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The evolution of strain, magnetic domain structure, and martensite microstructure during
compressive stress loading and unloading of Ni2MnGa was studied using a phase-field model at
several selected magnetic fields. We observed a typical quasiplastic behavior at zero field and a
pseudoelastic behavior at 300 kA/m. At an intermediate field, 150 kA/m, the stress-strain relation is
partially pseudoelastic. It was demonstrated that the magnetic domain structure has little influence
on the recovered strain while the demagnetization factor impacts the strain reversal. © 2008
American Institute of Physics. �DOI: 10.1063/1.2988898�

I. INTRODUCTION

Ni2MnGa is a ferromagnetic shape memory alloy
�FSMA� that can generate large strains using a magnetic
field. Since its discovery by Ullakko et al.1 in 1996,
Ni2MnGa has been shown to produce up to 6% strains for
alloys containing tetragonal martensite and 10% with ortho-
rhombic martensite.2,3 It has been extensively studied due to
its potential applications in actuators and sensors, particu-
larly in actuating applications that require large motions.

There have been a number of prior studies on the stress-
strain behaviors of Ni2MnGa. For example, Müllner et al.4

first studied the reversible �pseudoelastic� stress-strain be-
havior of single crystal Ni2MnGa at a constant magnetic field
of 558 kA/m. They reported that the stress-strain curve
shows a wide hysteresis whereas the strain-magnetization
hysteresis is narrow. Straka and Heczko5 and Heczko6 estab-
lished a direct relation between magnetization �M� and strain
��� by measuring them simultaneously and by using a simple
energy model. Likhachev et al.7 performed mechanical test-
ing experiments in three types of martensitic phases of
Ni2MnGa �5M, 7M, and NM� and observed the pseudoelastic
behavior during loading and unloading under a magnetic
field of about 1 T. Recently, a behavior named partial pseu-
doelastic recovery was also observed.8–10 Sarawate and
Dapino8,9 showed some detailed experiment results and de-
veloped a thermodynamics model to describe a transition
from being quasiplastic to pseudoelastic in Ni2MnGa single
crystals under different applied external magnetic fields. A
quasistatic model, developed by Couch and Chopra,10 was
also used to explain the quasiplastic, pseudoelastic, and par-
tial pseudoelastic processes at different applied fields. It
should be pointed out that due to its ferromagnetic nature,
magnetization in Ni2MnGa alloy is strongly dependent on its
magnetization history and thermal pretreatment. For ex-
ample, Li et al.11 observed some distinctly different magne-
tization processes of a Ni2MnGa single crystal after different
magnetic and thermal pretreatments.

In this paper, we employed a phase-field method12 to
study the quasiplastic and pseudoelastic processes. The main
advantage over previous theoretical works is the fact that it
allows one to examine in detail the evolution of domain
structure and martensitic twin microstructure under com-
bined applied mechanical and magnetic fields. We determine
the stress-strain curve and the magnetization-strain curve in a
single crystal Ni2MnGa under different applied external
magnetic fields. The influence of applied magnetic fields and
domain structures on the recovery strain was also investi-
gated. We showed that the applied field plays a major role in
the strain recovery while the domain structure only has small
influence on the reversible strain.

II. PHASE-FIELD MODEL

In our phase-field model, a given microstructure state of
FSMA is described by two fields: a local magnetization field,
M�r�, and a stress-free transformation strain field, �ij

o . While
the magnetization field describes the magnetic domain struc-
ture, the stress-free strain field specifies the martensite mi-
crostructure.

The total free energy of FSMA containing inhomoge-
neous microstructures is given by

E = Eanis + Eexch + Ems + Eexternal + ELandau + Egradient + Eme

+ Eelastic, �1�

where Eanis, Eexch, Ems, Eexternal, ELandau, Egradient, Eme, and
Eelastic are the magnetocrystalline anisotropy, magnetic ex-
change, magnetostatic, Zeeman, Landau, strain gradient,
magnetoelastic, and elastic energies, respectively.

As in any Landau-type description of thermodynamics
of a phase transition, all energy terms are assumed to have
the symmetry of the parent phase. The parent phase of
Ni2MnGa is a cubic phase, and therefore all terms including
the magnetocrystalline anisotropy and elastic constants have
the cubic symmetry. In the martensite phase, the magneto-
crystalline anisotropy energy includes both austenite magne-
toanisotropy and the magnetoelastic contribution and thus
has the tetragonal symmetry.a�Electronic mail: pingpingwu-ustb@126.com.
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The anisotropy energy of a cubic magnetic crystal is

Eanis =� �K1�m1
2m2

2 + m1
2m3

2 + m2
2m3

2� + K2m1
2m2

2m3
2�dV ,

�2�

where K1 and K2 are the anisotropy constants and mi are the
components of the unit magnetization vector, m=M /Ms, Ms

is the saturation magnetization.
The exchange energy in micromagnetism is usually writ-

ten in the form

Eexch = A� �grad m�2dV , �3�

where A is the exchange stiffness constant.
The magnetostatic energy of a system can be written as

Ems = − 1/2�0Ms� Hd · mdV , �4�

where �0 is the permeability of the vacuum and Hd is the
demagnetization field that is determined by the long-range
interactions among the magnetic moments in the system.

