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Abstract

The allotropic phase transformation in zirconia from the tetragonal to monoclinic double lattices is known to occur by a martensitic
twinning mechanism which shows a complex dependence on temperature, stress and environment. This paper is concerned with the
development of a phase field model which accounts for the main metallurgical mechanisms governing this martensitic transition. The
symmetry reduction and orientation relationship between the parent and product phases were simulated using several non-conserved
order parameters representing different transformation paths. Inhomogeneous and anisotropic elastic properties were considered to
determine the resultant elastic stresses. Governing equations of the tetragonal-to-monoclinic transformation were solved in a finite ele-
ment framework under a variety of initial and boundary conditions. It was shown that applying different initial conditions, such as seed
embryo or random, did not change the twinning patterns or the final volume fractions of the parent and product phases after the relax-
ation period. On the other hand, enforcing different boundary conditions resulted in completely different twinning patterns and phase
volume fractions. The model was able to predict both the “V” shape morphology of twinning and the surface stress relief with “gable
roof” patterns, which were observed by transmission electron microscopy and atomic force microscopy to be characteristic of the tetrag-
onal-to-monoclinic transition.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

During the last century, stabilized zirconia ceramics
with tetragonal and cubic variants have become one of
the most important ceramic materials for applications that
require a combination of strength, fracture toughness, low
thermal conductivity and good ionic conductivity. Uses of
these materials include low-temperature applications such
as hip joint prostheses in biomedicine and high-tempera-
ture applications such as thermal barrier coatings in jet
engines and electrolytes in solid oxide fuel cells [1].
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However, this unusual range of excellent properties
mediated by the metastable tetragonal (or cubic) phase
may systematically degenerate via an undesirable transfor-
mation to the stable monoclinic phase after a certain expo-
sure at service temperatures. This transformation from
tetragonal to monoclinic (T!M), known as LTD (low-
temperature degradation) in biomedical applications, pro-
ceeds via the propagation of martensite, which corresponds
to transformation twinning [1]. As such, the T!M trans-
formation is highly sensitive to mechanical and chemome-
chanical stresses. It is known that this transformation is the
source of the fracture toughening in stabilized zirconia as it
occurs at the stress concentration regions ahead of the
crack tip [2].
rights reserved.
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Another example of zirconia aging due to the T!M
transformation occurs in the thermally growing oxide
(TGO) over Zircaloy, used in nuclear fuel rod cladding
[3]. It has been reported that TGO can be divided into
two sublayers with different morphological and lattice fea-
tures: a dense and very thin layer next to the metal/oxide
interface mainly comprising the tetragonal variant, and
an outer layer mainly comprising the monoclinic, which
is highly susceptible to crack formation. As oxidation pro-
ceeds by an anionic diffusion mechanism, the new oxide
molecule forms always at the oxide/metal interface, and
as such the TGO zirconia grows as a tetragonal phase.
Hence every molecule must undergo the T!M transfor-
mation at a certain distance from the interface [4]. Previous
studies showed that the T!M transformation in the zir-
conium oxide layer is an important factor in corrosion deg-
radation and crack formation in the oxide outer layer [5]
and so on.

In light of this important role that the T!M transfor-
mation plays in the degradation of many zirconia ceramics,
one can understand why this transformation has been the
most documented allotropic transition in the ceramics
literature.

For decades two different modeling approaches have
been adopted in studying the T!M transformation:
thermodynamic-based models and crystallographic-based
models. Each of these approaches explains some aspects
of the T!M transformation. Thermodynamic-based
models [5–9] mainly provide some information about
the onset of transformation temperature during cooling
or heating, and account for the effect of grain size on
the transformation kinetics. On the other hand, crystallo-
graphic phenomenological theory [10–15] is mainly capa-
ble of capturing the crystallography of transformation,
such as the habit planes and the orientation relationship
between the parent and product phases. None of these
approaches, however, is capable of predicting the trans-
formation kinetics and volume fraction of the parent
and products at different temperatures. They can simulate
neither the effects of boundary constraints on the trans-
formation patterns nor the size and shape of product
phases.

Recently, the phase field method has become a powerful
computational tool for simulating different microstructures
obtained by, for example, solidification [16–19], solid-state
phase transformation [19–21], precipitate growth and
coarsening [22,23], martensitic phase transformations
(MPTs) [24] and grain growth [25,26]. Phase field models
describe a microstructure by using a set of conserved and
nonconserved field variables that are continuous across
the interfacial regions. The temporal and spatial evolution
of the field variables are governed by the Cahn–Hilliard
nonlinear diffusion equation [27] and the Allen–Cahn
(time-dependent Ginzburg–Landau) relaxation equation
[28,29]. With the fundamental thermodynamic and kinetic
information as the input, the phase field method is able
to predict the evolution of arbitrary morphologies and
complex microstructures without explicitly tracking the
positions of interfaces [30].

