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Abstract

In this paper, we discuss a simple iterative-perturbation scheme for solving the elasticity equation in systems with

strong elastic inhomogeneity. As an example, a thin film in contact with a gas and a substrate is considered. The scheme

is demonstrated to be efficient through numerical experiments and reliable through rigorous mathematical justification.

It is then applied to the study of the inhomogeneous shear modulus effect on the microstructure evolution in thin films

based on the phase-field method.
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1. Introduction

The phase-field method has recently emerged as a powerful computational approach to model and pre-

dict the mesoscale morphological and microstructure evolution in materials. Unlike conventional methods

which model the regions separating the compositional or structural domains as sharp interfaces, the phase-

field approach is based on a diffuse-interface description using a set of conserved and non-conserved field

variables that are continuous across the interfacial regions. The temporal and spatial evolution of the phase

variables is governed by the Cahn–Hilliard diffusion equation and the Allen–Cahn relaxation equation.

With the fundamental thermodynamic and kinetic information as the input, the phase-field method is able

to predict the evolution of arbitrary morphologies and complex microstructures without explicitly tracking
the positions of interfaces. We refer the readers to [1] for a review of the recent advances in developing
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phase-field models for various materials processes including solidification, solid-state structural phase

transformations, grain growth and coarsening, domain evolution in thin films, pattern formation on sur-

faces, dislocation microstructures, crack propagation, and electro-migration.

Microstructure evolution takes place to reduce the total free energy that may include the bulk chemical

free energy, interface energy, and long-range interaction energies such as elastic energy and electrostatic
energy. Suppose that the two types of field variables, conserved and non-conserved, are denoted by

(c1, c2, . . . , cn) and (g1, g2, . . . , gp). The total free energy of an inhomogeneous microstructure system

described by these field variables is then given by
F ¼
Z

f ðc1; c2; . . . ; cn; g1; g2; . . . ; gpÞ þ
Xn

i¼1

aiðrciÞ2 þ
X3

i¼1

X3

j¼1

Xp

k¼1

bijrigkrjgk

" #
d3x

þ
Z Z

Gðx� x0Þd3xd3x0;
where f is the local free energy density, ai and bij are the gradient energy coefficients. The first volume inte-

gral represents the local contribution to the free energy from short-range chemical interactions. The origin
of interfacial energy comes from the gradient energy terms that are non-zero only at and around the inter-

faces. The second volume integral represents a non-local term that contains contributions to the total free

energy from any one or more of the long-range interactions, such as elastic interactions, electric dipole–

dipole interactions, electrostatic interactions, etc. The main differences among different phase-field models

lie in the treatment of various contributions to the total free energy. With a given total free energy F, the

evolution of the field variables can be obtained by solving the Cahn–Hilliard and Allen–Cahn equations,
ociðx; tÞ
ot

¼ r �Mijr
dF

dcjðx; tÞ
;

ogkðx; tÞ
ot

¼ �Lkl
dF

dglðx; tÞ
;

where the kinetic coefficients Mij and Lkl are related to atom or interface mobility, and the operator d de-
notes the variation of the energy functional with respect to the field variables. In the above equations and

throughout this paper, we use the summation convention that the same index appearing twice indicates

summation over the range of the index. The summation sign ‘‘
P

’’ is used explicitly only when the index

for summation does not appear in pairs.

Phase transformations in solids usually produce coherent microstructures at their early stages. In a

coherent microstructure, the lattice planes and directions are continuous across the interfaces, and the lat-

tice mismatch between phases and domains are accommodated by elastic displacements. The elastic energy

contribution to the total free energy in a phase-field model can be introduced by expressing the elastic strain
energy as a function of field variables, and the elastic energy is often a key thermodynamic and kinetic fac-

tor governing the temporal evolution of microstructures. Therefore, an efficient and accurate method to cal-

culate the elastic energy is desirable for predicting microstructure evolution.

In an elastically homogeneous bulk solid with an arbitrary microstructure, Khachaturyan�s microelastic-

ity theory [2] provides an efficient approach to calculate the elastic energy. It has been applied to study the

effect of elastic energy on microstructure evolution during various structural phase transformations [1]. For

systems with weak elastic inhomogeneity, first-order approximations have been employed to solve the

mechanical equations [3–5]. However, the numerical solution to the mechanical equilibrium equation be-
comes significantly more complicated for microstructures with strong elastic inhomogeneity. Recently, a

number of approaches have been proposed, including the iterative-perturbation method [6], the precondi-

tioned conjugate gradient method combined with the Fourier-spectral approximation to the differential
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operators [7,8], the finite element method [9] and the method based on Eshelby�s equivalent inclusion theory

[10–13]. Among these, the iterative-perturbation method and conjugate gradient method are aimed at solv-

ing the mechanical equilibrium equation directly. On the other hand, the method based on the Eshelby�s
inclusion theory requires the solution of the following gradient flow equation:
oe0ijðx; tÞ
ot

¼ �Lijkl
oEinhom

de0klðx; tÞ
;

where Einhom is the strain energy of the inhomogeneous system, and the solution e0ijðxÞ is the eigenstrain with

which the elastically homogeneous system would be equivalent to the original inhomogeneous system.

