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We propose a phase-field model for modeling microstructure evolution
during deformation twinning. The order parameters are proportional to the
shear strains defined in terms of twin plane orientations and twinning
directions. Using a face-centered cubic Al as an example, the deformation
energy as a function of shear strain is obtained using first-principle
calculations. The gradient energy coefficients are fitted to the twin
boundary energies along the twinning planes and to the dislocation core
energies along the directions that are perpendicular to the twinning planes.
The elastic strain energy of a twinned structure is included using the
Khachaturyan’s elastic theory. We simulated the twinning process and
microstructure evolution under a number of fixed deformations and
predicted the twinning plane orientations and microstructures.

Keywords: deformation twinning; microstructure; modeling; phase-field
model; first-principle calculation

1. Introduction

Deformation twinning is one of the two major deformation mechanisms of
crystalline solids [1], the other being slipping through dislocation motion. It is
widely known that deformation twinning typically takes place in materials with low-
to-medium stacking fault energy and a small number of slip systems such as body-
centered cubic (bcc) or hexagonal close-packed (hcp) crystals. However, deformation
twinning has also been observed in many face-centered cubic (fcc) materials which
have large number of slip systems and/or high stacking fault energy under severe
deformation conditions such as low temperature and high strain rates [2–6], in pure
[7,8], nanocrystalline materials [9–11], and at the crack tip in a polycrystal [12].
Therefore, deformation twinning is a very common phenomenon.

There have been many theoretical efforts on deformation twinning. These include
phenomenological models of twin nucleation [13–16], crystallographic theoretical
study on the plastic strain due to twinning [17], and first-principle calculations
[18–25] and molecular dynamics (MD) simulations [8,26–29] of the atomistic
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mechanisms of twinning, the critical shear stress for deformation twinning, and

twin growth. An energetic approach to predicting the formation of twins was also
proposed [30]. In addition, the factors which affect the deformation twinning

behavior such as stacking fault energy, grain size, temperature [31,32], and single
crystal size [33] have been discussed.

In this article, we propose a phase-field model [34–39] for predicting microstruc-

ture evolution during deformation twinning. We use fcc Al as a representative
example for fcc crystals. Even though deformation twinning in Al is difficult due to

its high stacking fault energy, there have been several recent reports on deformation

twinning in pure Al in experiments [7–9] as well as in computer simulations such as
MD simulations [8,26–29] and first-principle calculation [20]. This study describes

the general framework for formulating a phase-field model for predicting micro-
structural evolution during deformation twinning in fcc materials using deformation

energy function generated from first-principles. Thus, the formulated model is

generally applicable to all fcc materials. As a first attempt, we simply employ two-
dimensional (2D) simulations although the model is easily extendable to three

dimensions (3D).

2. Model description

2.1. Crystallographic description

Twinning is associated with the creation of Shockley partial dislocations and twin

boundaries. Thus, twinning in fcc takes place on {111} habit planes along ½11�2�

directions. Twinning process has directionality. For example, on a (111) plane,
twinning along ½11�2� direction is possible while it is not allowed along the ½�1�12�

direction. Such directionality can be understood with a simple crystallographic
consideration or from the energy pathways for two opposite twinning modes, (111)

½11�2� and (111) ½�1�12�, obtained from first-principle calculations [23]. Therefore, the
total possible number of twinning mode in fcc is 12 ( 111f g511�24).

In Figure 1, we describe our computational cell, outlined in dashed lines in

Figures 1a and b, for 2D simulation of deformation twinning on the ð1�10Þ plane.

In this case, there are only two possible modes of twinning; one is along the ½11�2�
direction on the ð111Þ habit plane (Figure 1a (variant 1)), and the other is along the

½�1�1�2� direction on the ð�1�11Þ habit plane (Figure 1b (variant 2)). The habit planes on
ð1�10Þ for the two modes are related by a rotation angle of �twin¼ 70.53� (Figure 1c).

For convenience, we define new coordinate axes (x0, y0, z0) along ½00�1�, ½110�, and
½1�10� directions, respectively.

