�ln�1ÿ cÿ Z� � �cÿ Z�ln�cÿ Z�

� �1ÿ c� Z�ln�1ÿ c� Z��g �8�

where c is the mole fraction of component A, Z is
the order parameter, V0 � 7w1 � 6w2 and

V1 � ÿ7w1 � 7w2.
The conventional common-tangent construction

for the F vs c curves at di�erent temperatures deter-

mines the equilibrium compositions of the disor-
dered D phase and the ordered B2 phase and allow
one to draw the solubility lines. Therefore, the
phase boundary and spinodal curves for the point

approximation are calculated using equation (8)
and are presented in Fig. 2. There are three regions

in the phase diagram: B2-ordered phase (B2), disor-
dered phase (D) and two-phase coexistence
(B2+D), and the solid lines are the phase bound-
aries of the low temperature two-phase ®eld, dot-

dashed line is the ordering transition line of the sec-
ond kind extended into the D+B2 ®eld, thin line is
the stable ordering transition line of the second

kind, dotted line is the conditional spinodal and
letters X represent the alloy compositions and tem-
peratures chosen for the computer simulation.

Reduced temperature T � � kBT=jV1j is used in the
phase diagram representation. This phase diagram
is topologically very similar to the upper part of the
Fe±Al diagram describing the two-phase ®eld, the

disordered+ordered B2 phase [15].
In order to characterize the B2-ordered phase, we

de®ned the long-range order parameter Z in terms

of single-site occupation probabilities using
Z�r� � �Pa

A�r� ÿ Pb
A�r��=2, where a and b label the

two sublattices. The corresponding local compo-

sition is de®ned as c�r� � �Pa
A�r� � Pb

A�r��=2. The
local solute segregation is measured by de®ning
s�r� � c�r� ÿ c0, where c0 is the average composition

of the system.

3. RESULTS AND DISCUSSION

3.1. Initial con®guration of APB

We employed a simulation supercell 64� 64� 2
conventional b.c.c. unit cells with two lattice sites

per unit cell (Fig. 1). Periodic boundary conditions
are applied along all three directions. We con-
sidered a cylindrical antiphase domain with a radius

R � 30 (unit is lattice constant). The initial con-
dition is generated as follows: inside the cylinder,
Pa

A�r� and Pb
A�r� are, respectively assigned high and

low values corresponding to the equilibrium B2-
ordered single phase at the temperature and compo-
sition of interest, and outside, Pa

A�r� and Pb
A�r� are

assigned low and high values, respectively.

Fig. 2. The calculated phase diagram for b.c.c. alloy in a
point approximation with interactions up to second neigh-

bors.
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3.2. Stoichiometric composition (c � 0:5)

From Fig. 2 it can be seen that for composition

c � 0:5, below the order±disorder transition critical

reduced temperature T � � 0:25, there is only a

single B2-ordered phase. To study the APB mi-

gration, T* is chosen to be below the order±disor-

der transition temperature for the B2-ordered

phase. The solute segregation pro®le at T � � 0:14

and time t� � 37:5 unit is presented in Fig. 3(a). It

can be seen that the amplitude of compositional

segregation at the APB is highly orientation depen-

dent and can be either positive or negative. The

maximum segregation in amplitude occurs along

the �1, 1, 0�-direction as shown in Fig. 3(b) and no
segregation along the �1, ÿ 1, 0�-direction as shown

in Fig. 3(c). Therefore, anisotropic segregation at
the APB is automatically predicted by our simu-
lations.

In order to describe the degree of anisotropy, we
de®ned a parameter, sd, as

sd � jmax s�r� ÿmin s�r�j:

The parameter sd is a function of temperature and
composition. In the stoichiometric alloy with

c � 0:5, the values of sd at di�erent temperatures
are listed in Table 1. The segregation at APB shows
stronger anisotropy (sd � 0:445) at a lower tem-
perature (T � � 0:123) than sd � 0:085 at a higher

temperature (T � � 0:222).
The size of APD (the area of the circular domain

in the x±y cross section) as a function of time t* is

plotted in Fig. 4, where S�size of APD� � pR2, p �
3:14 and R is the radius of the circular domain. The
equation

Rm�t�� ÿ Rm
0 �t� � 0� � kt� �9�

is used to ®t the data and the best ®tting gives
m � 2:0, which indicates a linear relationship
between S and t*. The slope (k) of the linear func-

tion is proportional to the mobility of the circular
APB. Therefore, it is interesting that despite the
anisotropic segregation, the domain remains circu-

lar on the x±y cross section through the entire
simulation and the APD size decreases linearly with
time.