The phase field method has been used for different
MPTs [24,31,32]. A comprehensive review of different
approaches in phase field modeling of MPTs has been
recently reported by the present authors [33]. This paper
uses an approach which primarily relies on developments
by Khachaturyan, Chen and Wang [20,24]. Wang and
Khachaturyan [24] presented the first three-dimensional
(3-D) model for generic cubic-to-tetragonal improper
MPT, which occurs mostly in ceramics. In a constrained
single crystal, their model was able to predict the major
structural characteristics of martensite during the entire
transformation, including nucleation, growth and eventu-
ally formation of internally twinned plates in thermoelastic
equilibrium conditions with the parent phase.

Hexagonal-to-orthorhombic transformation has also
been subject to phase field modeling [34,35]. On the one
hand, these models captured the effect of elastic interac-
tions on the domain formation and evolution during nucle-
ation, growth and coarsening. On the other hand, the effect
of an applied strain field on the development of domain
structure was studied. The models generally led to a good
prediction of the so-called special patterns transformation,
such as fan- and star-shape precipitates.

Another parameter of pronounced importance in MPT
relates to the effect of externally applied stresses. Authors
such as Artemev et al. [36] incorporated this effect to sim-
ulate generic improper cubic-to-tetragonal MPT. They
showed in fact a noticeable increase in the product variants
having transformation strain aligned with the externally
applied stresses. The morphology of martensite particles
was also affected. In a different paper, Artemev et al. [37]
simulated proper MPT for two different types of cubic-
to-tetragonal transformation, with and without volumetric
change in constrained and unconstrained systems. Later on
they developed a phase field model to describe a proper
cubic-to-tetragonal MPT in a polycrystalline Fe–31 at.%
Ni alloy under an applied stress [38].

Other models which captured the effect of externally
applied stresses were developed and used to simulate
the cubic-to-trigonal transformation in both single crystal
and polycrystalline AuCd [39]. In this regard, the effect of
free surface (vanishing external stress at boundaries) on
the kinetics and topology of multivariant proper MPT
was also studied via phase field modeling [40]. These
models were applied to polycrystals Au–49.5 at.% Cd
and Fe–31 wt.% Ni, which undergo cubic! trigonal
and face-centred cubic! body-centered cubic (fcc! bcc)
transformations, respectively. The phase field simulations
showed inhomogeneities of martensite microstructures as
a result of concentration gradients and preferential for-
mation of martensite near free surfaces. This trend was
substantiated by the stronger sensitivity of high-symmetry
FeNi structures compared to low-symmetry AuCd, which
has more orientation variants and can better accommo-
date stresses.



Fig. 1. Schematic of cubic zirconia crystal structure (red atoms are
zirconium and blue ones are oxygen) [2]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)
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The effect of magnetic field on cubic-to-tetragonal trans-
formation was studied by means of phase field modeling,
which was benchmarked for Ni2MnGa material [41]. Phase
field modeling also was used to study kinetics and mor-
phologies of cubic-to-tetragonal proper MPT in thin films
[42,43] and forward and reverse proper MPT [44].

Guo et al. [45] developed an elastoplastic phase field
modeling for microstructure evolution and this model
was used in Ref. [46] to investigate cubic-to-tetragonal
transformation; the model confirmed that plastic accom-
modation largely reduces the elastic strain energy during
the formation of the tetragonal phase because of both self
and plastic accommodations.

The above review shows that substantial research was
recently performed to utilize the phase field approach in
studying cubic-to-tetragonal MPT [24,36–38,41–43,46,47].
However, to the best of our knowledge, there exists no
phase field model for simulating the T!M transforma-
tion in zirconia. In this study, we present a phase field
model for this phase transformation which is anisotropic
and inhomogeneous elastically. The paper is organized as
follows: Section 2 describes the thermodynamics of the
T!M transformation; Section 3 describes the crystallog-
raphy of the T!M transformation; Section 4 presents
the process of developing the governing equations of the
phase field model for the T!M transformation; and Sec-
tion 5 presents and discusses the simulation results for dif-
ferent initial and boundary conditions, and comparison to
experimental results.