2.2. Phase-field formulation of deformation twinning

Within a single crystal or a given grain in a polycrystal of a fcc solid, it requires 12
order parameters, �p(p¼ 1, 2, 3, . . . ), for the 12 possible twin variants. For 2D

simulations on the ð1�10Þ plane, two spatially dependent fields, �1ðrÞ and �2ðrÞ, are
sufficient to describe the twinning microstructures. The local twinning strains,
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�ð111Þ½11�2� and �ð�1�11Þ½�1�1�2�, are related to the order parameters as

�ð111Þ½11�2�ðrÞ ¼ �1ðrÞ � �
twin
ð111Þ½11�2�

,

�ð�1�11Þ½�1�1�2�ðrÞ ¼ �2ðrÞ � �
twin
ð�1�11Þ½�1�1�2�

,
ð1Þ

where �twin
ð111Þ½11�2�

and �twin
ð�1�11Þ½�1�1�2�

are shear strains of fully twinned states along the ½11�2�

direction on the ð111Þ plane and the ½�1�1�2� direction on the ð�1�11Þ plane, respectively.

Both of their magnitudes are equal to 1=
ffiffiffi
2
p
ð¼ �twinÞ [17,30]. Thus, �1(r)¼ 0 and

�2(r)¼ 0 represents the original crystal, �1(r)¼ 1 and �2(r)¼ 0 twin variant 1, and

�1(r)¼ 0 and �2(r)¼ 1 twin variant 2.
The deformation strain tensors of variant 1 and 2 are then given by

"ð1Þij ¼ �1 � "
twin, 1
ij and "ð2Þij ¼ �2 � "

twin;2
ij , respectively, where "twin, 1ij and "twin, 2ij are the

twinning strain tensors associated with variants 1 and 2. To determine the twinning

strain tensors for variants 1 and 2, we first defined the reference eigenstrain tensors

for variant 1 ("twin, 1ij,ref ) and variant 2 ("twin, 2ij,ref ) which are defined in the specifically

Figure 1. The crystallographic description of twinning process for (a) variant 1 and
(b) variant 2. (c) The configuration of habit planes for both variants on a ð1�10Þ plane.
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chosen local reference frame (x-axis is defined along the twinning direction, y-axis is
defined along the normal direction to habit plane, and z-axis is defined by the
orthogonal to both x- and y-axis) such that it gives the pure shear strain tensors [30]

as the following:

"twin, 1ij,ref

h i
¼

0 �twin=2 0

�twin=2 0 0

0 0 0

2
64

3
75 and "twin, 2ij,ref

h i
¼

0 ��twin=2 0

��twin=2 0 0

0 0 0

2
64

3
75: ð2Þ

Therefore, the components of the twinning strain tensor of variant 1 ("twin, 1ij ) in

the coordinate system (x0, y0, z0) are obtained by the rotation of the reference tensors

as "twin, 1ij ¼ aR1im aR1jn "
twin, 1
mn,ref and those of variant 2 are obtained by "twin, 2ij ¼ aR2im aR2jn "

twin, 2
mn,ref

where aR1ij and aR2ij are the elements of the axis transformation matrix of rotation
around the z0-axis defined as

aR1ij

h i
¼

cosð��twin=2Þ sinð��twin=2Þ 0

� sinð��twin=2Þ cosð��twin=2Þ 0

0 0 1

2
64

3
75 and

aR2ij

h i
¼

cosð�twin=2Þ sinð�twin=2Þ 0

� sinð�twin=2Þ cosð�twin=2Þ 0

0 0 1

2
64

3
75:

ð3Þ

In the diffuse-interface description [40], the total free energy F of the system is
given by the following volume integral [41],

F ¼

Z
�

f ð�1, �2, . . . , �pÞ þ
X
p

�p,ij
2
ri�prj�p þ

1

2
C 0ijklð"ij � "

0
ijÞð"kl � "

0
klÞ

" #
dV, ð4Þ

where f is the local deformation energy density, �p,ij is the gradient energy coefficient
tensor in the reference frame (x0, y0, z0) for the pth order parameter, C 0ijkl is the elastic

moduli in the reference frame (x0, y0, z0), "ij is the total strain tensor in the reference
frame (x0, y0, z0), "0ij is the eigenstrain tensor in the reference frame (x0, y0, z0), and
� represents the domain of interest.