By examining the segregation pro®le, it is found
that the width of the segregation region ranges
from two to ®ve lattice constants. For the B2-
ordered phase in the Fe±Al alloy, the lattice con-

stant a0 is about 4.2 AÊ . Using this value as a typical
value for the lattice parameter, the width predicted
from our model is about 8.4±21 AÊ . Krzanowski and

Allen indicated from their experimental measure-
ments that the width of segregation in the B2 with
75% Fe is about 10±13 AÊ [2±4]. Although we

employed a model binary alloy and without any
attempt to ®t our interaction parameters to the Fe±
Al system, our prediction on the segregation width
in the B2-ordered single-phase region seems to be

of a similar order of magnitude as experimental
measurements in the B2-ordered phase. The width
of the segregation region at various temperatures is

listed in Table 1 for c � 0:5.

3.3. Non-stoichiometric composition (c � 0:3)

At this composition, the alloy is an ordered B2
phase at temperatures higher than T � � 0:11, or a
two-phase (B2+D) coexistence at temperatures

lower than T � � 0:11. We discuss the APB motion
within the B2-ordered single-phase region.
At T � � 0:14, the alloy is a B2 single phase. A

snapshot of the segregation pro®le is shown in Fig.

Fig. 3. The pro®le of concentration segregation for the
stoichiometric alloy at T � � 0:14: (a) t� � 37:5 (i.e.
t � 37:5 unit); (b) the cross section along the �1, 1, 0�-direc-
tion; (c) the cross section along the �1, ÿ1, 0�-direction.
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5(a), where the magnitude of segregation is scaled

by gray-levels with the completely bright scale

representing the maximum segregation and the dark

scale representing no segregation. The correspond-

ing cross section along the �1, 1, 0�-direction is

shown in Fig. 5(b), where the asymmetric amplitude

can be clearly seen. The cross section along the

�1, ÿ1, 0�-direction is presented in Fig. 5(c), which

shows a non-zero concentration segregation. The

anisotropy degree, sd, is 0.160 at this composition

and temperature, which is less than that in the stoi-

chiometric alloy at the same temperature. The

degree of anisotropy, sd, at di�erent temperatures,

is listed in Table 2. When the alloy is in the single

B2-ordered phase region, Table 2 shows that the

width (16.8±21 AÊ ) of segregation at non-stoichio-

metric composition is of the same order as that

(8.2±21 AÊ ) at stoichiometric composition, although

the actual values are slightly greater on average in

the former than in the latter.

For this non-stoichiometric composition

(c � 0:3), the size of APD and time t* deviates

slightly from the linear relationship. Using the same

®tting procedure as for the stoichiometric alloy, the

best ®tting gives index m � 1:98 at T � � 0:140,

which implies the g in S � k�t��g is slightly larger

than 1.0. At temperature T � � 0:164, similar ®t-

tings have been systematically conducted for di�er-

ent compositions, e.g. c � 0:25, 0.3, 0.35, 0.4, 0.45

and 0.5, and on both simulation systems, i.e. 64�
64� 2 and 128� 128� 2, in order to see the size

e�ect of the computer simulation system. For the

128� 128� 2 system, the initial radius of the circu-

lar antiphase domain is 60 unit. The best ®ttings

from both simulation systems give similar values

for the exponent m listed in Table 3. This implies

that the relationship of S±t* at non-stoichiometric

alloy is no longer rigorously linear, although it is

very close to being linear. It is quite surprising that

the values for m are slightly less than 2.0 for all the

non-stoichiometric alloys in the single B2-ordered

phase; the reason that the exponent can be less than

2.0 remains to be investigated.