The purpose of this article is twofold. First, we adapt the iterative-perturbation method proposed in [6]

to solid–gas systems where the elastic inhomogeneity is at its maximum. Second, we provide a rigorous jus-

tification of our formulation of the inhomogeneous system and the iterative-perturbation algorithm. Our

novel inclusion of the gas phase in the elastic system is inspired by the idea of diffuse-interface modeling

popularized in the phase-field methodology. Instead of solving the elastic equations only in the solid phase

while imposing stress-free boundary conditions at the sharp interface between the solid and gas phases, we
treat the gas phase as an integral part of the system with zero elasticity modulus and create a diffuse inter-

face over which the elasticity constants of the solid smoothly transit to zero in the gas. From this perspec-

tive, our approach can be viewed as an extension of the phase-field idea to the elasticity equations, and the

advantages of the phase-field method over other sharp-interface approaches are automatically inherited by

our approach. In particular, there is no need to track the geometry of the interface directly, and the system

can most of the time be set up in a square (2D) or cubic (3D) domain where highly efficient spectral meth-

ods are applicable. In particular, we use the Fourier-spectral method in this paper to solve the elasticity

equations with periodic boundary conditions. The use of periodic boundary conditions is very common
in phase-field simulations of microstructure evolution [1]. The underlying philosophy is that we are mod-

eling merely a small local sample of a large material specimen and periodic boundaries are applied to min-

imize the finite-size effect.

The inclusion of the gas phase with degenerate elasticity modulus in the elastic system may seem some-

what artificial, and causes natural concerns over the well-posedness of the elasticity system and the validity

of the iterative-perturbation scheme. For example, the creation of a diffuse interface between the solid and

gas phases may be thought of as a source of severe modeling and computational errors. Nevertheless, our

numerical experiences [14] seem to give strong support to the efficiency of the iterative-perturbation and its
convergence to physically reasonable solutions, so long as the diffuse interfaces are fairly resolved by the

computational grid (which means in practice putting around 8 grid points across the gradient direction

of the diffuse interface). Yet, this method has not been analyzed theoretically in our earlier work. In this

paper, we intend to further justify this method with rigorous mathematical analysis and benchmark numer-

ical tests. The analysis focuses on (1) the well-posedness of the elasticity system with possibly degenerate

elasticity modulus; (2) the sharp interface limit of our diffuse-interface formulation of the elasticity system;

and (3) the convergence of the iterative-perturbation scheme. The numerical examples are selected to illus-

trate the efficiency and convergence of the iterative-perturbation scheme.
Although we focus mostly on elastic equations alone in this paper, we present at the end of the paper a

kinetic simulation coupling the elasticity field with the Cahn–Hilliard equation to study the effect of elastic

inhomogeneity on the morphological pattern formation in thin films. Thin film problems are among the

various applications that the iterative-perturbation approach is most suitable for. Upon introducing a

gas phase in our formulation of the elasticity system, we may apply the iterative-perturbation scheme with

the simple yet efficient Fourier-spectral method, without worrying about the stress-free boundary condi-

tions at the film surface even when the film surface is curvy. On the other hand, without the gas phase,

the stress-free boundary conditions at the film surface further complicate the application of Fourier-spectral
methods. In the case of curvy film surfaces, alternative approaches such as sophisticated finite element
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meshing schemes and adaptive techniques may be required. In the past, very few analytical solution pro-

cedures or efficient numerical methods were available for the elasticity problem in thin films. For example,

in a monolayer subject to the substrate constrain, Lu and Suo [15] derived an elastic solution using the

Green functions where the stresses in the thin film were assumed to be independent of the thickness. For

a thick film with a spatial distribution of eigenstrains, Li et al. [16] developed an efficient method to calcu-
late the elastic field assuming elastic homogeneity. Although their method can be extended to the case that

the film and substrate have different elastic constants, it cannot handle problems with the elastic inhomo-

geneity associated with compositional and structural inhomogeneity in films. The efficiency of finite element

methods also remains to be demonstrated when the problems involve moving interfaces. On the contrary,

the iterative-perturbation approach to be described later provides a very simple and elegant solution pro-

cedure to elasticity equations in thin films and can be easily extended to deal with evolving film surfaces

[17].

The paper is organized as follows. In Section 2, we discuss the mechanical equilibrium equations used in
the phase-field description of the solid and gas systems. The iterative-perturbation scheme is then presented

in Section 3. In Section 4, we discuss the formulation of such a scheme for the elastic solution in films with

stress-free surfaces and substrate constraints. Some rigorous mathematical analysis is provided in Section 5.

In Section 6, we present several numerical examples, and we conclude in Section 7.
2. Elasticity system and mechanical equilibrium equations

We give a general description of a system consisting of a solid phase and a gas phase. The gas phase

represents voids or cracks where elastic constants are modeled as zero. We assume that the solid phase

is a binary solid solution with a compositional inhomogeneity c = c(x) which represents the mole fraction

of solutes at the position x, and the local elastic modulus tensor is a linear function of the compositional

inhomogeneity. Therefore, the local elastic modulus tensor can be written as
kijklðxÞ ¼ k0ijkl þ k0ijkldcðxÞ in the solid phase;

kijklðxÞ ¼ 0.0 in the gas phase;
where dc(x) = c(x) � c0, k
0
ijkl is an elastic modulus tensor for the homogeneous solid solution with the com-

position c0, and k0ijkl is a constant tensor representing the elastic inhomogeneity within the binary solid solu-

tion. We assume dc(x) is constructed in such a way that the elastic modulus tensor experiences a smooth

transition to degeneracy over a thin interface between the solid and gas phases. In addition, we assume that

the local stress-free strain tensor can be described in terms of the compositional inhomogeneity ecijðxÞ. If the
variation of the stress-free lattice parameter a with respect to the composition obeys the Vegard�s law, the
local stress-free strain associated with the compositional inhomogeneity is given by
ecijðxÞ ¼ e0dcðxÞdij;
where e0 ¼ 1
a

da
dc is the composition expansion coefficient of the lattice parameter and dij is the Kronecker-

