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The magnetization and magnetic field-induced strain behavior of the
ferromagnetic shape memory alloy, Ni2MnGa, under constant compressive
stress were studied using the phase-field method. Based on the evolving
magnetic domain and martensitic structures, we analyzed the cycling effect,
magnetization hysteresis, strain recoveries, and coupling between the
domain wall and martensite twin boundaries. We compared the switching
behavior of single variant and multivariant martensite structures.
We observed three types of magnetic field-induced strain mechanisms,
depending on the magnitude of the applied compressive stress. The study
revealed that the martensite microstructure of the magnetic shape memory
alloy plays an important role in magnetization and strain evolution during
loading and unloading of an external magnetic field under different stress
conditions. The results are compared with existing experimental
observations.

Keywords: FSMA; MFIS; Ni2MnGa; phase-field method

1. Introduction

Ferromagnetic shape memory alloys (FSMAs) have been the subject of extensive
studies for more than two decades due to their multifunctional properties. They
simultaneously exhibit ferromagnetism and ferroelasticity [1–16]. The mutual
interactions among the ferromagnetic and ferroelastic order parameters, applied
stress-fields and applied magnetic fields are complex and may result in a wide variety
of interesting phenomena. For example, an external magnetic field may help recover
the stress-induced strain [4], or a compressive stress field may lead to the recovery of
the magnetic field-induced strain (MFIS) [6,7]. Furthermore, there is a strong
correlation between the twin bands and magnetic domains, which leads to extremely
large strains in FSMAs in response to magnetic fields [13,14]. The giant MFIS have
a wide range of applications in sensors and actuators [15,16].

Ni2MnGa is perhaps the most studied FSMA. Despite numerous investigations
on its mechanical and magnetic properties, the mechanism for MFIS behavior is still
not well understood. For example, it was demonstrated previously that MFIS occurs
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only once during a switching process and then the strain remains constant [2], i.e. the
strain will not recover when the magnetic field decreases. However, it was suggested
in 2003 by Heczko et al. [3] and Müllner et al. [4] that a compressive stress applied
perpendicular to the direction of the applied magnetic field could lead to the recovery
of the MFIS. Different magnetic hysteresis loops and different strain responses were
also reported by Straka and Hezcko [5] and Hezcko [6] under various applied stress
fields. Their studies show that, under a relatively low compressive stress of 1.4MPa,
fully recovered strain and magnetization were observed when the magnetic field
decreases, leading to a double hysteresis magnetization loop and a butterfly-like
stress–strain curve. However, under high compressive stress, the magnetic hysteresis
displays a linear stress–strain relationship and only a small MFIS was observed.
Furthermore, Karaca et al. [7,8] investigated the cycling effect and strain response
under an incremental magnetic field in a single-variant martensite. They also
schematically showed the magneto- and microstructure mechanisms for MFIS
behavior.

To understand and predict the physical behavior of Ni2MnGa under simultaneous
action of magnetic and stress fields, there have been a number of theoretical studies on
understanding the MFIS process. For example, Paul et al. [17,18] employed a simple
geometrical model to show the crystalline region and model the dynamics of
magnetization process with twin boundary motion. L’vov and co-workers [19,20]
discussed the temperature dependence of magnetizations, stress–strain response and
magnetically induced deformation through a phenomenological free energy model.
Likhachev et al. [21] analyzed driving forces for the MFIS.

However, to fundamentally understand the physical nature of the MFIS requires
knowledge of the evolving microstructures, including both the domain structure and
martensitic microstructure [7,8]. Several numerical simulations have been conducted
to study the microstructure evolution in FSMA [22–28].

