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Phase-field model of multiferroic composites: Domain structures of

ferroelectric particles embedded in a ferromagnetic matrix
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The ferroelectric domain structures in 1-3 type bulk magnetoelectric
composites were studied using the phase-field method. The ferroelectric
polarization distributions in triangle, square, circle, and other polygons-
shaped rods embedded in a ferromagnetic matrix were obtained. The
influences of ferroelectric particle size and symmetry and the surrounding
magnetic phase medium on the stability of double vortex structures are
discussed.
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1. Introduction

Multiferroics are a class of materials that are simultaneously ferromagnetic
and ferroelectric, and have potential applications in multifunctional devices,
transducers, actuators and sensors [1–5]. There are two types of multiferroics:
intrinsic magnetoelectrics that exist as a single-phase state, such as YMnO3,
BiMnO3 and BiFeO3, and extrinsic multiferroics that are composites or solid
solutions of ferroelectric and ferromagnetic crystals. Since the number of intrinsic
multiferroics is small [4], there have been many efforts to synthesize multiferroic
composites [5–9].

For composites of ferromagnetic and ferroelectric crystals, the coupling between
the ferromagnetic and ferroelectric order parameters is through the strain order
parameter. In other words, the magnetostrictive and electrostrictive (or piezoelectric)
effects of the ferromagnetic and ferroelectric crystals lead to a coupling between
magnetization and polarization through the elastic interactions. In a composite, an
applied magnetic field produces redistributions and changes in magnetization in the
ferromagnetic phase, which in turn leads to redistributions of strains caused by the
magnetostrictive effect. The strains imposed upon the ferroelectric (or piezoelectric)
phase by the ferromagnetic phase through the magnetostrictive strain then results in
changes in the polarization distributions and possibly switching in the ferroelectric
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phase. Therefore, the coupling between the ferromagnetic and ferroelectric crystals
through strain offers a possibility of switching electric polarization by a magnetic
field or vice versa.

It is easy to see that the magnetoelectric coupling effect is directly proportional
to the magnetostrictive and electrostrictive coefficients within the ferromagnetic
and ferroelectric crystals as well as to the elastic constants. These material
properties are fixed by choices of the individual constituent phases. However, the
overall magnetoelectric effect is also critically dependent on the composite
microstructure, i.e. the size, shape and spatial distributions of the phases in the
composites.

Using the concept of phase connectivity [10], the phase distributions in a two-
phase magnetoelectric composite can be described by the notations 0-3, 2-2, 1-3, etc.
Recently, the magnetoelectric coupling phenomena have been studied for 1-3 type
structured films [11] and bulk [12,13] magnetoelectric composites. Theoretical
calculations [14] showed that the 1-3 type structured composites may produce
significant magnetoelectric coupling.

Although our ultimate goal is to predict the magnetoelectric coupling effects
as a function of composite microstructure, in this work we focus on the
ferroelectric domain structures and polarization distribution of the 1-3 type bulk
magnetoelectric composites. We employ the phase-field model, which has been
used to study the physical properties of magnetoelectric composites [15] and thin
films [16]. In particular, we studied the domain structures of square-, circle- and
polygon-shaped ferroelectric BaTiO3 rods embedded in a ferromagnetic matrix.
In addition, we also studied square-shaped rods with different aspect ratios. The
effect of magnetization orientation in the surrounding magnetic phase will also
be discussed.

2. Phase-field model of multiferroic composites

In our phase-field model, we use three field variables to describe the domain
structures in a two-phase ferroelectric and ferromagnetic composite. A phase field,
�(r), is introduced to describe the spatial distribution of the magnetic and
ferroelectric phases in the composite. In the current implementation, the phase
field is non-evolving, representing a static two-phase composite microstructure. If
�(r)¼ 1, position r is occupied by the magnetic phase, whereas for �(r)¼ 0 it is the
ferroelectric phase. Within the magnetic phase, the magnetic domain structure is
represented by the local magnetization field, M(r), whereas it is the local electric
polarization field, P(r), that describes the domain structures in the ferroelectric
phase. The total free energy of a magnetoelectric composite includes magnetocrystal-
line anisotropy energy, magnetic exchange energy, magnetostatic energy, external
magnetic field energy, ferroelectric bulk free energy, ferroelectric domain wall
energy, electrostatic energy and elastic energy, i.e.

