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Abstract

In this paper, we discuss a simple iterative-perturbation scheme for solving the elasticity equation in systems with
strong elastic inhomogeneity. As an example, a thin film in contact with a gas and a substrate is considered. The scheme
is demonstrated to be efficient through numerical experiments and reliable through rigorous mathematical justification.
It is then applied to the study of the inhomogeneous shear modulus effect on the microstructure evolution in thin films
based on the phase-field method.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The phase-field method has recently emerged as a powerful computational approach to model and pre-
dict the mesoscale morphological and microstructure evolution in materials. Unlike conventional methods
which model the regions separating the compositional or structural domains as sharp interfaces, the phase-
field approach is based on a diffuse-interface description using a set of conserved and non-conserved field
variables that are continuous across the interfacial regions. The temporal and spatial evolution of the phase
variables is governed by the Cahn—Hilliard diffusion equation and the Allen—-Cahn relaxation equation.
With the fundamental thermodynamic and kinetic information as the input, the phase-field method is able
to predict the evolution of arbitrary morphologies and complex microstructures without explicitly tracking
the positions of interfaces. We refer the readers to [1] for a review of the recent advances in developing
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phase-field models for various materials processes including solidification, solid-state structural phase
transformations, grain growth and coarsening, domain evolution in thin films, pattern formation on sur-
faces, dislocation microstructures, crack propagation, and electro-migration.

Microstructure evolution takes place to reduce the total free energy that may include the bulk chemical
free energy, interface energy, and long-range interaction energies such as elastic energy and electrostatic
energy. Suppose that the two types of field variables, conserved and non-conserved, are denoted by
(c1, ¢ ..., ¢y) and (1,12, ..., 1py). The total free energy of an inhomogeneous microstructure system
described by these field variables is then given by
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where fis the local free energy density, o; and f; are the gradient energy coefficients. The first volume inte-
gral represents the local contribution to the free energy from short-range chemical interactions. The origin
of interfacial energy comes from the gradient energy terms that are non-zero only at and around the inter-
faces. The second volume integral represents a non-local term that contains contributions to the total free
energy from any one or more of the long-range interactions, such as elastic interactions, electric dipole—
dipole interactions, electrostatic interactions, etc. The main differences among different phase-field models
lie in the treatment of various contributions to the total free energy. With a given total free energy F, the
evolution of the field variables can be obtained by solving the Cahn—Hilliard and Allen—Cahn equations,
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where the kinetic coefficients M;; and L, are related to atom or interface mobility, and the operator 6 de-
notes the variation of the energy functional with respect to the field variables. In the above equations and
throughout this paper, we use the summation convention that the same index appearing twice indicates
summation over the range of the index. The summation sign “> " is used explicitly only when the index
for summation does not appear in pairs.

Phase transformations in solids usually produce coherent microstructures at their early stages. In a
coherent microstructure, the lattice planes and directions are continuous across the interfaces, and the lat-
tice mismatch between phases and domains are accommodated by elastic displacements. The elastic energy
contribution to the total free energy in a phase-field model can be introduced by expressing the elastic strain
energy as a function of field variables, and the elastic energy is often a key thermodynamic and kinetic fac-
tor governing the temporal evolution of microstructures. Therefore, an efficient and accurate method to cal-
culate the elastic energy is desirable for predicting microstructure evolution.

In an elastically homogeneous bulk solid with an arbitrary microstructure, Khachaturyan’s microelastic-
ity theory [2] provides an efficient approach to calculate the elastic energy. It has been applied to study the
effect of elastic energy on microstructure evolution during various structural phase transformations [1]. For
systems with weak elastic inhomogeneity, first-order approximations have been employed to solve the
mechanical equations [3-5]. However, the numerical solution to the mechanical equilibrium equation be-
comes significantly more complicated for microstructures with strong elastic inhomogeneity. Recently, a
number of approaches have been proposed, including the iterative-perturbation method [6], the precondi-
tioned conjugate gradient method combined with the Fourier-spectral approximation to the differential
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operators [7,8], the finite element method [9] and the method based on Eshelby’s equivalent inclusion theory
[10-13]. Among these, the iterative-perturbation method and conjugate gradient method are aimed at solv-
ing the mechanical equilibrium equation directly. On the other hand, the method based on the Eshelby’s
inclusion theory requires the solution of the following gradient flow equation:

asg(x, I) . QEnhom
o M (x,0)
where E™™ is the strain energy of the inhomogeneous system, and the solution bg(x) is the eigenstrain with

which the elastically homogeneous system would be equivalent to the original inhomogeneous system.