2.2.1. Deformation energy

One of the key differences in modeling deformation twinning and structural
transformations such as martensitic transformation [42,43] is the driving force. For
example, the driving force for a martensitic transformation is the chemical energy
difference between the parent phase and the transformed phase while in deformation
twinning, the chemical free energy of a parent crystal and that of its twin state are

exactly the same, i.e. there is no chemical driving force from the parent to twin state.
The driving force for deformation twinning is the mechanical energy of a deformed
state. The local deformation energy density f is the energy change associated with a
homogeneous shear of a crystal and can be directly computed using first-principles
methods [44,45]. We choose a reference state in which the lattice vectors are a, b, and
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c in the Cartesian coordinates. For programming, it is convenient to combine the

three lattice vectors into a 3� 3 matrix

R ¼

a

b

c

2
4

3
5:

The homogeneous deformation of a crystal with respect to the reference state R is

expressed as R0 ¼ RX where R0 represents the deformed state in the Cartesian

coordinates and X represents the deformation matrix [46]. For deformation on the

(111) plane, we have

X ¼

1þ t=2þ s=2 t=2 �t� s=2

t=2þ s=2 1þ t=2 �t� s=2

t=2þ s=2 t=2 1� t� s=2

2
64

3
75, ð5Þ

where t and s represent the amount of deformation along the twinning direction ½11�2�

and the slipping direction ½10�1�, respectively. The energies were calculated in a

51� 51 mesh in the t� s space using the first-principles method. We employed the

projector-augmented wave (PAW) method [44,45] implemented in the Vienna

ab initio simulation package (VASP, version 4.6). The exchange-correlation

functional according to Perdew–Burke–Ernzerhof (PBE) [47] was employed together

with a 20� 20� 20 �-centered k-mesh and an energy cutoff of 300 eV. We described

a general deformation using the twinning and slipping directions. Thus, for pure

twinning, we neglect s. The calculated deformation energy is shown in Figure 2a as a

function of shear strain along the twinning direction. The variable t was converted to

shear strain using the interplanar spacing of {111} plane. Using the relation between

the shear strain and the order parameter (Equation (1)), we obtained the

deformation energy as a function of order parameter along a twinning direction as

shown in Figure 2b.

Figure 2. The deformation energy (a) calculated by the first-principle calculation and (b) its
non-dimensionalized energy profile and fitted curve.
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2.2.2. Gradient energy

In a twin structure, the interfacial energy between twin and original crystal is

strongly anisotropic; the interfacial energy along the twin boundaries is much smaller

than interfaces along other orientations. In order to take into account this anisotropy

in 2D, we describe the gradient energy coefficient as

½�refij � ¼
�11 0

0 �22

� �
,

where �11 is larger than �22, and the superscript ref represents reference tensor which

is defined in the specifically chosen local reference frame. Thus, the gradient energy

coefficients for variants 1 and 2 expressed in the coordinate system (x0, y0, z0) are

obtained by the simple rotation around the z0-axis of the reference tensor

components as �1,ij ¼ aR1im aR1jn �
ref
mn and �2,ij ¼ aR2im a

R2
jn �

ref
mn where aR1ij and aR2ij are the

elements of the rotation matrix.

2.2.3. Elastic energy

The elastic energy density represents the energy generated by the local elastic

deformation in a twinned structure. The cubic elastic constants are expressed in the

coordinate system (x0, y0, z0) using the following transformation matrix:

½a� ¼

0 0 �1

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

1=
ffiffiffi
2
p

�1=
ffiffiffi
2
p

0

2
64

3
75 ð6Þ

and C 0ijkl ¼ aimajnakoalpCmnop. The eigenstrain ("0ij) of the elastic energy term of

Equation (4) is defined as "0ij ¼
P

p "
twin, p
ij Hð�pÞ where "

twin, 1
ij and "twin, 2ij are the strain

tensors for the twin variants 1 and 2 in the coordinate system (x0, y0, z0), respectively.