F ¼

Z
V

� rð Þ fferromagnetic þ 1� � rð Þð Þ fferroelectric þ felast
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where mi are the components of the unit magnetization vector, m ¼M=Ms ,Ms is the
saturation magnetization, K1 and K2 are the anisotropy constants, A is the exchange
stiffness constant, Hd is the demagnetization field that is determined by the long-
range interaction among the magnetic moments in the system, �0 is the permeability
of vacuum, and Ha is the externally applied magnetic field where �ij, �ijk, �ijkl and
!ijklmn are the phenomenological Landau expansion coefficients, Gijkl is the tensor of
the gradient energy coefficients, Pi, j ¼ @Pi=@xj, E

a
i is the ith component of an applied

electric field, Ei is the ith component of internal electric field generated by the
polarization distribution, cijkl and Qijkl are the elastic and electrostrictive constant
tensors, respectively. All the coefficients are generally assumed to be independent
of temperature except �ij, which is linearly proportional to temperature, i.e.
�ij ¼ �

o
ij T� Toð Þ, where To is the Curie temperature.

To obtain spatial distribution of Ei, "ij and Hd in Equations (1)–(4), one has to
solve the electrostatic, elasticity and magnetostatic equations for a given distribution
of polarization, magnetization or eigenstrains, i.e.

div j"0 � E½ � ¼ 0, div c � e� eoð Þ½ � ¼ 0, div �oHd þMð Þ ¼ 0, ð5Þ

where kij is the dielectric constant tensor and

"oij ¼ QijklPkPl þ �ijklmkml: ð6Þ

With all the energetic contributions, the evolution of initially non-equilibrium
order parameter fields towards equilibrium can be described by the time-dependent
Ginzburg–Landau (TDGL) and Landau–Lifshits–Gilbert (LLG) equations (see, for
example, [17]),
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where LP is kinetic coefficient related to domain wall mobility, �o is the
gyromagnetic ratio, g is the damping constant and Heff is the effective magnetic field,

Heff ¼ �
1
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: ð9Þ
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3. Materials constants and simulation conditions

In this paper, as an example, we consider 1-3 type magnetoelectric composites made

up of a ferroelectric BaTiO3 rod embedded in a magnetic CoFe2O4 medium, as

shown in Figure 1a. The free energy as a function of polarization for BaTiO3 is

described by an eighth-order polynomial [18,19],

fLand ¼ �1ðP
2
1 þ P2

2 þ P2
3Þ

þ �11ðP
4
1 þ P4

2 þ P4
3Þ þ �12ðP

2
1P

2
2 þ P2

2P
2
3 þ P2

1P
2
3Þ

þ �111ðP
6
1 þ P6

2 þ P6
3Þ þ �112½P

2
1ðP

4
2

þ P4
3Þ þ P2

2ðP
4
1 þ P4

3Þ þ P2
3ðP

4
1 þ P4

2Þ� þ �123P
2
1P

2
2P

2
3

þ �1111ðP
8
1 þ P8

2 þ P8
3Þ þ �1112½P

6
1ðP

2
2 þ P2

3Þ þ P6
2ðP

2
1

þ P2
3Þ þ P6

3ðP
2
1 þ P2

2Þ� þ �1122ðP
4
1P

4
2 þ P4

2P
4
3 þ P4

1P
4
3Þ

þ �1123ðP
4
1P

2
2P

2
3 þ P4

2P
2
1P

2
3 þ P4

3P
2
1P

2
2Þ, ð10Þ

where �1¼ 4.124(T – 115)� 105C�2m2N, �11¼�2.097� 108C�4m6N, �12¼ 7.974�

108C�4m6N, �111¼ 1.294� 109C�6m10N, �112¼�1.950� 109C�6m10N, �123¼
�2.500� 109C�6m10N, �1111¼ 3.863� 1010C�8m14N, �1112¼ 2.529� 1010C�8

m14N, �1122¼ 1.637� 1010C�8m14N, �1123¼ 1.367� 1010C�8m14N, and the dielec-

tric constant used in our simulation is k11¼ k22¼ k33¼ 500. Smaller values of dielectric

constants, from 1 to 300, were also employed to test the sensitivity of domain

structures on the magnitude of dielectric constant.
For CoFe2O4, the following materials coefficients were used [20–23]:

Ms¼ 4� 105Am�1, K1¼ 3� 105 Jm�3, K2¼ 0 Jm�3 and A¼ 7� 10�12 Jm�1 at

T¼ 25�C.

Figure 1. (Color online). (a) Three-dimensional (3D) schematic illustration of the magneto-
electric material in this work; a periodical boundary is employed. (b) A vector plot of the
section plane of the 1-3 type magnetoelectric material.
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For the particular BaTiO3–CoFe2O4 composite, we can write "0ij , the stress-free
strain, as
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where Q11¼ 0.10C�2m4, Q12¼�0.034C
�2m4 and Q44¼ 0.029C�2m4, and �100 and

�111 are the change ratios of the length when magnetized in the (100) and (111)
directions, respectively. In this work, �100¼�590� 10�6 and �111¼ 120� 10�6. For
simplicity, we assumed elastic homogeneity in this work, and the elastic constants
of BaTiO3 are used, i.e. c11¼ 1.78� 1011Nm�2, c12¼ 0.96� 1011Nm�2 and
c44¼ 1.22� 1011Nm�2.

The temporal evolution of the magnetic domain structure and the ferroelectric
domain structure was obtained simultaneously by solving the LLG equation using
the Gauss–Seidel projection method [24] for the magnetization and TDGL equation
employing the semi-implicit Fourier-spectral method [25] for the polarization. The
elastic energy and elastic interactions are obtained using the microelasticity theory of
Khachaturyan [26]. The electrostatic energy due to the spatial distribution of electric
polarization, magnetostatic interactions due to the magnetic dipole distribution can
be obtained using a very similar approach to the elasticity equation.

We assume that the BaTiO3 phase is initially polarized along the z-axis, and
the initial magnetization of CoFe2O4 is chosen to be along the x-axis, as shown in
Figure 1b. The 1-3 magnetoelectric composite can be effectively modeled by a two-
dimensional (2D) model with periodic boundary conditions if we ignore the
polarization inhomogeneity along the rod direction. Most of the simulations
presented in this paper were performed in 2D although we also performed a number
of 3D simulations for comparison. We fix the volume fraction of BaTiO3 at �11%
for studying the effect of morphology on the domain structures.

4. Domain structures and polarization distributions in the ferroelectric phase

4.1. Square-shaped ferroelectric particle embedded in a ferromagnetic matrix

Figure 2a shows a simulated microstructure of the square-shaped rod. We employed
a simulation cell of 32Dx� 32Dy� 1Dz discrete grid points, with the grid spacing of
Dx¼Dy¼Dz¼ 1 nm. In this case, it is equivalent to assuming that the polarization
distribution along the z-direction is uniform. We have deliberately chosen a small
number of grids, and thus quite small ferroelectric particle size, in order to study
vortex formation. As shown in Figure 2a, a double vortex ferroelectric domain
structure was observed. The double-vortex structure shows two vortices with
different vertical directions: clockwise or anticlockwise. The two vortices share one
domain in the middle, in which the polarization is along the same direction as the
magnetization orientation in the magnetic phase. We studied the lattice-pinning
effect by reducing the grid spacing to Dx¼Dy¼ 0.125 nm, while increasing the
number of grid points to 256� 256 to maintain the same model size of
32 nm� 32 nm. Interestingly, in this case, at the end of the simulation, only one
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Figure 2. (Color online). Ferroelectric domain structures with a grid spacing of 1 nm (a) and
0.125 nm (b); (c) a 3D vector plot of the ferroelectric phase in (b); (d) the polarization
distribution along the x- and y-axis through the center of (c).
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vortex was observed in the ferroelectric phase, in which four ferroelectric domains
were separated by 90� domain walls, as shown in Figure 2b. For better visualization
of the polarization distribution of Figure 2b, a vector map of the square-shaped
ferroelectric phase is shown in Figure 2c. A group of polarizations near the center of
the square is shown in Figure 2d for clarity. It is found that the polarizations only
tilted to the x- or y-direction, and the polarizations tilted to opposite directions are
connected with a Bloch-type domain wall. As the electrostatic energy is minimized
when the polarization is initially polarized along the z-direction, it could not
contribute to the polarization tilting. The driving force for the polarization tilting
should come from the elastic coupling between the ferroelectric phase and magnetic
phase. We observed more polarizations tilted to the direction parallel to the direction
of the magnetic phase. This is because the polarization tilted to the x-direction can
decrease the elastic energy induced by the magnetostriction.