The linear behavior of the s±t relationship can be

written as the linear relationship between velocity

of shrinkage of APD (dR/dt) and the curvature of

Table 1. The maximum segregation (s(r)), degree of segregation (sd), the slope in the plot of area vs time, and the width of segregation
region as a function of temperature for c � 0:5 at t� � 37:5

T* Maximum s(r) sd Slope Width (AÊ )

0.123 0.222 0.445 ÿ16.6 8.40
0.140 0.162 0.323 ÿ17.5 12.6
0.148 0.128 0.255 ÿ17.7 12.6
0.164 0.098 0.197 ÿ17.8 12.6
0.189 0.078 0.155 ÿ17.8 12.6
0.206 0.062 0.124 ÿ17.7 16.8
0.222 0.043 0.085 ÿ17.5 21.0

Fig. 4. The linear relationship between size (pR2) of APD and time t* in the stoichiometric alloy at
T � � 0:14.
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APB (1/R), which is

dR=dt � k=R

where k is the mobility. The relationship was pro-

posed by Allen and Cahn [1] based on their exper-
imental observations in a single B2-phase region.

They showed that it is valid regardless of compo-
sition, and supported by Lifshitz [10] and Kirkaldy

and Savva [9] from di�erent models. The only
di�erence among their predictions about this linear
relationship is the function of k with temperature.

However, our computer simulations showed that
the relationship is only approximately linear at non-
stoichiometric compositions.

The little deviation of m from 2.0 at non-stoichio-
metric alloy might be due to the di�erent degree of
B2 order from the stoichiometric alloy. This di�er-

ent order degree results in a slightly di�erent segre-
gation across the APBs and di�erent curvature of
compositional pro®le within the APD area. As com-
pared in Fig. 6, the compositional pro®le within the

domain area of stoichiometric alloy is more ¯at or
homogeneous than that of the non-stoichiometric
alloy. It suggests that the segregation might be cur-

vature dependent and the curvature may drive a
small ¯ow ¯ex of matter within the domain, from
the boundary region to the center area [16].

A simulation with random initial condition,
where atom A or B was randomly distributed on
each lattice site, was conducted to see the e�ect of

initial condition on the solute segregation pro®les.
Starting with this random initial condition, the
simulation gave a multidomain distribution with
di�erent shape for each domain. The segregation

pro®les across the APB around each domain
showed a greater segregation along the �1, 1, 0�-
direction and less segregation along the �1, ÿ1, 0�-
direction. This is similar to the observation at the
circular APB case. This might imply that the choice
of the initial condition was arbitrary and would not

change the preference of segregation along the
�1, 1, 0�-direction of the B2 single phase in a b.c.c.-
based binary alloy.
Does the local de®nition of order parameter and

composition a�ect the segregation pro®les across
the APB? In order to answer this question, two
di�erent local de®nitions have been tested. The ®rst

case is just what we used in this paper. In the sec-
ond case, ®ve points were taken into account, one
Pa

A�r� and its four nearest neighbors, Pb
A�r1�, Pb

A�r2�,
Pb

A�r3�, and Pb
A�r4�, and the local composition and

order parameter were then, respectively de®ned as

C�r� � fPa
A�r� � �Pb

A�r1� � Pb
A�r2� � Pb

A�r3�

� Pb
A�r4��=4g=2

Fig. 5. The pro®le of concentration segregation for non-
stoichiometric alloy (c � 0:3) at T � � 0:14: (a) t� � 200
(i.e. t � 200 unit); (b) the cross section along the �1, 1, 0�-
direction; (c) the cross section along the �1, ÿ 1, 0�-direc-

tion.

Table 2. The maximum segregation (s(r)), degree of segregation (sd), and the width of segregation region as a function of temperature for
c � 0:3 at t� � 200

T* Maximum s(r) sd Width (AÊ )

0.123 0.193 0.142 21.0
0.140 0.163 0.160 16.8
0.148 0.131 0.117 21.0
0.164 0.110 0.101 21.0
0.181 0.063 0.060 21.0
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and

Z�r� � fPa
A�r� ÿ �Pb

A�r1� � Pb
A�r2� � Pb

A�r3�

� Pb
A�r4��=4g=2:

The second de®nition gave a very similar segre-
gation pro®le across the circular APB to those

shown in Fig. 3(a) obtained by the ®rst de®nition.
The similarities between these simulation results
from the two di�erent local de®nitions could show

that the di�erence in local de®nition of order par-
ameter or composition has no e�ect on the segre-

Table 3. The values for m of equation (4) at temperature
T � � 0:164 and di�erent compositions: (a) for 64� 64� 2; (b) for

128� 128� 2

Composition Index m (a) Index m (b)

0.25 1.86 1.85
0.30 1.94 1.90
0.35 1.88 1.85
0.40 1.86 1.92
0.45 1.95 1.98
0.50 2.00 2.00

Fig. 6. The comparison of compositional pro®les along the �1, 1, 0�-direction for both the stoichiometric
(c � 0:5) and non-stoichiometric (c � 0:3) alloys at T � � 0:164 with 128� 128� 2 unit cells. (a)

Overview of the compositional pro®les. (b) Comparison of the curvatures in detail.
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gation pro®les. Therefore, we used, in this paper,

the ®rst de®nition due to its simplicity.