We employed the piecewise function for Hð�Þ. In order to describe the linear relation

� and the eigenstrain, we chose Hð�Þ ¼ � in the range of �5 �5 1� � where � is very
small value. On the other hand, Hð�Þ ¼ �2�3 þ 3�2 was chosen near the equilibrium

values (0 or 1) of order parameter satisfying (i) Hð0Þ ¼ 0, (ii) Hð1Þ ¼ 1, and

(iii) @H
@�

��
�¼0
¼ @H

@�

��
�¼1
¼ 0. Following the Khachaturyan’s elasticity theory [48], the

total strain is separated into two contributions as "ij ¼ �"ij þ �"ij where �"ij is

the homogeneous strain and �"ij is the heterogeneous strain. �"ij characterizes the

macroscopic shape and volume change of the system and
R

� �"ijdV ¼ 0. To calculate

the elastic strain, we solve the mechanical equilibrium equation,

rj�ij ¼ rjC
0
ijklð �"kl þ �"kl � "

0
klÞ ¼ 0, using Fourier spectral method [48]. We consider

a fixed macroscopic deformation, "aij, i.e. �"ij ¼ "
a
ij. This is a good approximation for

a grain embedded in a polycrystalline aggregate.
The evolution of order parameters are governed by the time-dependent

Ginzburg–Landau (TDGL) equation [49],

@�p
@t
¼ �L

�F

��p

� �
¼ �L

@f ð�pÞ

@�p
� �p,ijrirj�p þ

@Eel

@�p

� �
, ð7Þ
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where L is the kinetic coefficient, t is time and Eel is the elastic energy density. To
solve the equation, we employed the semi-implicit Fourier-spectral method [50,51].

3. Simulation results and discussions

We chose aluminum (Al) as an example with elastic constants C11¼ 114GPa,
C12¼ 62GPa, andC44¼ 32GPa [24]. The twin boundary energy (56.5mJ/m2 [24]) and
the dislocation core energy (Ecore¼ 4.8� 10�7mJ/m [52–54]) are used to obtain the
gradient energy coefficients. We approximated the interfacial energy by assuming a
dislocation core at each {111} habit plane, i.e. Ecore/d111� 2.0 J/m2 where d111 is the
interplanar spacing among {111} habit planes. All the simulations were conducted in a
square domain with 512Dx� 512Dx grids where Dx is the grid size and was chosen as
0.2 nm with a periodic boundary condition. We employed dimensionless parameters
in the following simulations: Dx � ¼ Dx

l , t � ¼ LjDfmaxjt, �
�
11 ¼

�11
l2jDfmaxj

, � �22 ¼
�22

l2jDfmaxj
,

C �11 ¼
C11

jDfmaxj
, C �12 ¼

C12

jDfmaxj
, and C �44 ¼

C44

jDfmaxj
. The characteristic length (l) is chosen to be

the same as Dx, and the maximum driving force ( Dfmax

�� ��) is obtained from the
deformation energy, approximately 1.0� 109 J/m3. The dimensionless parameters are
Dx�¼ 1, Dt�¼ 0.005, � �11¼ 112.0, � �22¼ 0.09, C �11¼ 114, C �12¼ 62, and C �44¼ 32.

The deformation energy ( f ) was non-dimensionalized as f � ¼ f

Dfmaxj j
and fitted to

the following polynomial f �ð�Þ ¼ A0 þ A2ð�� 0:5Þ2 þ A4ð�� 0:5Þ4 þ A6ð�� 0:5Þ6þ

A8ð�� 0:5Þ8 as shown in Figure 2b. The values of coefficients are A0¼ 1.0,
A2¼�12.43, A4¼ 61.71, A6¼�152.31, and A8¼ 161.11. For a multi-variant system,
we employ

f �ð�1, �2, . . . , , �pÞ ¼ A00 þ A2

X
p

ð�p � 0:5Þ2 þ A4

X
p

ð�p � 0:5Þ4 þ A6

X
p

ð�� 0:5Þ6

þ A8

X
p

ð�� 0:5Þ8 þ A�
X

p,qð6¼pÞ

�2p�
2
q,

where A� is the interaction coefficient among variants.
The simulations started with a deformed state (8(�1, �2)¼ (�, 0) or (0,�)), i.e. the

system is initially under a macroscopic shear deformation. The � can be any value
between 0 and 1 to describe the initial deformation state. In particular, we fixed the
homogeneous strain ( �"ij) to � � "

twin, 1
ij or � � "twin, 2ij . Therefore, the volume average of

the eigenstrain during the entire process should be equal to the fixed homogeneous
strain for fixed deformation: 1