It should be pointed out that similar polarization vortex patterns have been
previously predicted in isolated nanoferroelectrics using a combination of first-
principles calculations and an effective Hamiltonian [27–33] and phase-field
simulations [34–37], in constrained ferroelectrics by a non-ferroelectric matrix
using phase-field simulations [38], and in ferroelectric islands on a substrate [39].

However, such vortex structures are not observed if the ferroelectric particle size
is sufficiently large. The domain structures of multiferroic composite with different
particle morphology are shown in Figure 3; a simulation cell of
256Dx� 256Dy� 1Dz discrete grid points was employed with the grid spacing of
Dx¼Dy¼Dz¼ 1 nm. In this case, the particle size is about 85 nm� 85 nm. The
ferroelectric domain structures with 90� domain walls are observed in all types of
morphology. It should be noted that the ferroelectric domain pattern in the square-
shaped and circle-shaped rod exhibit 180� rotation symmetry around the central
point, but the triangle-shaped rod exhibits reflection symmetry. The axis of the
reflection symmetry is one of the symmetry axes of the regular triangle, and also in
the same direction as the magnetization of the surrounding medium. As the magnetic
phase is polarized along the x-direction, and the magnetostriction of CoFe2O4 is
negative, a tensile stress is exerted on the ferroelectric phase along the x-direction.
For the square- and circle-shaped ferroelectric morphology, the domain pattern
exhibits a central symmetry in order to decrease the electric static energy; for the

Figure 3. (Color online). The domain structures of multiferroic composite with large grid size,
in (a) square-, (b) circle- and (c) triangle-shaped ferroelectric phase.
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triangle-shaped ferroelectric phase, there is a tensile stress symmetrically exerted
along the x-axis, and hence the ferroelectric phase exhibits axis symmetry.

4.2. Stability of double-vortex structures

In order to check the stability of the ferroelectric domain structure shown in Figures
2a and b, we plotted the system free energies as a function of time for the two
different grid spacings in Figures 4a and b. It can be seen that for the smaller grid
spacing simulation, the ferroelectric polarization initially displays a double-vortex
structure (see the inset of Figure 4b). The double-vortex structure remains for a
period of time with little change in the total free energy. This double-vortex structure
is later transformed to a single vortex with lower free energy. For the case of larger
grid spacing (1 nm), the double-vortex structure remains stable throughout the
simulation without transforming to single vortex. To determine whether the double-
vortex structure with grid spacing of 1 nm is metastable or stable, we also performed
a simulation with polarization starting from a random distribution with small values.
A single vortex structure was obtained in this case, which has a lower free energy
than the double-vortex. (Figure 4a) Therefore, we can conclude that for the case of
square-shaped rod, the double-vortex polarization structure is a metastable state.