The purpose of this article is twofold. First, we adapt the iterative-perturbation method proposed in [6]
to solid—gas systems where the elastic inhomogeneity is at its maximum. Second, we provide a rigorous jus-
tification of our formulation of the inhomogeneous system and the iterative-perturbation algorithm. Our
novel inclusion of the gas phase in the elastic system is inspired by the idea of diffuse-interface modeling
popularized in the phase-field methodology. Instead of solving the elastic equations only in the solid phase
while imposing stress-free boundary conditions at the sharp interface between the solid and gas phases, we
treat the gas phase as an integral part of the system with zero elasticity modulus and create a diffuse inter-
face over which the elasticity constants of the solid smoothly transit to zero in the gas. From this perspec-
tive, our approach can be viewed as an extension of the phase-field idea to the elasticity equations, and the
advantages of the phase-field method over other sharp-interface approaches are automatically inherited by
our approach. In particular, there is no need to track the geometry of the interface directly, and the system
can most of the time be set up in a square (2D) or cubic (3D) domain where highly efficient spectral meth-
ods are applicable. In particular, we use the Fourier-spectral method in this paper to solve the elasticity
equations with periodic boundary conditions. The use of periodic boundary conditions is very common
in phase-field simulations of microstructure evolution [1]. The underlying philosophy is that we are mod-
eling merely a small local sample of a large material specimen and periodic boundaries are applied to min-
imize the finite-size effect.

The inclusion of the gas phase with degenerate elasticity modulus in the elastic system may seem some-
what artificial, and causes natural concerns over the well-posedness of the elasticity system and the validity
of the iterative-perturbation scheme. For example, the creation of a diffuse interface between the solid and
gas phases may be thought of as a source of severe modeling and computational errors. Nevertheless, our
numerical experiences [14] seem to give strong support to the efficiency of the iterative-perturbation and its
convergence to physically reasonable solutions, so long as the diffuse interfaces are fairly resolved by the
computational grid (which means in practice putting around 8 grid points across the gradient direction
of the diffuse interface). Yet, this method has not been analyzed theoretically in our earlier work. In this
paper, we intend to further justify this method with rigorous mathematical analysis and benchmark numer-
ical tests. The analysis focuses on (1) the well-posedness of the elasticity system with possibly degenerate
elasticity modulus; (2) the sharp interface limit of our diffuse-interface formulation of the elasticity system;
and (3) the convergence of the iterative-perturbation scheme. The numerical examples are selected to illus-
trate the efficiency and convergence of the iterative-perturbation scheme.

Although we focus mostly on elastic equations alone in this paper, we present at the end of the paper a
kinetic simulation coupling the elasticity field with the Cahn—Hilliard equation to study the effect of elastic
inhomogeneity on the morphological pattern formation in thin films. Thin film problems are among the
various applications that the iterative-perturbation approach is most suitable for. Upon introducing a
gas phase in our formulation of the elasticity system, we may apply the iterative-perturbation scheme with
the simple yet efficient Fourier-spectral method, without worrying about the stress-free boundary condi-
tions at the film surface even when the film surface is curvy. On the other hand, without the gas phase,
the stress-free boundary conditions at the film surface further complicate the application of Fourier-spectral
methods. In the case of curvy film surfaces, alternative approaches such as sophisticated finite element
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meshing schemes and adaptive techniques may be required. In the past, very few analytical solution pro-
cedures or efficient numerical methods were available for the elasticity problem in thin films. For example,
in a monolayer subject to the substrate constrain, Lu and Suo [15] derived an elastic solution using the
Green functions where the stresses in the thin film were assumed to be independent of the thickness. For
a thick film with a spatial distribution of eigenstrains, Li et al. [16] developed an efficient method to calcu-
late the elastic field assuming elastic homogeneity. Although their method can be extended to the case that
the film and substrate have different elastic constants, it cannot handle problems with the elastic inhomo-
geneity associated with compositional and structural inhomogeneity in films. The efficiency of finite element
methods also remains to be demonstrated when the problems involve moving interfaces. On the contrary,
the iterative-perturbation approach to be described later provides a very simple and elegant solution pro-
cedure to elasticity equations in thin films and can be easily extended to deal with evolving film surfaces
[17].

The paper is organized as follows. In Section 2, we discuss the mechanical equilibrium equations used in
the phase-field description of the solid and gas systems. The iterative-perturbation scheme is then presented
in Section 3. In Section 4, we discuss the formulation of such a scheme for the elastic solution in films with
stress-free surfaces and substrate constraints. Some rigorous mathematical analysis is provided in Section 5.
In Section 6, we present several numerical examples, and we conclude in Section 7.