Delta function. Most crystal defects such as dislocations, grain boundaries and cracks can be described
by their corresponding spatially dependent stress-free strain edefij ðxÞ [18–24]. Therefore, the total stress-free
strain tensor e0ijðxÞ associated with the compositional inhomogeneity and distributed defects is given by
e0ijðxÞ ¼ ecijðxÞ þ edefij ðxÞ.
Let us use eij(x) to denote the total strain measured with respect to a reference lattice and assume linear

elasticity. The Hooke�s law gives the local elastic stress,
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rel
ij ¼ ½k0ijkl þ k0ijkldcðxÞ�½eklðxÞ � e0klðxÞ�. ð2:1Þ
During the evolution of microstructure, since the mechanical equilibrium with respect to elastic displace-
ments is usually established much faster than any other physical processes, for any given composition dis-

tribution, the system is always at a mechanical equilibrium,
orel
ij

oxj
¼ 0; ð2:2Þ
where xj is the jth component of the position vector x. The total strain eij(x) may be represented as the sum
of homogeneous and heterogeneous strains:
eijðxÞ ¼ �eij þ deijðxÞ; ð2:3Þ

where the homogeneous strain �eij is defined such that
Z

v
deijðxÞd3x ¼ 0.
The homogeneous strain is the uniform macroscopic strain characterizing the macroscopic shape and vol-

ume change associated with the total strain eij(x). Let us use ui(x) to denote the ith displacement component

of the heterogeneous deformation. According to the strain and displacement relationship, the heteroge-

neous strain can be expressed as
deklðxÞ ¼
1

2

oukðxÞ
oxl

þ oulðxÞ
oxk

� �
. ð2:4Þ
Substituting Eqs. (2.1), (2.3) and (2.4) to the mechanical equilibrium equation (2.2), one has
k0ijkl
o2

oxjoxl
þ k0ijkl

o

oxj
dcðxÞ o

oxl

� �� �
ukðxÞ ¼

o

oxj
½k0ijkl þ k0ijkldcðxÞ�½e0klðxÞ � �ekl�. ð2:5Þ
Therefore, the determination of the equilibrium elastic field for an elastically inhomogeneous solid is re-

duced to solving the mechanical equilibrium equations (elasticity equations) (2.5) subject to appropriate

boundary conditions, and in particular, periodic boundary conditions in this paper. Please notice that
in the gas phase, both the left-hand and the right-hand sides of (2.5) are zero, and thus the uniqueness

of the solution to (2.5) cannot be expected to hold in the gas phase. The appropriate sense for discussing

the uniqueness of the solution will be spelled out later in our analysis.
3. Iterative-perturbation scheme

The key idea of the iterative-perturbation scheme is to split the inhomogeneous part of the elastic mod-
ulus tensor to the right-hand side of (2.5), thus transforming the inhomogeneous (possibly degenerate) elas-

ticity problem to iterations of homogeneous (non-degenerate) systems. The nth iteration of the scheme

reads
k0ijkl
o2unkðxÞ
oxjoxl

¼ o

oxj
½k0ijkl þ k0ijkldcðxÞ�½e0klðxÞ � �ekl� � k0ijkl

o

oxj
dcðxÞ ou

n�1
k ðxÞ
oxl

� �
. ð3:1Þ
Mathematically, the interesting change caused by this splitting is that the possible degeneracy of (2.5) (and

the non-uniqueness of the solution in the gas phase) is hidden in the initial and boundary conditions for

(3.1). Thanks to the constant coefficients on the left-hand side of (3.1), this equation can be solved by
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the Fourier-spectral method. For instance, if one sets the inhomogeneous elasticity k0ijkl to 0, the zeroth-or-

der approximation to (3.1) becomes
k0ijkl
o2u0kðxÞ
oxjoxl

¼ k0ijkl
oe0klðxÞ
oxj

;

where u0kðxÞ denotes the kth component of the displacement. Solving this in the Fourier space [1], we have
v0kðgÞ ¼ �iGikðgÞgjk0ijmnn
0
mnðgÞ;
where v0kðgÞ and n0mnðgÞ are the Fourier transforms of u0kðxÞ and e0mnðxÞ, respectively, g is a reciprocal lattice

vector, gj is the jth component of g, and Gik(g) is the inverse tensor to ðG�1ðgÞÞik ¼ g2k0ijklnjnl with n ¼ g
jgj.

The inverse Fourier transform of v0kðgÞ gives the real-space solution for the displacement field in the
zeroth order approximation,
u0kðxÞ ¼
1

ð2pÞ3
Z

v0kðgÞeig�x d
3g.
For static problems, one may choose this as the initial iterate of the iterative-perturbation scheme. For ki-

netic problems, it is usually more efficient to take as the initial iterate the converged solution to the elasticity

equations from the previous time step.