4.3. Effect of polarization inhomogeneity along the axial direction

A 2D model of a 1-3 type ferroelectric rod implies homogeneous distribution along
the axial z-direction. To study the effect of inhomogeneity along the axial direction,
we performed a 3D simulation using 32� 32� 32 grids with grid size 1 nm. We
started with a random initial state with small polarizations. The result is presented in
Figure 5a. It can be seen that the ferroelectric domain structure in this case is much
more complicated. To visualize the polarization distribution more clearly, a vector
plot is presented in Figure 5b. It is interesting that the vortex structure appears not
only along the x–y plane but also on the x–z plane. A leaf-pattern domain structure
is also observed along the y–z plane. Such vortex and leaf-patterns are frequently
observed in ferromagnetic domain structures. As the ferroelectric distributions are
generally more complex if one starts from a randomly distributed polarization, the
following discussions are focused on the initially polarized ferroelectric phase, as in
experimental works [12,13].

4.4. Effect of particle morphology

Figure 6 shows the simulated polarization distributions in a particle with different
morphologies embedded in a magnetic medium, i.e. square, circle and other regular
polygons. Vectors represent the projection of the polarization on the x–y plane. As
shown in Figure 6, all the ferroelectric phases exhibit vortex structures. A typical
characteristic of the vortex structure is that there is a region with the polarization
along the z-direction at the center of the vortex structure, which can be observed in
all the ferroelectric phases in Figure 6. For polygon-shaped structures, we also notice
some regions with the polarization along the z-direction at the vertices (corners) of
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Figure 4. (Color online). The free energy versus t¼NDt of square-shaped ferroelectric phase
with a grid spacing of 1 nm (a) and 0.125 nm (b).
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the polygon. The fraction of the region can be influenced by the degree of the interior
angle and the orientation of the ferroelectric/magnetic interfaces. For example, the
rod with a triangle shape, which has sharp corners, shows larger regions with
the polarization along the z-direction. Comparing Figures 6a and d, for the same
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Figure 5. (Color online). (a) The 3D simulation of the ferroelectric domain structure starting
from randomly distributed polarization; (b) shows the polarization distributions of (a).
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square-shaped rod, the rod rotates 45� in x–y plane in Figure 6d, and larger regions
with the polarization along the z-direction remains at the corners.

We note that during the evolution process of even-sided regular polygon-shaped
rods, i.e. regular tetragon-, hexagon- and octagon-shaped rods, the double vortex
structures appear as a metastable state. The free energies versus time steps for
polygon-shaped rods are plotted in Figure 7. It is shown that for odd-sided polygons,
the free energy decreases directly to the minimum corresponding to a single vortex
structure, whereas for even-sided polygons, a double vortex structure stays for a
period of time with slowly decreasing free energy. Therefore, the appearance of the
metastable structure should be related to the symmetry of polygons. The even-sided
polygons have a high degree of symmetry, as both the x-axis and y-axis are its
symmetric axis, while in the odd side polygons only x-axis is the symmetric axis.

4.5. Effect of dielectric constants

There have been a number of discussions with regard to the use of dielectric
constants in the time-dependent Ginzburg–Landau model for polarization evolution
[40–43]. It is generally agreed that if the polarization in the TDGL model is
considered as the spontaneous polarization, a non-vacuum dielectric constant, called
‘‘the background dielectric constant’’, should be employed in the electrostatic
equilibrium equation [40,41]. On the other hand, if the polarization in a Landau
potential is the total polarization, the corresponding dielectric constant in the
electrostatic equilibrium equation is the vacuum dielectric constant. Zheng and Woo
[43] argued that one should use the spontaneous polarization and background

Figure 6. (Color online). Simulated magnetic and ferroelectric domain structures and
polarization distribution projected on the x–y plane of the magnetoelectric material: (a)
square- and (b) circular-shaped ferroelectric phases; (c–h) polygon-shaped ferroelectric phases.
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dielectric constant to appropriately take into account the depolarization field. The
simulation results reported in this paper were obtained by using a dielectric constant
of 500. We also performed simulations using small values for the dielectric constant.
Figure 8 shows the domain structures using different dielectric constant values. The
domain structures of a small particle size of 10 nm� 10 nm with different grid
spacing, 1 nm and 0.125 nm, are shown in Figures 8a and b, respectively. It can be
clearly seen that a smaller dielectric constant (i.e. stronger electrostatic interactions
or depolarization) leads to more symmetric domain configurations. Even with the
order of magnitude difference, for such small ferroelectric particle size, it seems that
different values of dielectric constant do not change the main conclusions about the
stable single-vortex structure. The effect of dielectric constant on large particles is
shown in Figure 8c. In the ferroelectric microstructures, it is obvious that the x
domains shrink while the y domains expand with the decrease of the dielectric
constant, which is due to the stronger depolarization field and will induce the
fraction of x domains and y domains to become more equal at small dielectric
constants.