2. Elasticity system and mechanical equilibrium equations

We give a general description of a system consisting of a solid phase and a gas phase. The gas phase
represents voids or cracks where elastic constants are modeled as zero. We assume that the solid phase
is a binary solid solution with a compositional inhomogeneity ¢ = ¢(x) which represents the mole fraction
of solutes at the position x, and the local elastic modulus tensor is a linear function of the compositional
inhomogeneity. Therefore, the local elastic modulus tensor can be written as

Ayt (X) = Ay + X4,y 8¢(x)  in the solid phase,

A (x) = 0.0 in the gas phase,

where dc¢(x) = ¢(x) — ¢, i?ik, is an elastic modulus tensor for the homogeneous solid solution with the com-
position ¢, and iﬁjk, is a constant tensor representing the elastic inhomogeneity within the binary solid solu-
tion. We assume dc(x) is constructed in such a way that the elastic modulus tensor experiences a smooth
transition to degeneracy over a thin interface between the solid and gas phases. In addition, we assume that
the local stress-free strain tensor can be described in terms of the compositional inhomogeneity sfj(x) If the
variation of the stress-free lattice parameter a with respect to the composition obeys the Vegard’s law, the
local stress-free strain associated with the compositional inhomogeneity is given by

&;(x) = &dc(x)dy,

where g =1 % is the composition expansion coefficient of the lattice parameter and J;; is the Kronecker-
Delta function. Most crystal defects such as dislocations, grain boundaries and cracks can be described
by their corresponding spatially dependent stress-free strain sg?f(x) [18-24]. Therefore, the total stress-free
strain tensor sg(x) associated with the compositional inhomogeneity and distributed defects is given by

0 _.C def
Sij(x) = Sij(x) + & (x).

Let us use g;(x) to denote the total strain measured with respect to a reference lattice and assume linear
elasticity. The Hooke’s law gives the local elastic stress,
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a5 = [ + A Se(x)]ew (x) — ey (x)]. (2.1)

During the evolution of microstructure, since the mechanical equilibrium with respect to elastic displace-
ments is usually established much faster than any other physical processes, for any given composition dis-
tribution, the system is always at a mechanical equilibrium,

Rl

g/ 2.2
Ox 0, (2.2)

J
where x; is the jth component of the position vector x. The total strain g;(x) may be represented as the sum
of homogeneous and heterogeneous strains:

&ij(x) = & + 8e;(x), (2.3)

where the homogeneous strain g; is defined such that

/U dei(x)d’x =

The homogeneous strain is the uniform macroscopic strain characterizing the macroscopic shape and vol-
ume change associated with the total strain g;(x). Let us use u{x) to denote the ith displacement component
of the heterogeneous deformation. According to the strain and displacement relationship, the heteroge-
neous strain can be expressed as

- auk(x) 6u,(x)
Substituting Egs. (2.1), (2.3) and (2.4) to the mechanical equilibrium equation (2.2), one has
GR , 0 d 0 .
s+ (300000 ) | 16) = 5 i + 2 Bl ) — ) 25)

Therefore, the determination of the equilibrium elastic field for an elastically inhomogeneous solid is re-
duced to solving the mechanical equilibrium equations (elasticity equations) (2.5) subject to appropriate
boundary conditions, and in particular, periodic boundary conditions in this paper. Please notice that
in the gas phase, both the left-hand and the right-hand sides of (2.5) are zero, and thus the uniqueness
of the solution to (2.5) cannot be expected to hold in the gas phase. The appropriate sense for discussing
the uniqueness of the solution will be spelled out later in our analysis.

3. Iterative-perturbation scheme

The key idea of the iterative-perturbation scheme is to split the inhomogeneous part of the elastic mod-
ulus tensor to the right-hand side of (2.5), thus transforming the inhomogeneous (possibly degenerate) elas-
ticity problem to iterations of homogeneous (non-degenerate) systems. The nth iteration of the scheme
reads

40 62”2( ) 0

0
0 2
ikl 0x;0x; 6x [

ikl T ;“;jklac(x)] [Egz(x) — &) — i,/kla {60( )

o (x)
—. 3.1
o (3.1)
Mathematically, the interesting change caused by this splitting is that the possible degeneracy of (2.5) (and
the non-uniqueness of the solution in the gas phase) is hidden in the initial and boundary conditions for
(3.1). Thanks to the constant coefficients on the left-hand side of (3.1), this equation can be solved by
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the Fourier-spectral method. For instance, if one sets the inhomogeneous elasticity 4, to 0, the zeroth-or-
der approximation to (3.1) becomes

P
o O ”2(3‘) Y 6821(3‘)
oo, T Ay

where u{(x) denotes the kth component of the displacement. Solving this in the Fourier space [1], we have
0(8) = —1Gi(8)g Ao (&),

where v)(g) and & (g) are the Fourier transforms of u(x) and &, (x), respectively, g is a reciprocal lattice
vector, g; is the jth component of g, and Gy(g) is the inverse tensor to (G'(g)), = gzigk,n(,-nl with n = ‘i—‘
The inverse Fourier transform of v{(g) gives the real-space solution for the displacement field in the
zeroth order approximation,

) = [ g de
(2m)

For static problems, one may choose this as the initial iterate of the iterative-perturbation scheme. For ki-

netic problems, it is usually more efficient to take as the initial iterate the converged solution to the elasticity

equations from the previous time step.