Numerically, the Fourier-spectral method can be implemented via the Fast Fourier Transform (FFT).

For simplicity of counting operations, suppose that we discretize the elasticity system by N grid points

along each of the three dimensions. The total computational cost of each step of the iterative-perturbation
scheme via FFT is OðN 3log3NÞ. Typical iterative methods to solve the discretized (by finite-difference or

finite-element for example) elasticity equations have computational costs in the order of kN3, where the

constant k depends on the sparseness of the coefficient matrix of the linear system. The higher accuracy

one requires for the approximation of the differential operators, the less sparse a discretized system results,

and the bigger the constant k becomes. In practice, in terms of the cost per iteration, our iterative-pertur-

bation approach is competitive with other iteration methods for linear systems, while offering straightfor-

ward implementation and highly accurate approximations to the differential system. Of course, another key

factor that affects the total cost of the iterative-perturbation scheme is the total number of iterations needed
before the successive iterations converge to a reasonably accurate solution. Such statistics will be collected

later for several numerical tests. In general, we find that no more than 10 iterations are required for static

problems, while only one iteration is sufficient per time step for kinetic simulations.
4. Elastic solution in films with stress free surfaces and substrate constraints

Next, we show how to recast an elastic problem in thin films with stress-free surfaces and substrate con-
straints into the general framework of inhomogeneous elasticity systems introduced in Section 2. As sche-

matically depicted in Fig. 1, we insert a gas layer on top of the film to make up a 3D bulk system on a cubic

domain. The original curvy film surface becomes a diffuse interface between the solid and gas phases in the

new system and thus does not require any special treatment in terms of the mesh alignment as in, for exam-

ple, the finite element method. If we apply periodic boundary conditions to the new substrate–film–gas sys-

tem, the iterative-perturbation scheme can be implemented on a regular mesh with the Fourier-spectral

method. As in Section 2, the eigenstrain and the elastic modulus tensors are defined as
e0ijðxÞ ¼
edefij ðxÞ in the gas phase;

ecijðxÞ þ edefij ðxÞ in film and substrate

(



Fig. 1. Schematic view of an elastically inhomogeneous system.
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and
kijklðxÞ ¼
0.0 in the gas phase;

k0ijkl þ k0ijkldcðxÞ in film and substrate;

(

where edefij ðxÞ is the eigenstrain associated with the distribution of defects such as real dislocations in the

solid and image dislocations in the gas phase. With these coefficients, the elasticity system to be solved

remains as (2.5).

Since the elastic constant is zero in the gas phase, all stress components are zero there as well. Assuming

the continuity of stress at the interface between the gas and solid phases, the elastic solution thus obtained

must satisfy the desired stress-free boundary conditions at the film surface (x3 = z = �hf), and the bottom of

the substrate (x3 = z = hs). Later, we will provide rigorous justification for this heuristic. Without loss of

generality, we assume in our analysis that both the film and the substrate are elastically homogeneous
(so the inhomogeneity refers to the film–gas transition). Also in the analysis, we assume that the film

surface is flat. The iterative-perturbation scheme is not limited to problems with flat film surfaces, and

in fact it has been successfully employed to simulate the formation of quantum dots where the surface is

rough [17].
5. Mathematical analysis

In this section, we present rigorous analysis on the formulation of the inhomogeneous elasticity problem

and on the iterative-perturbation scheme used to solve the system numerically. In particular, we direct our

attention to the following three key issues: (1) what is the effect of introducing a degenerate gas layer on the

well-posedness of the new system? (2) In what sense is the new substrate–film–gas system an approximation

to the original system consisting of the substrate and film layers only? (3) Can we guarantee the convergence

of the iterative-perturbation scheme in the presence of the strong elastic inhomogeneity between the film

and gas?
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For a clear illustration of the main ideas, we study a simplified model equation that still captures the

essential features of (2.5) needed to address the above questions. The simplified 3D model equation defined

on [0, 1]3 reads
o

oxj
kijklaeðx3Þ

ouk
oxl

� �
¼ o

oxj
kijklaeðx3Þbkle ðxÞ
� �

ð5:1Þ
with periodic boundary conditions. Here, kijkl is a constant elasticity tensor which is symmetric positive

definite, and the elastic inhomogeneity between the solid and gas phases is characterized by the scalar

function ae(x3) which depends only on the x3 direction. The function ae(x3) is a mollified version of the
characteristic function a(x3) of the substrate and film layers, i.e., a(x3) = 1 for 0 < x3 < h0 where h0 is

the height of the top of the film, and a(x3) = 0 elsewhere. The small parameter e denotes the thickness of

the diffuse interface between the gas layer and the film layer, and it goes to zero in the sharp interface limit.

We will see in the later discussion that the details of the mollification process are not important so long as

we have the desired bounds, smoothness and convergence properties. Similarly, bkle ðxÞ is the mollified ver-

sion of the applied strain bkl(x) corresponding to the original substrate and film system, which vanishes in

the gas layer (h0 < x3 < 1). The model equation makes the simplifying assumption of the film top being flat

and the elasticity tensor being homogeneous within the substrate and film, but still preserves the strong elas-
tic inhomogeneity caused by the gas layer, which is the major concern of our formulation of the elasticity

system.