V

R
� "

0
ij dV ¼ �"ij. To fix the deformation during the

process, a penalty term [55], 1
2

P
i, j Mijð

1
V

R
� "

0
ij dV� �"ijÞ

2, is added to the free energy
term, and Equation (7) becomes

@�p
@t
¼ �L

@f ð�pÞ

@�p
� �p,ijrirj�p þ

@Eel

@�p

� �

� L
X
ij

Mij
1

V

Z
�

"0ij dV� �"ij

� �
� "twin, pij

1

V

Z
�

@Hð�pÞ

@�p
dV

� �� � !
,

where Mij are the penalty constants chosen to be M11¼ 1030, M12¼ 3930,
M21¼ 3930, and M22¼ 1030.
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We first examined the growth aspect of a single twin under a fixed macroscopic
shear strain 0:1 � "twin, 1ij . A circular-shaped twin domain of radius 5Dx was embedded
at the center of the system as a nucleus. Figure 3 shows the temporal evolution of the
growth of the single twin nucleus. Even though the initial shape of the nucleus is
isotropic, the growth is strongly anisotropic, i.e. the lengthening takes place much
faster than the thickening. In addition, we measured the angle between the twin
lengthening direction and x0-axis, and the angle is equal to 35.4� as shown in
Figure 3c. It agrees with a half of the dihedral angle between (111) and ð�1�11Þ habit
planes, which means that the twin lengthens along the twin direction (½11�2�) on the
(111) habit planes and thickens along the normal direction to the habit plane. The
elastic energy density profile arising from the existence of a twin also analyzed as
shown in Figure 3d. The elastic energy density inside the twin and the original crystal
is almost zero. Elastic energy density is only nonzero around the edge containing the
array of dislocation cores. The order parameter value at this region ranges between 0
and 1 representing transition region from the undeformed original crystal (�¼ 0) to
twin (�¼ 1). The elastic energy profile is similar to that obtained in an energy-based
mechanics model in [30]. The phase-field model correctly predicts the

Figure 3. The growth of a single twin under a fixed macroscopic shear strain 0:1 � "twin, 1ij .
The order parameter profiles at (a) the initial state, (b) 1000Dt�, and (c) 3000Dt�. (d) The
elastic energy density profile at 3000Dt�.
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crystallographically correct twin formation as a result of the interplay among the
deformation energy, interfacial energy, and the elastic strain energy.

A set of simulations which involve multiple twins under several fixed macroscopic
shear strains were then carried out. The initial state is a homogeneously deformed
crystal with 0:5 � "twin, 1ij , 0:5 � "twin, 2ij , and 0:4 � "twin, 1ij , respectively, with small order
parameter fluctuations to simulate severe deformation conditions. Figures 4a–c show
the twin formation for the three cases, i.e. the parent crystal is under a fixed
macroscopic shear strain 0.5�twin along ½11�2� direction on (111) plane, 0.5�twin along
½�1�1�2� direction on ð�1�11Þ plane, and 0.4�twin along ½11�2� direction on ð111Þ plane. The
homogeneously deformed crystal is transformed to a twin structure, indicating that
the deformation energy in Equation (4) stored in the initial deformed crystal is
dissipated by transforming into a mixture of undeformed original crystals
((�1, �2)¼ (0, 0)) and twins ((�1, �2)¼ (1, 0)). The twin boundaries between the
original crystals and twins are formed along habit planes as expected, i.e. along (111)
habit planes in Figures 4a and c, and along ð�1�11Þ habit planes in Figure 4b. Since we
consider twinning as the only deformation mode and no slipping is allowed, the
equilibrium volume fraction of twin variants are expected to be related to the amount

Figure 4. Twin formation when the macroscopic strain (a) 0:5 � "twin, 1ij , (b) 0:5 � "twin, 2ij ,
(c) 0:4 � "twin, 1ij , and (d) ð0:1 � "twin, 1ij þ 0:1 � "twin, 2ij Þ is applied. The monitor function for the case
(d), we chose the (�1þ �2).
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of macroscopic deformation. We can simply expect that the larger macroscopic
strain generate more twins. To verify this behavior in our model, we monitored the
volume fraction of twins. We counted the number of grid points which have
the order parameter greater than 0.5. The volume fraction of twin in the case where
the macroscopic shear strain is 0:4 � "twin, 1ij is 0.397. On the other hand, the volume
fraction is 0.500 when we applied 0:5 � "twin, 1ij as the macroscopic shear strain. Thus,
the larger macroscopic shear strain gives rise to relatively more twins in our model.