Numerically, the Fourier-spectral method can be implemented via the Fast Fourier Transform (FFT).
For simplicity of counting operations, suppose that we discretize the elasticity system by N grid points
along each of the three dimensions. The total computational cost of each step of the iterative-perturbation
scheme via FFT is O(N°log’N). Typical iterative methods to solve the discretized (by finite-difference or
finite-element for example) elasticity equations have computational costs in the order of kN>, where the
constant k depends on the sparseness of the coefficient matrix of the linear system. The higher accuracy
one requires for the approximation of the differential operators, the less sparse a discretized system results,
and the bigger the constant £ becomes. In practice, in terms of the cost per iteration, our iterative-pertur-
bation approach is competitive with other iteration methods for linear systems, while offering straightfor-
ward implementation and highly accurate approximations to the differential system. Of course, another key
factor that affects the total cost of the iterative-perturbation scheme is the total number of iterations needed
before the successive iterations converge to a reasonably accurate solution. Such statistics will be collected
later for several numerical tests. In general, we find that no more than 10 iterations are required for static
problems, while only one iteration is sufficient per time step for kinetic simulations.

4. Elastic solution in films with stress free surfaces and substrate constraints

Next, we show how to recast an elastic problem in thin films with stress-free surfaces and substrate con-
straints into the general framework of inhomogeneous elasticity systems introduced in Section 2. As sche-
matically depicted in Fig. 1, we insert a gas layer on top of the film to make up a 3D bulk system on a cubic
domain. The original curvy film surface becomes a diffuse interface between the solid and gas phases in the
new system and thus does not require any special treatment in terms of the mesh alignment as in, for exam-
ple, the finite element method. If we apply periodic boundary conditions to the new substrate—film—gas sys-
tem, the iterative-perturbation scheme can be implemented on a regular mesh with the Fourier-spectral
method. As in Section 2, the eigenstrain and the elastic modulus tensors are defined as

def :
9 x) = { & (x) in the gas phase,

i def ; .
&;(x) + ¢ (x) in film and substrate
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Fig. 1. Schematic view of an elastically inhomogeneous system.
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and
0.0 in the gas phase,
Figa () = { /1?,‘1(1 + /I;jk,Sc(x) in film and substrate,
where egef(x) is the eigenstrain associated with the distribution of defects such as real dislocations in the

solid and image dislocations in the gas phase. With these coeflicients, the elasticity system to be solved
remains as (2.5).

Since the elastic constant is zero in the gas phase, all stress components are zero there as well. Assuming
the continuity of stress at the interface between the gas and solid phases, the elastic solution thus obtained
must satisfy the desired stress-free boundary conditions at the film surface (x3 = z = —/), and the bottom of
the substrate (x3 = z = h,). Later, we will provide rigorous justification for this heuristic. Without loss of
generality, we assume in our analysis that both the film and the substrate are elastically homogeneous
(so the inhomogeneity refers to the film—gas transition). Also in the analysis, we assume that the film
surface is flat. The iterative-perturbation scheme is not limited to problems with flat film surfaces, and
in fact it has been successfully employed to simulate the formation of quantum dots where the surface is
rough [17].

5. Mathematical analysis

In this section, we present rigorous analysis on the formulation of the inhomogeneous elasticity problem
and on the iterative-perturbation scheme used to solve the system numerically. In particular, we direct our
attention to the following three key issues: (1) what is the effect of introducing a degenerate gas layer on the
well-posedness of the new system? (2) In what sense is the new substrate—film—gas system an approximation
to the original system consisting of the substrate and film layers only? (3) Can we guarantee the convergence
of the iterative-perturbation scheme in the presence of the strong elastic inhomogeneity between the film
and gas?
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For a clear illustration of the main ideas, we study a simplified model equation that still captures the
essential features of (2.5) needed to address the above questions. The simplified 3D model equation defined
on [0, 1]° reads

0
|:/1ijklas (X3)

aj auk] — 0 iijkzaa(xS)bf/(x)] (5.1)

) ~ |

with periodic boundary conditions. Here, ;3; is a constant elasticity tensor which is symmetric positive
definite, and the elastic inhomogeneity between the solid and gas phases is characterized by the scalar
function a,(x;) which depends only on the x; direction. The function a,(x3) is a mollified version of the
characteristic function a(x3) of the substrate and film layers, i.e., a(x3) =1 for 0 < x3 <y where /g is
the height of the top of the film, and a(x3) = 0 elsewhere. The small parameter ¢ denotes the thickness of
the diffuse interface between the gas layer and the film layer, and it goes to zero in the sharp interface limit.
We will see in the later discussion that the details of the mollification process are not important so long as
we have the desired bounds, smoothness and convergence properties. Similarly, bfl (x) is the mollified ver-
sion of the applied strain 5*/(x) corresponding to the original substrate and film system, which vanishes in
the gas layer (%p < x3 < 1). The model equation makes the simplifying assumption of the film top being flat
and the elasticity tensor being homogeneous within the substrate and film, but still preserves the strong elas-
tic inhomogeneity caused by the gas layer, which is the major concern of our formulation of the elasticity
system.