In this work, we separate the local magnetization field
M�r� as a sum of the spatially independent average magne-

tization part M̄ and the spatially dependent heterogeneous
part �M. The local magnetic field induced by heterogeneous
part �M is calculated by solving Maxwell’s equation
Hd1,1+Hd2,2+Hd3,3=−Ms�m1,1+m2,2+m3,3�; the comma in a
subscript stands for spatial differentiation, for example, Hd1,1

stands for �H1 /�x1 here. The demagnetization field caused
by average magnetization is approximately calculated by

Hd�M̄� = NM̄ , �5�

where N is the demagnetization factor, which depends on the
shape of the material. The detail about the calculation of the
demagnetization field was given in Ref. 13.

The Zeeman energy is taken into account through the
interaction between the magnetization and the external field,

Eexternal = − �0Ms� Hex · mdV . �6�

The Landau free energy describing the proper martensi-
tic transformation is given in Refs. 14–16.

ELandau =� �Q1e1
2 + Q2�e2

2 + e3
2� + Q3e3�e3

2 − 3e2
2�

+ Q4�e2
2 + e3

2�2 + Q5�e4
2 + e5

2 + e6
2��dV , �7�

where Q1, Q2, and Q5 are bulk, deviatoric, and shear moduli,
respectively. Q3 and Q4 denote third and fourth-order elastic
constants. Q2 is related to temperature T and martensite
transformation temperature TM by Q2=Q20�T−TM� /TM. ei

are the symmetry-adapted strain defined in terms of the
transformation strains as Ref. 14:

e1 = ��11
0 + �22

0 + �33
0 �/�3, e4 = �23

0 ,

e2 = ��11
0 − �22

0 �/�2, e5 = �13
0 ,

e3 = �2�33
0 − �22

0 − �11
0 �/�6, e6 = �12

0 . �8�

Since a cubic to tetragonal martensitic transition was studied
here, we set �23

0 =�13
0 =�12

0 =0 for simplicity.
The energy contribution of a wall between two tetrago-

nal variants �twin boundary� is introduced through gradients
of the order parameters

Egradient =� �1/2g���11,1
0 �2 + ��11,2

0 �2 + ��11,3
0 �2 + ��22,1

0 �2

+ ��22,2
0 �2 + ��22,3

0 �2 + ��33,1
0 �2 + ��33,2

0 �2

+ ��33,3
0 �2��dV , �9�

where g is the strain gradient coefficient.
For a cubic system, the magnetoelastic energy is given

by

Eme =� �B��11
0 �m1

2 − 1/3� + �22
0 �m2

2 − 1/3�

+ �33
0 �m3

2 − 1/3���dV , �10�

where B is the magnetoelastic coefficient which is a measure
of degree of coupling between strain and magnetization.

If we assume that the interfaces developed during micro-
structure evolution are coherent, elastic strains eij and thus
elastic energy Eelastic are generated,

eij = �ij − �ij
0 , �11�

where �ij is the total strain. The corresponding elastic energy
can be expressed as

Eelastic =� 1/2cijkleijekldV

=� 1/2cijkl��ij − �ij
0 ���kl − �kl

0 �dV , �12�

where cijkl is the second-order elastic stiffness tensor. The
summation convention for the repeated indices is employed
and i, j, k, l=1,2 ,3.

The temporal evolution of the magnetization configura-
tion, thus the domain structure, is described by the Landau–
Lifshitz–Gilbert �LLG� equation

�1 + �2�
�M

�t
= − �0M � Heff −

�0�

Ms
M � �M � Heff� ,

�13�

where �0 is the gyromagnetic ratio, � is the damping con-
stant, and Heff is the effective magnetic field

Heff = −
1

�0

�E

�M
. �14�

The temporal martensitic microstructure evolution is de-
scribed by the time-dependent Ginzburg–Landau �TDGL�
equations

��ii
0�x,t�
�t

= − L
�E

��11
0 , �15�

where L is the kinetic coefficient.
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III. RESULTS AND DISCUSSION