If the macroscopic strain is relatively small, the parent crystal is metastable and
twinning takes through a nucleation and growth mechanism. As an example, the
initial 8(�1, �2) was chosen to (0.1, 0.1). In general, the macroscopic strain in the
presence of both order parameters is calculated by ð�1 � "

twin, 1
ij þ �2 � "

twin, 2
ij Þ which is

ð�1 þ �2Þ �
1

2
�twin sinð�twinÞ

� �
ð�1 � �2Þ

1

2
�twin cosð�twinÞ

� �
0

ð�1 � �2Þ
1

2
�twin cosð�twinÞ

� �
ð�1 þ �2Þ

1

2
�twin sinð�twinÞ

� �
0

0 0 0

2
666664

3
777775, ð8Þ

when the system deformed arbitrarily with initial order parameter (�1, �2). We fixed
the homogeneous strain tensor ( �"ij) to ð0:1 � "

twin, 1
ij þ 0:1 � "twin, 2ij Þ to hold the system at

a fixed macroscopically deformation. In this case, we incorporated a number of
nuclei ((�1, �2)¼ (1, 0) or (0, 1)) into the macroscopically deformed crystals at the
initial stage under the small macroscopic strain. As a nucleus, we assume the nucleus
as a few stacks of planar faults with very large aspect ratio (length/thickness)
[20,24,30]. We chose the layer which has the thickness 2Dx as a nucleus. Hence, we
randomly distributed the same number of the nuclei for both variants 1 and 2 for
nucleation of twins in the system under the macroscopic strain. The lengthening and
thickening of both variants of twins aligned along habit planes was observed under
the macroscopic strain as shown in Figure 4d. In addition, the volume fraction of
variants 1 and 2 are 0.085 and 0.088, respectively. It also shows the dependency of
the volume fraction of twins on the amount of the macroscopic strain.

Since deformation twinning involves Shockley partial dislocations, the order
parameter in the current phase-field model, related to the shear strain associated with
the twinning, is similar to order parameter describing a partial dislocation [56].
However, it should be pointed out that there are significant differences between our
phase-field model of deformation twinning and phase-field model of partial
dislocations [56]. First of all, the dislocation model [56] employs the crystalline
energy as the local free energy as a function of dislocation order parameter which is
fitted to the generalized stacking fault energy (�-surface calculated by the first-
principle calculation) caused by the sweeping of a dislocation. On the other hand, the
local free energy employed in our deformation twinning model is the deformation
energy as a function of degree of crystal deformation. Deformation energy is the
energy change from the original crystal state due to the homogeneous deformation of
the local region participating in the twinning process. Second, the gradient energy
coefficient in our model is fitted to the twin boundary energy as well as the
dislocation core energy while in the dislocation model the gradient energy is only
fitted to the dislocation core energy.
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4. Summary

A phase-field model for deformation twinning is proposed. Using aluminum as an
example, the deformation energy density is obtained by means of the first-principle
calculations. All the parameters such as gradient energy coefficients and eigenstrains
are modeled taking into account the crystallographic information of twinning
process. It is shown that the model predicts the crystallographically correct twin
formation in a deformed state by taking into account twin boundary energy, the
energy of the arrays of dislocation cores, and the elastic energy around the
dislocation cores under the fixed macroscopic deformation condition. At large
deformation, the twinning process takes place continuously as a result of absolute
thermodynamic instability of the deformed state with respect to twinning. At small
deformation, twining can only take place through the nucleation and growth
mechanism. In all cases, the volume fraction of twins is related to the amount of
macroscopic deformation, i.e. the larger macroscopic deformation gives rise to
more twins. Extension of the present model to polycrystals and to 3D is currently
under way.
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