First of all, the existence of solution to (5.1) can be easily established by considering the associated var-
iational problem [25] with the standard elastic energy,

1 . Ou; oue
5 //L,-jklag(x3) |:axj — b :l |:ax b :|dx

over the space H 11,((0, 1)*) of functions in the Sobolev space H'((0, 1)) [26] that satisfies the periodic bound-
ary condition. However, a peculiar consequence of the degeneracy in the gas layer is that the solution is not
unique there. Fortunately, this little “inconvenience” can be safely ignored since we are only interested in
the solution to (5.1) in the substrate and film layers. We note that multiplying (5.1) with zero right-hand
side by u; and integrating by parts immediately lead to the uniqueness (up to a constant) of the solution
where the elasticity tensor is non-degenerate. Therefore, we have shown that the solution to the (partially
degenerate) elasticity equations (5.1) exists and is unique in the substrate and film layers.

To reveal the relation between the diffuse-interface description of the substrate, film and gas system and
the original substrate and film system, we next study the sharp-interface limit of (5.1) in its weak formula-
tion as the small parameter ¢ approaches zero. To derive the limiting equation, we multiply (5.1) by an arbi-
trary smooth test function v;, compactly supported in (0, 1) x (0, 1) x (0, &g), and perform integration by
parts. We get the weak formulation of the equation with mollified coefficients,

ho au ov; ho ov;
/ //Awa X3 6 6 dx; dx,dx; = / // yklas xa )6 dx; dx, dox, (5-2)

where u° denotes a solution in Hp((O, 1) ) to (5.1) for a given &. To pass to the limit, we need the following
uniform bound on u®,

N>
which can be easily proven from the positive-definiteness of the elasticity tensor. Now, denoting the weak

limit (up to a constant) of «° by u° (its uniqueness can be easily seen from the limiting equation and the
boundary condition derived later), we may let ¢ go to zero in (5.2) and obtain

2

auk dx;dx,dxs < M

Ox 1
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hy ho
/ / / j‘ljkl auk avl dx1 dX2 dX3 / / / )ljk[bkl dX1 dXZ dX3 (53)

which is exactly the weak formulation of the substrate and film system,

0 Ou 0 .
a—xj |:;”l:jkl a—x]](:| = a—xj [;t,:,-k,b”(x)} (54)

defined on (0, 1) x (0, 1) x (0, hg).

But what are the boundary conditions for Eq. (5.4) as a result of passing the solutions of (5.1) to the
weak limit? To derive the boundary conditions, we choose a general smooth periodic test function v, not
necessarily compactly supported in (0, 1) x (0, 1) x (0, 4g). Proceeding similarly as above, we arrive at

6 ov; ov;
/ / //ijlas x3) i av dx; dxy dx; = / / //ijzas x3)b )deldxzdx3 (5.5)

The limit of the right-hand side as ¢ — 0 is obviously [; o fo fo ,jklbk[ a”'_ dx; dx, dx;. To analyze the left-
hand side, we split it into two integrals over the domam (0 1) x (0, 1) x (0, /10) and (0, 1) x (0, 1) X (A, 1). As
before, the first integral tends to fo fo fo /Lljk] ax, Lx/ 20 dx; dx, dxs. Let Xy, be the square root tensor of A,
i.e. Aykr = XjjnnXmnks. The Cauchy—Schwarz inequality applied to the second integral gives

ous,

Out ov
i1 kL dx; dx, dx
/ho//’““’“axzax, RS /h// ox,
av ov;
|:/;,1> / / ljklaé' .X'3 a £ a dX1 dx2dx3:|
Ou;, Gul:
[ et G S anasan]

Due to the fact that a.(x3) approaches the step function a(x3) which vanishes where r3 > A, the first factor
in the product on the right-hand side of the above equation goes to zero as ¢ — 0. On the other hand, we
can show, by multiplying (5.1) by » and then applying integration by parts and the Cauchy-Schwarz
inequality as before, that the second factor is uniformly bounded independent of ¢. Therefore, we have that

6 v
/ / / /1,11(161f X3 auk aU d.X1 dJCdeg, —0 ase— 0.

Now, passing to the limit in (5.5), we recover the same equation (5.3), except that in the present case the test
function v; does not vanish in general at the boundaries of the substrate and film system at x3 = 0, /g. Thus
in addition to the PDE (5.4), Eq. (5.3) also gives rise to the natural boundary condition,
il @C‘f — b"’)n, =0 fori=1,2,3,

where n; is the jth component of the normal vector to the boundary. It states that the normal stress
component vanishes at the boundaries of the substrate and film system. In short, we have shown that, in
the sharp interface (between the film and gas) limit, the proposed substrate, film and gas formulation
converges to the original substrate and film system (5.4) with the stress-free boundary condition at the top
of the film and the bottom of the substrate. This is consistent with the heuristic argument in Section 3.