The parameters of Ni2MnGa employed in our model
are from Refs. 17 and 18: Ms=6.02�105 A m−1,
K1=2.7�103 J m−3, K2=−6.1�103 J m−3, and
A=2�10−11 J m−1. Here we considered that the sample in
our work is a sheet that is suitable for two-dimensional �2D�
simulations, so we set the demagnetization factor
Nx=Ny =0.02 and Nz=0.96. The coefficients in the
Landau free energy and the magnetoelastic coefficient
were obtained by fitting the experimental measurements,17,19

i.e., Q1=2.32�1011 J m−3, Q20=3.78�108 J m−3,
Q3=0.40�1010 J m−3, Q4=7.50�1010 J m−3, and
B=4.00�106 J m−3. Martensitic transformation temperature
of a defect-free crystal is TM

o =300 K. For a bulk
tetragonal Ni2MnGa crystal, the elastic constants are
c11=1.70�1011 N m−2, c33=1.50�1011 N m−2, c12

=1.50�1011 N m−2, c13=1.54�1011 N m−2, c44

=0.40�1011 N m−2, and c66=0.45�1011 N m−2.20 In order
to avoid solving an elastic equation with inhomogeneous
modulus, we choose c11 as the average of c11 and c33, c12 the
average of c12 and c13, and c44 the average of c44 and c66, i.e.,
c11=1.60�1011 N m−2, c12=1.52�1011 N m−2, and
c44=0.43�1011 N m−2. In this work, we solved the LLG
equation employing the Gauss–Seidle projection method21

and TDGL equation using the semi-implicit Fourier-spectral
method.22 We employed 256�256�1 discrete cells. Peri-
odic boundary conditions are applied along the x, y, and z
axes. The time step for integration is �t / to=0.1, where
to= �1+�2� / ��oMs�. The cell size, �x, is 18 nm. The initial
condition was created by assigning random orientation for
the magnetization and a zero value plus a small random
noise for the martensite strain order parameters.

As shown in Fig. 1, a magnetic field is applied on a
Ni2MnGa single crystal sample along the x axis, while the
stress field is applied along the y axis, i.e., the magnetic field
is provided perpendicular to the loading direction. We first
performed phase-field simulations to generate a microstruc-
ture with both magnetic domains and martensites without
applying a magnetic or stress field. Due to the 2D nature,
there are two kinds of martensite variants �variants A and B�.
Within each martensitic plate, there are magnetic domains
separated by 180° domain walls. An example of a micro-

structure containing two martensite variants and four types
of magnetic domains is shown in Fig. 1. A magnetization
vector map is shown as an inset in Fig. 2, which illustrates
the directions of local magnetization and the “staircaselike”
magnetic domain pattern.

It is known that if there is no applied external magnetic
field, a Ni2MnGa single crystal shows a quasiplastic stress-
strain behavior, i.e., the deformation will not return to the
original shape after the removal of the applied stress. As
shown in Fig. 2, a stress was applied along the y axis gradu-
ally without an applied magnetic field. The loading process
of the quasiplastic behavior can be separated into two stages.
At the first stage, the strain change is small as the applied
stress increases, and there is no significant magnetic domain
wall or martensite twin boundary motion. As the applied
stress field increases further, the loading curve reaches the
second stage during which the strain climbs up quite rapidly.
In this stage the martensite variant B, which is favored by the
applied stress field, grows continuously at the expense of
variant A through the twin boundary movement. In the cor-
responding magnetic domain structure, the 90° domain walls
between the x domains and the y domains also move accom-
panying the twin boundary motion. However, the 180° mag-
netic domain walls within each martensite twin variant show
little migration. Further increase in stress �greater than 7
MPa� leads to a single martensite variant with stripe mag-
netic domains. In such a single martensite variant state, the
strain shows a very small change from the elastic deforma-
tion of the material. Since we did not add any defect or
nucleation mechanism in our simulation, a small amount of
minority variant A is retained to facilitate the nucleation and
growth of variant A in variant B for the following unloading
process.

When the stress is unloaded, the martensite remains as a
single variant since there is no driving force for nucleating a
new variant. As a result, the strain will not be reversed ex-
cept for the elastic deformation. In addition, there is no no-
ticeable change in the magnetic domain structure throughout
the unloading process.

For a comparison, the pseudoelastic curve under an ap-
plied magnetic field of 300 kA/m is shown in Fig. 3�a�, with

FIG. 1. �Color online� A general schematic of the magnetomechanical setup
and the 2D simulation of the magnetic domain structure �DS� and marten-
sitic microstructure �MS� without applying any external field. The magnetic
field and the stress field will be added in our simulation, following the
directions in the schematic.