4.6. Effect of the ferromagnetic matrix

In order to study the effect of the surrounding magnetic matrix on the polariza-
tion distributions, we examined the influence of the magnetization orientation.

Figure 7. (Color online). Free energy versus t¼NDt for different polygons.
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Figure 9a shows the same polarization distribution in a square-shaped rod.
The ferroelectric domains with the polarization along �x-, � y-, � z-directions are
labeled as x domain, y domain, z domain, respectively. It is noted that the volume
fraction of x domains is clearly larger than y domains. As we switched the

Figure 8. (Color online). The domain structures using different dielectric constant values: (a) a
small particle with grid spacing 1 nm; (b) a small particle with grid spacing 0.125 nm; (c) a large
particle of 85 nm� 85 nm.

Figure 9. (Color online). The ferroelectric polarization distribution in square-shaped rod with
the direction of surrounding magnetic phase along the x-axis (a), then switched to y-axis (b),
and z-axis (c).
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magnetization direction of the matrix phase to the y-direction, as shown in Figure
9b, the volume fraction of x domains decreased, whereas that of y domains
increased. If the magnetization is switched to the z-direction, the volume fractions of
x domains and y domains are about the same (Figure 9c). Although the vortex
ferroelectric domain structure did not change, we observed a small increase in the
volume fraction of z domains in Figure 9c. This result shows that the magnetization
orientation may influence the stable single-vortex structure, and similar results were
also obtained for other ferroelectric particle morphologies.

Since the appearance of metastable double-vortex structure depends on the
geometrical symmetry of the ferroelectric rod and the magnetization orientation, we
also studied rectangle-shaped rods with different aspect ratios, which are embedded
in the magnetic medium with different magnetization orientations. Figures 10a and b
show the polarization distributions of a rectangle-shaped rod with aspect
ratio¼ 1.125:1 (length¼ 12 nm, width¼ 10.7 nm) with the magnetization in the
matrix along the x- and y-axes, respectively. The results show that, when the
magnetization orientation is vertical to the length of the rectangle, the double-vortex
structure is stable (Figure 10a). This means the ferroelectric domain structure can be
changed by decreasing the degree of symmetry. However, if the direction of the

Figure 10. (Color online). (a, b) The aspect ratio¼ 1.125:1 rectangle-shaped rod, in the
magnetic medium along the x-axis and y-axis, respectively; (c, d) the same for an aspect
ratio¼ 1.25:1.
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magnetization is parallel to the length of the rectangle, a single-vortex structure was
obtained at the end (Figure 10b). If the aspect ratio is increased to 1.25:1
(length¼ 13.3 nm, width¼ 10.7 nm), the double vortex will be stable for both cases,
as shown in Figures 10c and d.

5. Summary

We have studied ferroelectric polarization distributions in 1-3 type bulk magneto-
electric composites using the phase-field method. We found that, whereas relatively
large (�100 nm) single-crystal ferroelectric particles contain normal domain
structures, single-vortex polarization structures are formed in small particles
(�10 nm) with double-vortex structures appearing as metastable states during
evolution towards equilibrium states. The formation of vortex structures and
polarization distribution is strongly influenced by the geometrical shapes of the
ferroelectric particles and the aspect ratio of rods. It is shown that one can also
modify the ferroelectric domain structures by changing magnetization orientation in
the magnetic medium. A study on the influence of ferroelectric phase morphology on
the magnetoelectric coupling coefficients is currently underway.
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