To address the third question raised in the beginning of this section, we study the convergence of the
iterative-perturbation scheme used to solve the substrate, film and gas system. Since the inhomogeneous
part of the elasticity tensor is represented by a.(x3) — 1, the iterative-perturbation scheme applied to the
3D model equation reads

61},

ijmn a# mnkl ag~— de dX3

o=

ol
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0 O m|__29 0 wnl, 9 kl
o, _/lz:/k/ L _ifjk/(ae(xs) l)ax, ue +axj [Aijiaas (x3) B ] (5.6)
We assume ° is a solution to (5.1), and set &) = u"”) — 1. Then, &" satisfies the recursive relation
o[ 0 ] o[ 0 (1]
o P | = g [fam(an) = D™ . (57)
Jj L Jj L

Multiplying Eq. (5.7) by i uk , integrating it by parts, applying the Cauchy Schwarz inequality as before, and
) o)
o — dx; dx, dx; is uniformly bounded, and

X

using the fact that 0 < a, < 1, one can show that fo fo fo ik = a»,
a[l(”)
k
ory

SO is due to the positive definiteness of the elasticity tensor. Thus, assuming that

LZ

fo fo fo )dx; dx,dxs = 0 for all n, there exists a subsequence of {uk } that converges weakly in H, ! to
a weak solutlon of (5.1) with zero right-hand side. Inside the substrate and film, the weak solutlon to
(5.1) with zero right-hand side is unique and is zero. Thus, the weak limit of the corresponding subsequence
of {u } can only be a modification of u{° in the gas. In this sense the weak limit is independent of any par-
ticularly chosen subsequence, and thus the whole sequence {uk } converges weakly in H . ! So we have seen
that the iterative-perturbation scheme at least converges weakly in H , ! to the solution of the elastlclty equations.
We make two additional comments. First, if the inhomogeneity parameter a,(x3) does not completely vanish
in the gas layer, the above argument actually gives the strong convergence in H 11, (i.e, convergence in norm)
with a geometric convergence rate. Second, in the general case, as long as the inhomogeneous part of the
elasticity tensor which we split to the right-hand side of the iterative-perturbation scheme can be majorized
by the remaining tensor on the left-hand side, the above argument still applies.

In summary, the above analysis has established for the model Eqgs. (5.1) that the iterative-perturbation
scheme (5.6) converges to an elastic solution to the diffuse-interface description of the substrate—film—gas
system, and in the sharp interface limit, this solution converges to that of the original substrate-film system
(5.4) with stress-free boundary conditions. We have assumed that each step of the iterative-perturbation
scheme can be solved accurately with the Fourier-spectral method, and thus have not included the numer-
ical errors in our analysis. Although the analysis assumes periodic boundary conditions, the well-posedness
and the convergence arguments are in fact independent of the particular boundary conditions. Moreover,
with some modification to details, we believe the analysis can be generalized to other elasticity systems with
degeneracy, such as films with curvy surfaces, voids, cracks, etc. Numerical tests on systems with voids to be
presented in the next section reinforce that the proposed approach works on general elasticity systems with
degeneracy.

6. Numerical tests

We test the proposed method on two static elasticity problems and a kinetic simulation of microstructure
evolution under the influence of elastic inhomogeneity. The two static problems can be solved analytically
and the numerical solutions are compared against the analytical ones to validate the convergence and effi-
ciency of the proposed scheme. The kinetic problem illustrates some interesting effects of elastic inhomo-
geneity on thin film morphologies.

6.1. Static problems
We choose two elastic boundary value problems with analytical solutions: the uni-axial tensile of an elas-

tic body with a circular void at the center, and the edge dislocation in a half- inﬁnite elastic body [19,27].
First we consider an elastic body with a central void under applied stresses ¢ /G = 0.1 and ¢’ /G =0
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Fig. 2. Plane strain problem: uni-axial tensile of an elastic body with a circular void.

where G is the shear modulus. The simulation cell is 1024 x 1024 as shown in Fig. 2. The diameter of the
central void is D = 120. The dimensionless elastic constants are C;1/G =3, Co/G =1 and Cyu/G =1 while
they are zero in the void. Distributions of stress components o, o.. and o, along x and z axes, which are
obtained by the iteration method, are plotted by the dot symbols in Fig. 3(a) and (b) where the analytical
solutions are plotted with solid lines. Comparison of stress fields in x—z plane is presented in Fig. 4. Con-
sidering that the analytical solution is for the sharp interface model while our numerical solution is for the
diffuse-interface description, the results demonstrate that the iteration scheme is able to provide excellent
solutions for strongly inhomogeneous elasticity system with voids. Furthermore, the iterative-perturbation
scheme converges in only 6-8 steps.