In this paper, we study magnetic field-induced switching under a compressive
stress by explicitly modeling the simultaneous magnetic domain and martensite twin
structure evolution using the phase-field method. Coupling of the magnetic domain
wall and the twin boundaries at different compressive stresses are analyzed to
understand the origin of high MFIS. In particular, we investigated the demagne-
tization process, which was not considered in previous theoretical analyses. Our
results will help to understand the so-called first-cycle effect [8] and the recovery
strain in the switching process. To study the effect of martensite twin structure and
obtain possibly higher MFIS, a single variant structure was simulated as a
comparison to multi-variant cases. The obtained magnetization and strain curves
are compared with existing experimental observations [5–8]. From differences in the
magnetization hysteresis loop and strain curve under several applied compressive
stresses, we classified the simulation results into three cases according to the
magnitude of the applied compressive stress.

2. Free energy of FSMA

In our phase-field model, a given microstructure state of a ferromagnetic shape
memory alloy is described by the local magnetization field M(r), which specifies the
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magnetic domain structure, and a stress-free transformation strain field "oijðrÞ, which
describes the martensitic microstructure.

The total free energy of a ferromagnetic shape memory alloy is

E ¼ Eanis þ Eexch þ Ems þ Eexternal þ ELandau þ Egradient þ Eme þ Eelastic, ð1Þ

where Eanis is the magnetocrystalline anisotropy energy of a cubic crystal, given by

Eanis ¼

Z
K1 m2

1m
2
2 þm2

1m
2
3 þm2

2m
2
3

� �
þ K2m

2
1m

2
2m

2
3

� �
dV, ð2Þ

in which mi are the components of the unit magnetization vector, m¼M/Ms, Ms is

the saturation magnetization, K1 and K2 are the anisotropy constants, and V is the

volume.
Eexch in Equation (1) is the exchange energy related to the magnetization

inhomogeneity and contributes to the magnetic domain wall energy:

Eexch ¼ A

Z
gradmð Þ

2dV, ð3Þ

where A is the exchange stiffness constant.
The magnetostatic energy, Ems is written as

Ems ¼ �1=2�0Ms

Z
Hd �m dV, ð4Þ

where �0 is the vacuum permeability, and Hd is the demagnetization field that arises

from the long-range interactions among the magnetic moments in the system.
For a magnetic body in an external field, the Zeeman energy is given by

Eexternal ¼ ��0Ms

Z
Hex �m dV, ð5Þ

where Hex is the external applied magnetic field.
The Landau energy describing the martensitic transformation is written as

ELandau¼

Z
Q1e

2
1þQ2 e22þ e23

� �
þQ3e3 e23�3e22

� �
þQ4 e22þ e23

� �2
þQ5 e24þ e25þ e26

� �h i
dV,

ð6Þ

where Q1, Q2, and Q5 are bulk, deviatoric and shear modulus, respectively. Q3 and

Q4 denote third and fourth order elastic constants. ei are the symmetry-adapted

strain defined in term of the transformation strains [29], i.e.

e1 ¼ ð"
0
11 þ "

0
22 þ "

0
33Þ=

ffiffiffi
3
p

,

e2 ¼ ð"
0
11 � "

0
22Þ=

ffiffiffi
2
p

,

e3 ¼ ð2"
0
33 � "

0
11 � "

0
22Þ=

ffiffiffi
6
p

,

e4 ¼ "
0
23,

e5 ¼ "
0
13,

e6 ¼ "
0
12:

ð7Þ

2104 P.P. Wu et al.

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 0
2:

30
 2

4 
D

ec
em

be
r 

20
11

 



Egradient is the gradient energy, which is non-zero only at or around a twin

boundary and introduced through the gradients of the order parameters.

Egradient ¼

Z n
1=2g

h
ð"011,1Þ

2
þ ð"011,2Þ

2
þ ð"011,3Þ

2
þ ð"022,1Þ

2
þ ð"022,2Þ

2

þ ð"022,3Þ
2
þ ð"033,1Þ

2
þ ð"033,2Þ

2
þ ð"033,3Þ

2
io

dV, ð8Þ

where g is the strain gradient coefficient. The comma in a subscript stands for spatial

differentiation; for example, "011,1 stands for @"011=@x.
The elastic energy Eelastic is given by

Eelastic ¼

Z
1=2 cijklð"ij � "

0
ijÞð"kl � "