FIG. 2. �Color online� The strain-stress curve of Ni2MnGa at zero applied
field �DS, domain structure; MS, martensite structure�. Inset shows a vector
map of the initial magnetic domain structure.
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the details of the domain structures and martensitic micro-
structures. We observed that within each martensite variant,
the original domain walls disappeared and were replaced by
a single magnetic domain after applying under the magnetic
field. As a result, there are no 180° domain walls in the
domain structure, and only 90° magnetic domain walls coin-
cide with the martensite twin boundaries. During the loading
process, the evolution of martensite microstructure is exactly
the same as the case with no external applied field discussed
above, except that larger applied stress is needed to move the
martensite twin boundary due to the presence of the mag-
netic field. We also observed that the initial slope of Fig. 3 is
larger than that of Fig. 2. The increase in the slope is due to
the magnetization rotation in variant B �shown in the inset of
Fig. 3�. The magnetization rotation is not observed in the
case with no applied magnetic field �in the inset of Fig. 2�.
Because of the interactions between the magnetic domains
and the martensite variants, the rotation of the magnetization
leads to a decrease in the magnitude of strain.

At the end of the loading process, we also left a small
amount of variant A to facilitate its nucleation and growth in
the unloading process. During the unloading stage, the strain
decreases slowly at first as the applied stress magnitude is
lowered. Within this stage, the domain structure and the mar-
tensite microstructure have no significant changes, similar to
the case with no applied field; the slight drop in strain origins

from the recovery of elastic deformation. For example, under
a stress of 0.8 MPa, the strain only decreases by 0.3%. How-
ever, when the applied stress is decreased to below 0.8 MPa,
the strain descends rapidly following the reduction in the
stress. As shown in Fig. 3, the x magnetic domain expanded
under the external applied magnetic field, and the martensite
twin boundary also started to move as a result of the magne-
toelastic coupling effect, leading to the recovery of strain to
its original state. Also, throughout the loading and unloading
process, the magnetic domain structure and the martensite
microstructure closely follow each other, so the relative-
magnetization-strain curve shows a narrow hysteresis �as
shown in Fig. 3�b��, which is in good agreement with exist-
ing experimental results.

From the observed observations, we can see that the
pseudoelastic stress-strain behavior will appear when the ex-
ternal magnetic field is large enough to move the martensite
twin boundary. However, recent experimental results8,10

show a partial pseudoelastic behavior at low magnetic fields,
while its origin is still not fully understood. We observed
similar stress-strain behavior in our simulations, as shown in
Fig. 4�a�. Under an applied 150 kA/m magnetic field, we first
increased the compressive stress to 8 MPa, and then removed
it. We noticed that 0.991% strain is recovered according to
the hysteresis loop. It was noted that, the corresponding do-
main structures in curve A has a stripe domain �Fig. 4�b��

FIG. 3. �Color online� �a� The stress-strain curve of Ni2MnGa at a magnetic
field of 300 kA/m �DS, domain structure; MS, martensite structure�. Inset
shows a vector map of the initial magnetic domain structure. �b� The strain-
magnetization curve in the same processing, showing a narrow hysteresis.

FIG. 4. �Color online� �a� The stress-strain curve of Ni2MnGa at a field of
150 kA/m. Curves A and B stand for different domain structures. �b� Left:
the initial domain structures in curves A and B without stress fields; middle:
the two domain structures with an 8 MPa compressive stress; right: the two
unloaded domain structures.
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while in our previous simulation results under an applied
field of 300 kA/m, there were no 180° domain walls. In order
to investigate the influence of the domain structure on stress-
strain behavior, we increased the applied field to 170 kA/m,
and then decreased it back to 150 kA/m, so a new domain
structure with no 180° domain wall was obtained �Fig. 4�b��.
A stress-strain loop with the new domain structure is also
shown in Fig. 4�a� as curve B. Compared to the original
stress-strain curve, curve B only exhibits a 1.048% recovered
strain, which is only about 0.05% higher than the previous
recovered strain. The simulation results show that the mag-
netic domain structure only has little influence on the strain
recovery.

Therefore, the partial recovery of the strain is highly
related to the magnitude of the applied magnetic field, i.e.,
when the applied magnetic is small, the demagnetization
field may reduce the fully recovery of the strain. To test it,
we performed two sets of simulations for the unloading pro-
cess with different demagnetization factors �Nx=Ny =0.05,
Nz=0.90 and Nx=Ny =0.10, Nz=0.80�. The recovery curves
of all the three demagnetization factors are shown in Fig. 5.
With the increase in the demagnetization factor, the recov-
ered strain obviously decreases due to the larger demagneti-
zation field.

IV. CONCLUSION

We simulated the loading and unloading of FSMA
Ni2MnGa under different external applied magnetic fields.

We analyzed the evolution of magnetic domain structures
and martensite structures during the entire loading and un-
loading process. Three kinds of behavior, the quasiplastic,
the pseudoelastic, and the partial pseudoelastic stress-strain
behaviors, are observed in our simulation, depending on the
magnitude of the applied magnetic field. It is shown that a
higher applied magnetic field facilitates the strain reversal,
while the magnetic domain structure has little influence on
the strain recovery. During the strain recovery process, we
observed the 90° magnetic domain wall movement accom-
panying the variant boundary motion. We also demonstrated
that the demagnetization factor influences the magnitude of
strain reversal.
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