First of all, the existence of solution to (5.1) can be easily established by considering the associated var-

iational problem [25] with the standard elastic energy,
1

2

Z
kijklaeðx3Þ

oui
oxj

� bije

� �
ouk
oxl

� bkle

� �
dx
over the space H 1
pðð0; 1Þ

3Þ of functions in the Sobolev space H1((0, 1)3) [26] that satisfies the periodic bound-

ary condition. However, a peculiar consequence of the degeneracy in the gas layer is that the solution is not

unique there. Fortunately, this little ‘‘inconvenience’’ can be safely ignored since we are only interested in

the solution to (5.1) in the substrate and film layers. We note that multiplying (5.1) with zero right-hand
side by ui and integrating by parts immediately lead to the uniqueness (up to a constant) of the solution

where the elasticity tensor is non-degenerate. Therefore, we have shown that the solution to the (partially

degenerate) elasticity equations (5.1) exists and is unique in the substrate and film layers.

To reveal the relation between the diffuse-interface description of the substrate, film and gas system and

the original substrate and film system, we next study the sharp-interface limit of (5.1) in its weak formula-

tion as the small parameter e approaches zero. To derive the limiting equation, we multiply (5.1) by an arbi-

trary smooth test function vi, compactly supported in (0, 1) · (0, 1) · (0, h0), and perform integration by

parts. We get the weak formulation of the equation with mollified coefficients,
Z h0

0

Z 1

0

Z 1

0

kijklaeðx3Þ
ouek
oxl

ovi
oxj

dx1 dx2 dx3 ¼
Z h0

0

Z 1

0

Z 1

0

kijklaeðx3Þbkle ðxÞ
ovi
oxj

dx1 dx2 dx3; ð5:2Þ
where ue denotes a solution in H 1
pðð0; 1Þ

3Þ to (5.1) for a given e. To pass to the limit, we need the following

uniform bound on ue,
Z h0

0

Z 1

0

Z 1

0

X
k;l

ouek
oxl

����
����
2

dx1 dx2 dx3 < M
which can be easily proven from the positive-definiteness of the elasticity tensor. Now, denoting the weak
limit (up to a constant) of ue by u0 (its uniqueness can be easily seen from the limiting equation and the

boundary condition derived later), we may let e go to zero in (5.2) and obtain
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Z h0

0

Z 1

0

Z 1

0

kijkl
ou0k
oxl

ovi
oxj

dx1 dx2 dx3 ¼
Z h0

0

Z 1

0

Z 1

0

kijklb
klðxÞ ovi

oxj
dx1 dx2 dx3 ð5:3Þ
which is exactly the weak formulation of the substrate and film system,
o

oxj
kijkl

ouk
oxl

� �
¼ o

oxj
kijklb

klðxÞ
� �

ð5:4Þ
defined on (0, 1) · (0, 1) · (0, h0).

But what are the boundary conditions for Eq. (5.4) as a result of passing the solutions of (5.1) to the

weak limit? To derive the boundary conditions, we choose a general smooth periodic test function v, not

necessarily compactly supported in (0, 1) · (0, 1) · (0, h0). Proceeding similarly as above, we arrive at
Z 1

0

Z 1

0

Z 1

0

kijklaeðx3Þ
ouek
oxl

ovi
oxj

dx1 dx2 dx3 ¼
Z 1

0

Z 1

0

Z 1

0

kijklaeðx3Þbkle ðxÞ
ovi
oxj

dx1 dx2 dx3. ð5:5Þ
The limit of the right-hand side as e! 0 is obviously
R h0
0

R 1

0

R 1

0
kijklb

klðxÞ ovi
oxj

dx1 dx2 dx3. To analyze the left-

hand side, we split it into two integrals over the domain (0, 1) · (0, 1) · (0, h0) and (0, 1) · (0, 1) · (h0, 1). As

before, the first integral tends to
R h0
0

R 1

0

R 1

0
kijkl

ou0k
oxl

ovi
oxj

dx1 dx2 dx3. Let Xijkl be the square root tensor of kijkl,

i.e. kijkl = XijmnXmnkl. The Cauchy–Schwarz inequality applied to the second integral givesZ 1

h0

Z 1

0

Z 1

0

kijklaeðx3Þ
ouek
oxl

ovi
oxj

dx1 dx2 dx3

����
���� 6

Z 1

h0

Z 1

0

Z 1

0

X ijmn
ffiffiffiffi
ae

p ovi
oxj

����
���� Xmnkl

ffiffiffiffi
ae

p ouek
oxl

����
����dx1 dx2 dx3

6

Z 1

h0

Z 1

0

Z 1

0

kijklaeðx3Þ
ovk
oxl

ovi
oxj

dx1 dx2 dx3

� �1
2

�
Z 1

h0

Z 1

0

Z 1

0

kijklaeðx3Þ
ouek
oxl

ouei
oxj

dx1 dx2 dx3

� �1
2

.