0
klÞdV, ð9Þ

where cijkl is the second order elastic stiffness tensor. "ij is the total strain.
The coupling effect between the magnetization and mechanical strain is very

important for modeling the FSMA, which is described by the magnetoelastic

coupling energy [30]. For a cubic crystalline magnetic material, it is written as

Eme ¼

Z
B½"011ðm

2
1 � 1=3Þ þ "022ðm

2
2 � 1=3Þ þ "033ðm

2
3 � 1=3Þ�

� �
dV, ð10Þ

where B is the magnetoelastic coefficient, which is a measure of degree of coupling

between strain and magnetization.
To obtain the strain field "0ijðrÞ distribution at a constant compression in FSMA,

Khachaturyan’s theory of microelasticity is employed to solve the mechanical

equilibrium Equation (9). According to Khachaturyan’s theory [31,32], the total

strain can be separated into homogeneous and heterogeneous strains:

"ij rð Þ ¼ "ij þ
1

2

@ui rð Þ

@rj
þ
@uj rð Þ

@ri

	 

, ð11Þ

where the homogeneous strain "ij represents the macroscopic shape and volume

change of a system. ui(r) is the ith component of the hetergeneous displacement. The

heterogeneous strain is defined such that it does not change the macroscopic crystal

shape or volume and satisfies the mechanical equilibrium equations:

@�ij
@rj
¼ 0, ð12Þ

where the �ij is the stress component and is defined by

�ij ¼ cijkl "kl � "
0
kl

� �
: ð13Þ

Substituting Equations (11) and (13) into the equilibrium Equation (12) with the

homogeneous modulus approximation, we have

cijkl
@uk
@rj@rl

¼ cijkl
@"0kl
@rj

: ð14Þ
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The displacement field ui(r) in Equation (14) is then solved in the reciprocal space
through the Fourier transforms.

The homogeneous strain depends on the boundary condition. If a system is not
allowed to deform, i.e. a clamped boundary condition, the homogeneous strain is
zero

"ij ¼ 0: ð15Þ

When the system is subject to a homogeneous applied stress �aij, the total potential
energy should take into account the mechanical loading contributions, i.e.

Ep ¼ Eelastic � V�aij"ij: ð16Þ

The homogeneous strain should be obtained by minimizing the total potential
energy with respect to the homogeneous strain:

@Ep

@"ij
¼
@Eelastic

@"ij
�
V�aij"ij

@"ij
¼ Vcijkl"ij � cijkl

Z
"0kl dV� V�aij ¼ 0: ð17Þ

Therefore,

"kl ¼
1

V

Z
"0kl dVþ sijkl�

a
ij, ð18Þ

where sijkl is the elastic compliance tensor. The total strain can be calculated using
Equation (11); hence, the elastic energy can be obtained with Equation (9).

3. Field kinetic equations and simulation parameters

The temporal evolution of the magnetization distribution and, thus, the magnetic
domain structure, is described by the Landau–Lifshitz–Gilbert (LLG) equation:

1þ �2
� � @M

@t
¼ ��0M�Heff �

�0�

Ms
M� M�Heffð Þ, ð19Þ

where �0 is the gyromagnetic ratio, � is the damping constant, Ms is the saturation
magnetization, and Heff is the effective magnetic field:

Heff ¼ �
1

�0

@E

@M
: ð20Þ

The martensitic microstructure distribution is described by the time-dependent
Ginzburg–Landau (TDGL) equations:

@"0ii x, tð Þ

@t
¼ �L

� E

�"0ii
, ð21Þ

where L is the kinetic coefficient related to twin boundary mobility.
The temporal evolution of the magnetic domain structure and the martensitic