Next let us examine the convergence of the iteration method by numerically solving the dislocation
elastic solution which has a strong stress concentration. The simulation cell is 512 x 256 as shown in
Fig. 5, where & = 40 and / = 1. The elastic constants used are the same as that in the first example. The dis-
location below the surface and its image dislocation in the gas phase form a dislocation loop. The non-zero
eigenstrain associated with such a dislocation loop is

0.05 0.02
— Gy 9
w— Oxx
Q 0.04 — Oy "‘Us 0.01
9 0.03f E
& ECR {
6 0.0: &
5 5 —
wv v z
-0.01 — Oy
0.01 I ———
UUUA% UL ] S T S I —
-512 -256 0 6 2 -512 -256 0 256 512
(a) Position along z axis (b) Position along x axis

Fig. 3. Comparison of stress distributions along x- and z-axes: symbol for numerical solution and solid line for analytical solution.



P. Yu et al. | Journal of Computational Physics 208 (2005) 34-50 45

Numerical Solution

Fig. 4. Comparison of the stress field obtained by analytical and numerical solutions around the void under uni-axial tensile stress.

e‘f‘ff(x) =b/dyd(x — x0),

where b is the magnitude of the Burgers vector of the dislocation, d is the grid spacing. x, is the point with-
in the dislocation loop. Distributions of stress components o ,,(z) and ¢..(z) along A-A line shown in Fig. 5
are plotted in Figs. 6 and 7 for different iteration numbers. The analytical solutions are also included for a
comparison. It is found that the numerical solution with only 8 iterations agrees very well with the analyt-
ical solution. In fact, the number of iterations can be further reduced in time-dependent problems of

' Gas phase : ;
§ Surface I X
—— >
h A§ i
RS 7 | ST
Yz
N

Fig. 5. The image dislocation in the gas phase and the real dislocation below the surface form a dislocation loop.
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Fig. 6. Stress component: ¢,,(z)/G along A-A line shown in Fig. 5.

microstructure evolution. In such problems, if the elastic solution at time ¢ is used as the zeroth iterate for
the iterative-perturbation scheme at time 7 + A, often only one iteration is sufficient to maintain the con-
vergence of the elastic solution. Thus, the proposed scheme applied to this strongly inhomogeneous system
is as efficient as the case when it is applied to homogeneous systems!

6.2. Kinetic simulation in thin films

6.2.1. Coupling with the phase-field simulation

The main goal of solving the elasticity equations is to obtain the elasticity energy needed in the phase-
field simulation of microstructure evolution. In this section, we apply the iterative-perturbation scheme
coupled with the semi-implicit Fourier-spectral method for the phase-field simulation of the effect of the
elastic inhomogeneity on the occurrence of various morphological patterns in thin films. For simplicity,
we assume the film is a binary solid solution, which is unstable with respect to phase separation at the tem-
perature of interest. One field variable c¢(x, ¢) representing the mole or atom fraction at position x and time
t, is needed to describe the composition evolution or the morphological evolution of the separated phases.
Then, the total free energy of the system includes three contributions: bulk chemical free energy, interfacial
energy and elastic energy,

2 1
F= / {f(c(x, 1),T)+ % (Ve(x, 1)) + ziijk,(x, 1)e1ij (%, ) e (%, 1) | dx, (6.1)
where f(c, T) is the chemical free energy density of the solid solution, « is the gradient energy coefficient
which is determined by the interfacial energy and thickness. The third term in (6.1) is the elastic energy den-
sity given by

1

1 / = c e = c el
5 aatsjesy = 5 Ve + 24 (0)] [y + B () = e5,(x) — & ()] [y + S (x) — ey (x) — &5 ()]

€l = > ij ij
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Fig. 7. Stress Component: o.. (z)/G along A-A line shown in Fig. 5.
In Eq. (6.2), SSk,(x) is given by
ig-x 13
6{:l] 27[ /2 g1+vj( )gi]eg dga

where v{g) is the ith component of the solution to the elasticity equations in the Fourier space. The corre-
sponding elastic stress is given by Eq. (2.1). The homogeneous strain in Egs. (2.3) and (2.5) is determined by
the boundary conditions. If the boundary is clamped so that the system is not allowed to have any homo-
geneous deformation, the homogeneous strain &; is equal to zero. Similarly, if the system is subject to an
initial applied strain, &, then the boundary is held fixed, &; = ;. On the other hand, if the system is stress-
free, i.e., the system is allowed to deform so that the average stress in the system is zero, the homogeneous
strain is obtalned by minimizing the total elastic energy with respect to the homogeneous strain.
Since the composition is a conserved field variable, the kinetic equation of the composition field is de-
scribed by the Cahn-Hilliard type diffusion equation [28] given by
Oc(x, 1) O df (e(x,1),T)
T V.Mvﬁc(x,l) +&(x,6) =V -MV 7dc(x,t) —
where £(x, f) is a noise term representing the composition fluctuation which is only applied at the initial
moment of the simulation, and M is the chemical mobility. If we assume that the atomic mobility of species
1 and 2 are equal, the mobility M is given by

De(x,t)(1 — c(x, 1))
ksT ’
where D is the chemical diffusion coefficient, kg is the Boltzmann constant and 7 is the temperature. The

mobility is further simplified by assuming that the factor ¢(x, £)(1 — c(x, t)) is a constant given by co(1 — ¢g)
where ¢ is the overall composition.