Due to the fact that ae(x3) approaches the step function a(x3) which vanishes where r3 > h0, the first factor

in the product on the right-hand side of the above equation goes to zero as e ! 0. On the other hand, we

can show, by multiplying (5.1) by uei and then applying integration by parts and the Cauchy–Schwarz
inequality as before, that the second factor is uniformly bounded independent of e. Therefore, we have that
Z 1

h0

Z 1

0

Z 1

0

kijklaeðx3Þ
ouek
oxl

ovi
oxj

dx1 dx2 dx3 ! 0 as e ! 0.
Now, passing to the limit in (5.5), we recover the same equation (5.3), except that in the present case the test

function vi does not vanish in general at the boundaries of the substrate and film system at x3 = 0, h0. Thus

in addition to the PDE (5.4), Eq. (5.3) also gives rise to the natural boundary condition,
kijkl
ouk
oxl

� bkl
� �

nj ¼ 0 for i ¼ 1; 2; 3;
where nj is the jth component of the normal vector to the boundary. It states that the normal stress

component vanishes at the boundaries of the substrate and film system. In short, we have shown that, in
the sharp interface (between the film and gas) limit, the proposed substrate, film and gas formulation

converges to the original substrate and film system (5.4) with the stress-free boundary condition at the top

of the film and the bottom of the substrate. This is consistent with the heuristic argument in Section 3.

To address the third question raised in the beginning of this section, we study the convergence of the

iterative-perturbation scheme used to solve the substrate, film and gas system. Since the inhomogeneous

part of the elasticity tensor is represented by ae(x3) � 1, the iterative-perturbation scheme applied to the

3D model equation reads
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o

oxj
kijkl

o

oxl
uðnÞk

� �
¼ � o

oxj
kijklðaeðx3Þ � 1Þ o

oxl
uðn�1Þ
k

� �
þ o

oxj
kijklaeðx3Þbkle
� �

. ð5:6Þ
We assume u1k is a solution to (5.1), and set ~uðnÞk ¼ uðnÞk � u1k . Then, ~u
ðnÞ
k satisfies the recursive relation
o

oxj
kijkl

o

oxl
~uðnÞk

� �
¼ � o

oxj
kijklðaeðx3Þ � 1Þ o

oxl
~uðn�1Þ
k

� �
. ð5:7Þ
Multiplying Eq. (5.7) by ~uðnÞk , integrating it by parts, applying the Cauchy–Schwarz inequality as before, and

using the fact that 0 6 ae 6 1, one can show that
R 1

0

R 1

0

R 1

0
kijkl

o~uðnÞk
oxl

o~uðnÞi
oxj

dx1 dx2 dx3 is uniformly bounded, and

so is
o~uðnÞk
orl

				
				
L2

due to the positive definiteness of the elasticity tensor. Thus, assuming thatR 1

0

R 1

0

R 1

0
~uðnÞk dx1 dx2 dx3 ¼ 0 for all n, there exists a subsequence of f~uðnÞk g that converges weakly in H 1

p to

a weak solution of (5.1) with zero right-hand side. Inside the substrate and film, the weak solution to

(5.1) with zero right-hand side is unique and is zero. Thus, the weak limit of the corresponding subsequence

of f~uðnÞk g can only be a modification of u1k in the gas. In this sense, the weak limit is independent of any par-

ticularly chosen subsequence, and thus the whole sequence f~uðnÞk g converges weakly in H 1
p. So we have seen

that the iterative-perturbation scheme at least converges weakly in H 1
p to the solution of the elasticity equations.

We make two additional comments. First, if the inhomogeneity parameter ae(x3) does not completely vanish

in the gas layer, the above argument actually gives the strong convergence in H 1
p (i.e, convergence in norm)

with a geometric convergence rate. Second, in the general case, as long as the inhomogeneous part of the

elasticity tensor which we split to the right-hand side of the iterative-perturbation scheme can be majorized

by the remaining tensor on the left-hand side, the above argument still applies.

In summary, the above analysis has established for the model Eqs. (5.1) that the iterative-perturbation

scheme (5.6) converges to an elastic solution to the diffuse-interface description of the substrate–film–gas
system, and in the sharp interface limit, this solution converges to that of the original substrate-film system

(5.4) with stress-free boundary conditions. We have assumed that each step of the iterative-perturbation

scheme can be solved accurately with the Fourier-spectral method, and thus have not included the numer-

ical errors in our analysis. Although the analysis assumes periodic boundary conditions, the well-posedness

and the convergence arguments are in fact independent of the particular boundary conditions. Moreover,

with some modification to details, we believe the analysis can be generalized to other elasticity systems with

degeneracy, such as films with curvy surfaces, voids, cracks, etc. Numerical tests on systems with voids to be

presented in the next section reinforce that the proposed approach works on general elasticity systems with
degeneracy.
6. Numerical tests

We test the proposed method on two static elasticity problems and a kinetic simulation of microstructure

evolution under the influence of elastic inhomogeneity. The two static problems can be solved analytically

and the numerical solutions are compared against the analytical ones to validate the convergence and effi-
ciency of the proposed scheme. The kinetic problem illustrates some interesting effects of elastic inhomo-

geneity on thin film morphologies.

6.1. Static problems

We choose two elastic boundary value problems with analytical solutions: the uni-axial tensile of an elas-

tic body with a circular void at the center, and the edge dislocation in a half-infinite elastic body [19,27].