microstructure are obtained by simultaneously solving Equations (19) using the
Gauss–Seidel projection method [33] and Equation (21) employing the semi-implicit
Fourier-spectral method [34]. A model size of 256Dx� 256Dy� 1Dz are employed
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for our 2D model, and periodic boundary conditions were applied along the x, y and
z-axes. Here, Dx, Dy and Dz are grid spacing. The magnetic parameters can be found
in [35,36]: Ms¼ 6.02� 105Am�1, K1¼ 2.7� 103 Jm�3, K2¼ –6.1� 103 Jm�3,
A¼ 2� 10�11 Jm�1. As in any Landau-type description of thermodynamics of a
phase transition, all energy terms are assumed to have the symmetry of the parent
phase; thus, in our simulations, the magnetocrystalline anisotropy coefficients used
in the anisotropy energy are related to the austenite. The coefficients in the Landau
free energy were obtained by fitting the experimental measurements [35,37]:
Q1¼ 2.32� 1011 Jm�3, Q20¼ 3.78� 108 Jm�3, Q3¼ 0.40� 1010 Jm�3, Q4¼ 7.50�
1010 Jm�3, the magnetoelastic coefficient [37] B¼ 4.00� 106 Jm�3. For a bulk
tetragonal Ni2MnGa crystal, to avoid solving the mechanical equilibrium equation
with inhomogeneous modulus, we chose c11 as the average of c11 and c33, c12 the
average of c12 and c13, and c44 the average of c44 and c66: c11¼ 1.60� 1011Nm�2,
c12¼ 1.52� 1011 Nm�2, and c44¼ 0.43� 1011Nm�2. The original elastic coefficient
can be found in [38]. The martensitic transformation temperature of a defect-free
crystal is T0

M ¼ 300K: The time-step for integration is Dt/t0¼ 0.1, where

t0 ¼
1þ �2

�0Ms
:

The cell size is 18 nm; thus, the system size is around 4.6� 4.6 mm.

4. Simulation results

The schematic setup of our simulation cell is shown in Figure 1 in an attempt to
model experimental conditions [2–8]. Firstly, we obtained an initial domain structure
and martensitic microstructure by assigning random orientations for the magneti-
zation and a zero value plus a small random noise for the martensite strain order
parameters at 250K (right side of Figure 1). Then, we increased the magnetic field
along the x-axis to saturation and, subsequently, decreased it and finally reverse its

Figure 1. Schematic of the magneto-mechanical setup and the initial domain structure and
martensitic microstructure.
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direction to saturate magnetization in the opposite direction. During the process, a

compressed stress was constantly applied along the y-axis. For every 60 kAm�1, we

output the magnetic domain structure and the martensitic microstructure, and also

record the magnetization in the x-direction and the strain value in the y-direction to

generate the hysteresis loops.
The magnetic field-induced strain curve and the magnetization hysteresis

loop under different constant compressive stresses are shown in Figure 2.

Figure 2. Strain curve (a) and magnetization curve (b) at different compressions.
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Three dramatically different types of magnetic field-induced strains are obtained,

corresponding to compressive stress levels of 1.5, 3 and 6MPa, separately. For

1.5MPa (Case I), when the magnetic field was reduced to zero, the magnetization

was recovered with a large hysteresis, whereas the magnetic field-induced strain is

not recovered. For case II at 3MPa, both the magnetization and strain were

recovered with a wide hysteresis. For case III (6MPa), only a small magnetic field-

induced strain was obtained, and both the magnetization loop and strain curve

exhibit narrow hysteresis.
The magnetic domain and martensitic variant evolution during the magnetization

and demagnetization process for case I and case II are shown in Figures 3 and 4,

separately. The initial magnetization processes of case I and case II are similar. When

a magnetic field is applied perpendicular to the compressive stress direction, the

magnetization initially climbs up along a hard-axis. In our phase-field simulation, at

a low level of applied magnetic field, we observed that the magnetization vector

rotates near the domain wall while there was no significant change in the whole

magnetic domain structure. In the next stage, with the increase in applied magnetic

field, a jump in magnetization was observed, which can be attributed to the 180�

magnetic domain wall motion. It is noted that there was no significant change in

Figure 3. Magnetic domain structure and martensitic microstructure evolution under applied
magnetic field at a constant compressive stress of 1.5MPa. Arrows in domain structure
indicate the magnetic vectors.
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martensitic microstructures during the first two stages. As the applied magnetic field

further increases, the magnetization increases slowly and starts to saturate, whereas

the 90� domain wall motion was taking place, leading to the magnetic field-induced

strain. After the magnetization reached Ms, different amounts of martensitic variant