The order parameter around the circular APB held

the circular shape all the time until the size of the

antiphase domain shrank to zero, as shown in Fig. 7.

The magnitude of solute segregation appears lar-
ger along the 1=2�1, 1, 0�-direction than along the

1=2�1, ÿ1, 0�-direction in the two-dimensional case
and the phenomenon was attributed to the non-con-
servative and conservative nature of these two

directions. As shown in Fig. 8, the 1=2�1, 1, 0�-direc-
tion has a maximum dot product with the trans-

lation vector e � 1=2�1, 1, 1� of the B2 phase of the
b.c.c. structure and the 1=2�1, ÿ1, 0�-direction has
zero dot product with the translation vector. The

APB with normal vector of 1=2�1, 1, 0� is then called
a non-conservative APB and that with normal vec-
tor of 1=2�1, ÿ1, 0� is called a conservative APB.

The non-conservative APB shows a di�erence in
solute segregation from the conservative APB due
to the non-zero dot product with the translation

vector. The zero dot product between the conserva-
tion APB and the translation vector results in the

disappearance of the ®rst derivative cross terms
between the order parameter and the concentration
in free-energy formula which was suggested to be

responsible for the formation of solute segregation
across the APB of the B2 phase in the b.c.c. struc-
ture [7].

Fig. 7. The time-evolution of the circular APB at composition c � 0:5, temperature T � � 0:14 and the
di�erent time snapshots t* of: (a) 18.75; (b) 37.5; (c) 75; (d) 150.

Fig. 8. The schematic representation of the relationship
between the translation vector e � 1=2�1, 1, 1� of the B2
phase of the b.c.c. structure and the normal vector na of
APB. Two special normal vectors of APB are
nnc � 1=2�1, 1, 0� and nc � 1=2�1, ÿ1, 0�, which represent
the non-conservative direction with jn�ncej � maximum and

conservative direction with n
�
ce � 0, respectively.
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In one dimension, to be more speci®c, the atomic
distribution would look like

ABABAB|BABABABA|ABABAB in order to have
the overall composition 0.5 when c � 0:5, where |
represents the antiphase domain boundary.

Seemingly, in general, there is no two-fold sym-
metry with 180 degree rotation that should exist for
an ABABAB ordered structure in one dimension.

However, by looking very carefully at each ordered
domain, the two-fold structural symmetry of the
B2-ordered phase still holds. This two-fold struc-

tural symmetry within each B2-ordered phase
domain is also true in two-dimensional simulations.
Since the APD boundaries are only a very small
portion of the whole system, the symmetry of the

system is then determined by the symmetry of each
ordered domain. So, the two-fold symmetry of the
B2-ordered phase holds for the whole system.

4. SUMMARY AND CONCLUSIONS

Using the microscopic master equation in point
approximation with atomic interactions up to sec-

ond neighbor, the kinetics and thermodynamics of
a cylindrical (with a circular projection on the x±y
two-dimensional plane) antiphase boundary in a

b.c.c.-based AcB1ÿc alloy were studied for both stoi-
chiometric (c � 0:5) and non-stoichiometric
(c � 0:3) composition. Particularly, the studies were
conducted on the local compositional pro®le across

APB, the relationship between size of antiphase
domain (APD) and time t*, the mobility of APB,
and the width of the compositional segregation

area. Based on the results obtained and discussion,
we make the following conclusions:

1. The local compositional pro®le is highly aniso-

tropic at APB in stoichiometric alloy and a
strong concentration segregation occurs at the
APB.

2. Comparing with the stoichiometric alloy, the seg-
regation anisotropy at APB in the non-stoichio-
metric alloy is weaker.

3. The relationship between size of APD and time

t* is a linear function within the single B2-

ordered phase region at the stoichiometric com-
position and it becomes slightly nonlinear at

non-stoichiometric compositions.
4. The two-fold symmetry of B2-ordered phase of

b.c.c.-based AcB1ÿc alloy still holds during the

APD migration.
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