First we consider an elastic body with a central void under applied stresses r0
zz=G ¼ 0.1 and r0

xx=G ¼ 0



Fig. 2. Plane strain problem: uni-axial tensile of an elastic body with a circular void.
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where G is the shear modulus. The simulation cell is 1024 · 1024 as shown in Fig. 2. The diameter of the

central void is D = 120. The dimensionless elastic constants are C11/G = 3, C12/G = 1 and C44/G = 1 while

they are zero in the void. Distributions of stress components rxx, rzz and rxx along x and z axes, which are

obtained by the iteration method, are plotted by the dot symbols in Fig. 3(a) and (b) where the analytical

solutions are plotted with solid lines. Comparison of stress fields in x–z plane is presented in Fig. 4. Con-

sidering that the analytical solution is for the sharp interface model while our numerical solution is for the

diffuse-interface description, the results demonstrate that the iteration scheme is able to provide excellent

solutions for strongly inhomogeneous elasticity system with voids. Furthermore, the iterative-perturbation
scheme converges in only 6–8 steps.

Next let us examine the convergence of the iteration method by numerically solving the dislocation

elastic solution which has a strong stress concentration. The simulation cell is 512 · 256 as shown in

Fig. 5, where h = 40 and l = 1. The elastic constants used are the same as that in the first example. The dis-

location below the surface and its image dislocation in the gas phase form a dislocation loop. The non-zero

eigenstrain associated with such a dislocation loop is
Fig. 3. Comparison of stress distributions along x- and z-axes: symbol for numerical solution and solid line for analytical solution.



Fig. 4. Comparison of the stress field obtained by analytical and numerical solutions around the void under uni-axial tensile stress.
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edef11 ðxÞ ¼ b=d0dðx� x0Þ;

where b is the magnitude of the Burgers vector of the dislocation, d0 is the grid spacing. x0 is the point with-
in the dislocation loop. Distributions of stress components rxx(z) and rzz(z) along A–A line shown in Fig. 5

are plotted in Figs. 6 and 7 for different iteration numbers. The analytical solutions are also included for a

comparison. It is found that the numerical solution with only 8 iterations agrees very well with the analyt-

ical solution. In fact, the number of iterations can be further reduced in time-dependent problems of
Fig. 5. The image dislocation in the gas phase and the real dislocation below the surface form a dislocation loop.



Fig. 6. Stress component: rxx(z)/G along A–A line shown in Fig. 5.
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microstructure evolution. In such problems, if the elastic solution at time t is used as the zeroth iterate for

the iterative-perturbation scheme at time t + Dt, often only one iteration is sufficient to maintain the con-

vergence of the elastic solution. Thus, the proposed scheme applied to this strongly inhomogeneous system

is as efficient as the case when it is applied to homogeneous systems!

6.2. Kinetic simulation in thin films

6.2.1. Coupling with the phase-field simulation

The main goal of solving the elasticity equations is to obtain the elasticity energy needed in the phase-

field simulation of microstructure evolution. In this section, we apply the iterative-perturbation scheme

coupled with the semi-implicit Fourier-spectral method for the phase-field simulation of the effect of the

elastic inhomogeneity on the occurrence of various morphological patterns in thin films. For simplicity,

we assume the film is a binary solid solution, which is unstable with respect to phase separation at the tem-
perature of interest. One field variable c(x, t) representing the mole or atom fraction at position x and time

t, is needed to describe the composition evolution or the morphological evolution of the separated phases.

Then, the total free energy of the system includes three contributions: bulk chemical free energy, interfacial

energy and elastic energy,
F ¼
Z
v

f ðcðx; tÞ; T Þ þ j2

2
ðrcðx; tÞÞ2 þ 1

2
kijklðx; tÞeelijðx; tÞeelklðx; tÞ

� �
d3x; ð6:1Þ
where f(c, T) is the chemical free energy density of the solid solution, j is the gradient energy coefficient

which is determined by the interfacial energy and thickness. The third term in (6.1) is the elastic energy den-

sity given by
eel ¼
1

2
kijkle

el
ije

el
kl ¼

1

2
½k0ijkl þ k0ijkldcðxÞ�½�eij þ deijðxÞ � ecijðxÞ � edefij ðxÞ�½�eij þ deklðxÞ � ecklðxÞ � edefkl ðxÞ�.

ð6:2Þ



Fig. 7. Stress Component: rzz (z)/G along A–A line shown in Fig. 5.
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In Eq. (6.2), dekl(x) is given by
deijðxÞ ¼
1

ð2pÞ3
Z

i

2
viðgÞgj þ vjðgÞgi
� �

eig�x d3g;
where vi(g) is the ith component of the solution to the elasticity equations in the Fourier space. The corre-

sponding elastic stress is given by Eq. (2.1). The homogeneous strain in Eqs. (2.3) and (2.5) is determined by

the boundary conditions. If the boundary is clamped so that the system is not allowed to have any homo-

geneous deformation, the homogeneous strain �eij is equal to zero. Similarly, if the system is subject to an

initial applied strain, eaij, then the boundary is held fixed, �eij ¼ eaij. On the other hand, if the system is stress-

free, i.e., the system is allowed to deform so that the average stress in the system is zero, the homogeneous

strain is obtained by minimizing the total elastic energy with respect to the homogeneous strain.