B was observed for different external compressive stress.
To understand the different MFIS behavior for the three cases, we examine

domain structure and martensitic microstructure evolution during switching.
For case I, with the decrease in the applied field, the y-magnetic domains first

nucleate within the martensite variant B at 180 kAm�1. With a further decrease in

the magnetic field, the domain wall motion and magnetization rotation take place

simultaneously, as shown in the detailed magnetization vector directions and domain

structures in Figure 3. However, the twin boundary is still stationary, i.e. the 90�

magnetic domain walls are decoupled from the martensite twin boundary, and, as a

result, the strain is not recovered during the removal of the magnetic field.

Figure 4. Magnetic domain structure and martensitic microstructure evolution under applied
magnetic field at a constant compressive stress of 3MPa.
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When a magnetic field is applied in the opposite direction, the domain walls
continue to move with the magnetization along the easy axis. Finally, the
magnetization is switched to the –x-direction, and the magnetization reaches full
saturation (Figure 3). Again, no martensite twin boundary motion is observed in this
stage. Subsequent cyclic switching will follow the easy magnetization curves and the
procession repeats.

The demagnetization process of Ni2MnGa under a compression of 3MPa shows
a completely different mechanism, as shown in Figure 4. With a decrease in applied
magnetic field, both the magnetization and strain decrease, and return to zero when
the magnetic field is completely removed. As the magnetic field decreases,
interconnected domains appear in the martensitic variant B at 240 kAm�1. It was
followed by nucleation and growth of x-domains to decrease the demagnetization
energy. The appearance of y- and x-domains leads to the reappearance of a stair-
case-like domain structure. Meanwhile, 90� magnetic domain wall motion was
observed, which results in a decrease in magnetization and also movement of the
martensite twin boundaries. Finally, when the magnetic field was completely
removed, the domain structure and martensitic microstructure reverted to the initial
state, with the magnetization and magnetic field-induced strain decreased to zero.

Once the domain and martensitic structures return to the initial state, the
magnetization process in the opposite direction to the magnetic field will be exactly
the same as the case discussed above, producing a double loop magnetization curve
and butterfly-like strain curve.

The magnetization and strain curves under a larger compressive strain (6MPa)
are shown in Figure 1. The initial state under a 6-MPa stress contains interconnected
domains magnetic domain structure and a single variant martensitic microstructure,
shown in Figure 5. With the increase in the applied magnetic field, the magneti-
zations rotate to the hard axis and saturate at large fields while the magnetic domains
remain as interconnected. In the demagnetization process, the magnetization rotates
back to the initial status due to the compressive stress; the microstructure evolution
is demonstrated in Figure 5. Under a compression of 6MPa, there is no nucleation of
second variants during the magnetization process and, as a result, the observed strain
is small and purely induced by the elasticity of material itself.

Based on the simulation results above, the entire magnetization and strain
hysteresis loops can be understood via the domain/martensite microstructures
demonstrated in Figures 3–5. Strain recovery has been actively studied over the last
few years [5–8] and a common phenomenon in experiments is the fact that strain did
not recover at a low compressive stress but almost fully recover if a larger external
compressive stress was applied. Previous studies have attempted to explain strain
recovery under a constant compressive stress using schematics or theoretical analysis.
On the other hand, our simulations revealed the detailed domain structure evolution,
including both the magnetic domain structure and martensite microstructure, which
will be invaluable in understanding why and how magnetization and strain changes
during the demagnetization process. In our phase field simulations, at a low level of
compressive stress, the domain wall motion and magnetization rotation take place
simultaneously while the twin boundary is still stationary, as shown in Figure 3,
leading to a small strain recovery with a decrease in the magnetic field. As the
compressive stress is increased, the nucleation and growth of x-domains was
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observed, and the movement of the 90� magnetic domain wall results in the movement
of the martensite twin boundaries, which leads to strain recovery (Figure 4).