K2V2c(x, 1)+ g | + E(x,1), (6.3)

M =
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The chemical free energy density of the solid solution is expressed as flc(x, £),T) = — (c(x, t) — 0.5)> +
2.5(c(x, 1) — 0.5)*, which determines the equilibrium compositions at ¢ = 0.053 or 0.947. In (6.3), pe is
the elastic potential due to the coherency strain, which is the derivative of the elastic energy density with
respect to the composition.

In the present work, we ignore the morphological instabilities on the film surface, and assume the com-
position flux at the surface of the film and interface between the film and the substrate are zero. Therefore,
the temporal evolution of the composition field is obtained by solving Eq. (6.3) together with the initial con-
ditions and the following boundary conditions:

Oc(x, 1) Oc(x, 1)

Oz z

=0 and =0.

z=—hy z=0

To numerically solve this evolution equation, a Fourier-spectral method is used in x and y directions
[29,30]. Since the zero-flux boundary conditions at film surface and film/substrate interface cannot be sat-
isfied by a Fourier expansion, a second-order finite difference method is used in the z-direction and also
solved with FFT. (Note that this complication only arises for the Cahn—Hilliard equation, not for the elas-
ticity equations.) The semi-implicit scheme is used for the time integration for simplicity, although in prin-
ciple higher-order time integration schemes are also available [31].

6.2.2. Simulation results

The effect of elastic inhomogeneity on microstructures is studied in a film which undergoes a phase sep-
aration. In the simulation, 64 x 64 x 64 discrete grid points are used. The thickness of the substrate is 364",
and the film thickness is 4d". The dimensionless grid spacing is chosen to be d* = Axi/dy = Axyldy = Axs/
do = 1.0 and the dimensionless time step At = DAtcy(1 — ¢o)/dg = 0.05. The interfacial energy is assumed
to be isotropic, and the dimensionless gradient energy coefficient, o* = a/ (kBTd(z)), is taken to be 0.5. The
overall composition used is ¢y = 0.67 which is inside the spinodal decomposition region. According to
the level rule, the equilibrium volume fraction of the solute rich phase (y phase) is about 67%, and 33%
for the solvent rich phase ( phase). In order to examine the effect of the shear modulus on the microstruc-
ture evolution, we assume that the bulk moduli of two phases are the same, and vary the shear moduli of
two phases. Elastic constants for the three cases are listed in Table 1. In Case 1 the y phase has larger shear
modulus than the § phase while the y phase has smaller shear modulus than the § phase in Case 3. In Case 2
the system is elastically homogeneous.

The simulations start with a small composition perturbation. Fig. 8§ presents the temporal evolution of
microstructures. The blue domain denotes the  phase while the red domain for y phase. It is observed that
for three different cases the phase separation all took place first near the free surface. The simulations dem-
onstrate that the morphologies strongly depend on the difference in shear modulus as well as the volume
fractions of two phases. In Case 1 with a combination of a lower volume fraction of the soft phase, the
p phase which has smaller shear modulus, and a higher volume fraction of the hard phase, the phase sep-
aration favors the formation of a network of two phases. However, in Case 3 where there is a combination
of a higher volume fraction of soft phase and a lower volume fraction of hard phase, it is found that the soft

Table 1
Elastic constants (GPa) for three model systems
Case v phase B phase

Cu Ciz Ca Cu Ciz Cua
Case 1 232.0 153.0 117.0 197.0 188.0 13.3
Case 2 220.3 164.7 82.3 220.3 164.7 82.3

Case 3 208.5 176.5 47.5 243.5 141.5 151.2
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Fig. 8. Effect of inhomogeneous shear modulus on microstructure evolution in films.
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phase forms a connected domain while the harder phase forms isolated particles. For the elastically homo-
geneous case in Case 2, the lower volume fraction phase still forms isolated particles, but the sizes of par-
ticles are larger than that in Cases 3. This implies that the elastic inhomogeneity refines the particle size.
More systematic and quantitative studies on the effect of elastic inhomogeneity and thin film thickness
on morphologies of phase separation will be reported in our upcoming papers. Finally, we note that only
one iteration of the iterative-perturbation scheme is needed at each time step of our simulation.

7. Conclusion

We presented a simple and efficient approach to treat elasticity systems with strong inhomogeneity. We
have also provided rigorous justification for our formulation of the diffuse-interface model and the numer-
ical scheme. Several numerical tests have been performed to confirm the validity and the efficiency of the
method. The focus of the current paper is on the method and analysis. More challenging simulation studies
using the proposed method that may involve evolving film surfaces, voids or cracks will be reported in our
future work.
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