Since the composition is a conserved field variable, the kinetic equation of the composition field is de-
scribed by the Cahn–Hilliard type diffusion equation [28] given by
ocðx; tÞ
ot

¼ r �Mr dE
dcðx; tÞ þ nðx; tÞ ¼ r �Mr df ðcðx; tÞ; T Þ

dcðx; tÞ � j2r2cðx; tÞ þ lel

� �
þ nðx; tÞ; ð6:3Þ
where n(x, t) is a noise term representing the composition fluctuation which is only applied at the initial

moment of the simulation, and M is the chemical mobility. If we assume that the atomic mobility of species

1 and 2 are equal, the mobility M is given by
M ¼ Dcðx; tÞð1� cðx; tÞÞ
kBT

;

where D is the chemical diffusion coefficient, kB is the Boltzmann constant and T is the temperature. The

mobility is further simplified by assuming that the factor c(x, t)(1 � c(x, t)) is a constant given by c0(1 � c0)

where c0 is the overall composition.
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The chemical free energy density of the solid solution is expressed as f(c(x, t),T) = � (c(x, t) � 0.5)2 +

2.5(c(x, t) � 0.5)4, which determines the equilibrium compositions at c = 0.053 or 0.947. In (6.3), lel is
the elastic potential due to the coherency strain, which is the derivative of the elastic energy density with

respect to the composition.

In the present work, we ignore the morphological instabilities on the film surface, and assume the com-
position flux at the surface of the film and interface between the film and the substrate are zero. Therefore,

the temporal evolution of the composition field is obtained by solving Eq. (6.3) together with the initial con-

ditions and the following boundary conditions:
Table

Elastic

Case

Case 1

Case 2

Case 3
ocðx; tÞ
oz

����
z¼�hf

¼ 0 and
ocðx; tÞ

oz

����
z¼0

¼ 0.
To numerically solve this evolution equation, a Fourier-spectral method is used in x and y directions

[29,30]. Since the zero-flux boundary conditions at film surface and film/substrate interface cannot be sat-

isfied by a Fourier expansion, a second-order finite difference method is used in the z-direction and also

solved with FFT. (Note that this complication only arises for the Cahn–Hilliard equation, not for the elas-
ticity equations.) The semi-implicit scheme is used for the time integration for simplicity, although in prin-

ciple higher-order time integration schemes are also available [31].

6.2.2. Simulation results

The effect of elastic inhomogeneity on microstructures is studied in a film which undergoes a phase sep-

aration. In the simulation, 64 · 64 · 64 discrete grid points are used. The thickness of the substrate is 36d*,

and the film thickness is 4d*. The dimensionless grid spacing is chosen to be d* = Dx1/d0 = Dx2/d0 = Dx3/
d0 = 1.0 and the dimensionless time step Dt� ¼ DDtc0ð1� c0Þ=d2

0 ¼ 0.05. The interfacial energy is assumed
to be isotropic, and the dimensionless gradient energy coefficient, a� ¼ a=ðkBTd2

0Þ, is taken to be 0.5. The

overall composition used is c0 = 0.67 which is inside the spinodal decomposition region. According to

the level rule, the equilibrium volume fraction of the solute rich phase (c phase) is about 67%, and 33%

for the solvent rich phase (b phase). In order to examine the effect of the shear modulus on the microstruc-

ture evolution, we assume that the bulk moduli of two phases are the same, and vary the shear moduli of

two phases. Elastic constants for the three cases are listed in Table 1. In Case 1 the c phase has larger shear

modulus than the b phase while the c phase has smaller shear modulus than the b phase in Case 3. In Case 2

the system is elastically homogeneous.
The simulations start with a small composition perturbation. Fig. 8 presents the temporal evolution of

microstructures. The blue domain denotes the b phase while the red domain for c phase. It is observed that

for three different cases the phase separation all took place first near the free surface. The simulations dem-

onstrate that the morphologies strongly depend on the difference in shear modulus as well as the volume

fractions of two phases. In Case 1 with a combination of a lower volume fraction of the soft phase, the

b phase which has smaller shear modulus, and a higher volume fraction of the hard phase, the phase sep-

aration favors the formation of a network of two phases. However, in Case 3 where there is a combination

of a higher volume fraction of soft phase and a lower volume fraction of hard phase, it is found that the soft
1

constants (GPa) for three model systems

c phase b phase

C11 C12 C44 C11 C12 C44

232.0 153.0 117.0 197.0 188.0 13.3

220.3 164.7 82.3 220.3 164.7 82.3

208.5 176.5 47.5 243.5 141.5 151.2



Fig. 8. Effect of inhomogeneous shear modulus on microstructure evolution in films.
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phase forms a connected domain while the harder phase forms isolated particles. For the elastically homo-

geneous case in Case 2, the lower volume fraction phase still forms isolated particles, but the sizes of par-

ticles are larger than that in Cases 3. This implies that the elastic inhomogeneity refines the particle size.

More systematic and quantitative studies on the effect of elastic inhomogeneity and thin film thickness

on morphologies of phase separation will be reported in our upcoming papers. Finally, we note that only

one iteration of the iterative-perturbation scheme is needed at each time step of our simulation.
7. Conclusion

We presented a simple and efficient approach to treat elasticity systems with strong inhomogeneity. We

have also provided rigorous justification for our formulation of the diffuse-interface model and the numer-

ical scheme. Several numerical tests have been performed to confirm the validity and the efficiency of the

method. The focus of the current paper is on the method and analysis. More challenging simulation studies

using the proposed method that may involve evolving film surfaces, voids or cracks will be reported in our
future work.
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