Our simulation results can also be used to interpret the first cycle effect discussed
in [8]. In the experiment, subjecting the Ni2MnGa specimen to a cyclic magnetic field
loading, it was observed that the MFIS response differed between the first and
subsequent magnetic field cycles. In particular, at a low compressive stress, the MFIS
showed a high magnitude but it sharply decreased in the second cycle. For case I of
our phase-field simulation, the martensite twin boundary moves, accompanying the
motion of the 90� magnetic domain walls. However, during the demagnetization
process and the subsequent magnetization cycling, magnetic domain wall motion and
magnetization rotation take place simultaneously, and thus the 90� magnetic domain
walls are decoupled from the martensite twin boundary (Figure 3). At a higher
compressive stress, the martensite twin boundary moves during the entire magne-
tization process and demagnetization process, resulting in the disappearance of the
first cycling effect, i.e. case II of our simulations.

Figure 5. Microstructure evolution under applied magnetic field at a constant compressive
stress of 6MPa. Only magnetization rotation is observed.
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In experimental studies, the single variant state is often used as an initial state to

reach a high magnetic-induced strain. For comparison, we also performed

simulations on switching of a single variant. A compressive stress level of 10MPa

applied along the y-direction ensures an initial single variant state. For each curve,

the compression is decreased to the desired stress level and then kept constant.

The magnetic field is applied in the x-directions; thus, the magnetization and strain

are obtained simultaneously. The magnetization and strain curves for the single

variant state are shown in Figures 6a and b, and the detailed magnetic domain and

martensitic microstructure evolution are illustrated in Figures 6c and d.
Comparing the simulation results of a single variant with those of a multi-variant

system, the two magnetization processes are roughly similar but with some small

differences. During the initial magnetization process for the single variant case, the

jump in magnetization is due to the movement of the 90� magnetic domain wall

associated with martensitic structure reorientation. In the demagnetization process,

we also obtained a different recovery strain. At a high compressive stress,

interconnected domains were observed in the martensitic variant B, which lead to

eventual strain recovery.
The magnetization process under a compressive stress has been previously

modeled by a phase-field model [25]. As pointed out by Li et al. [25], their

formulation is quite different from the phase-field model employed in the present

work [23]. In addition to magnetization, we used the martensitic phase transforma-

tion strain as the phase-field order parameter, while Li et al. [25] employed the

volume fraction as the order parameter. Furthermore, they emphasized the strain

response only with increasing applied magnetic field while the sample was under a

compressive stress. On the other hand, our study focused on the entire magnetization

and strain hysteresis loops during magnetic field-induced switching under various

compressed strains and, in particular, on strain recoveries with unloading the applied

magnetic field.

5. Conclusions

The magnetization and strain behavior of Ni2MnGa under different compressive

stresses was studied using the phase-field method. Our simulation results show that

there are three types of magnetic field-induced strain mechanisms depending on the

magnitude of the applied compressive stress:

(i) At a relatively low stress level (� 1.5MPa), the 90� magnetic domain walls

are decoupled from the martensite twin boundary in the demagnetization

process and, hence, the induced magnetization was recovered with a large

hysteresis whereas the magnetic field-induced strain was not recovered.
(ii) At an intermediate stress level (�3MPa), both the magnetic domain

structure and the martensite microstructure reverted to their initial state

when the applied field was completely removed. Therefore, both the

magnetization and strain were recovered with a wide hysteresis.
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(iii) At a relatively high stress level (�6MPa), the martensite microstruc-
ture remained as a single variant and only magnetization rotation
was observed. A small magnetic field-induced strain was obtained,
and both the magnetization loop and strain curve exhibited a narrow
hysteresis.

Figure 6. Magnetization curves (a) and strain curves (b) for a single variant simulation.
Magnetic vector maps and martensitic microstructure evolution for 0.5 and 1.5MPa are
shown in (c) and (d), respectively.
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