2. Thermodynamics of the T fi M transformation

Solid-state phase transformations can be diffusional or
diffusionless. In diffusional transformations, long-range
diffusion is required for the growth of the new phases;
however, in diffusionless transformations, atoms move
only short distances in order to join the new phases.
The T!M transformation takes place by a diffusionless
mechanism [48]. Diffusionless transformations are classi-
fied into two types: (1) massive, which takes place without
a definite orientation relationship and atoms can move
individually; and (2) martensitic, in which atoms have to
move in a coordinated manner so there is a shape change
in crystal associated with transformation strains. The nat-
ure of the diffusionless T!M transformation has been
classified as martensitic transformation. The martensitic
nature of the T!M transformation was first suggested
by Wolten [49].

Wang et al. [50] calculated equilibrium temperature for
the T!M phase transformation for pure zirconia and
adopted it for the assessment of Gibbs free energy of zirco-
nia in different phases. According to Ref. [50], the equilib-
rium temperature is a temperature at which the Gibbs free
energy of both tetragonal and monoclinic phases are the
same; this temperature for the T!M transformation is
1367 ± 5 K, and the Gibbs free energies for monoclinic
and tetragonal zirconia are:
GZrO2M ¼� 1126163:5þ 424:8908T � 69:38751T ln T

� 0:0037588T 2 þ 683000T �1 ð1Þ
GZrO2T ¼ 5468� 4T þ GZrO2M ð2Þ
where the Gibbs free energies are in J mol�1, and the tem-
perature (T) is in Kelvin.

3. Crystallography of the T fi M transformation

Zirconia exhibits three polymorphs: cubic, tetragonal
and monoclinic. The cubic phase is stable for temperatures
above 2640 K to the melting point, and has a fluorite type
structure with a unit cell dimension of ac = 5.27 Å [1]
(Fig. 1).

The tetragonal phase is stable for temperatures above
1430 K and below 2640 K. The primitive tetragonal unit
cell has two ZrO2 units, unlike cubic fluorite and mono-
clinic unit cells (which have four ZrO2 units), so it is more
convenient to describe the tetragonal unit cell in terms of
the C-centered tetragonal unit cell, which has four ZrO2

(Fig. 2). The C-centered tetragonal zirconia lattice param-
eters are at = 5.14 Å and ct = 5.26 Å [51].

The monoclinic phase is stable from room temperature
to temperatures below 1430 K. The crystal structure of
the monoclinic phase revealed the unit cell parameters to
be am = 5.184 Å, bm = 5.207 Å and cm = 5.370 Å with
bm = 98.8� (bm is the angle between am and cm) [51] (Fig. 3).

As mentioned before, the T!M transformation is mar-
tensitic in nature. There are three different correspondences
for the T!M transformation (each correspondence shows
which atom at the parent structure becomes which atom at
a product phase) [15]. If (at, bt, ct) and (am, bm, cm) repre-
sent tetragonal and monoclinic lattice parameters, respec-
tively, the product correspondences are:



Fig. 2. Schematic of tetragonal zirconia crystal structure (red atoms are
zirconium and blue ones are oxygen) [2]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Schematic of monoclinic zirconia crystal structure (red atoms are
zirconium and blue ones are oxygen) [2]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)
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T !M correspondences

ABC : if ðat;bt;ctÞ! ðam;bm;cmÞ
CAB : if ðat;bt;ctÞ! ðcm;am;bmÞ
BCA : if ðat;bt;ctÞ! ðbm;cm;amÞ

8><
>:

We know that at = bt. These correspondences were
named in early literature based on the counterpart of ct,
which means that the first correspondence was named C

because ct becomes cm, and the second correspondence
was named B because ct becomes bm, and in the same
way the last correspondence was named A.

For each correspondence there are two variants. Variants
are crystallographically equivalent, but rotated with respect
to each other. For example, consider correspondence B; in
this case ct becomes bm but for the other axes (at, bt), there
are two situations: (1) at! am and bt! cm, (2) bt! am

and at!�cm (using a right-handed set of axes), which we
can represent by ACB and CAB to distinguish variants in
transformation. These variants are crystallographically
equivalent, but rotated 90� around the ct axis.

Unlike the tetragonal crystal with orthogonal axes, the
angle between am and cm axes in the monoclinic crystal is
�99�, so the axes of the parent and product cannot lie on
each other. Since bm is perpendicular to the plane of cm

and am, and if we keep bm parallel to its counterpart parent
axis, there are two options for the two remaining axes
(cm, am): (1) am becomes parallel to its counterpart axis
and cm incline by 90 from parent axis, (2) cm becomes par-
allel to its counterpart parent axis and am become inclined.
Hence for each variant there are two possible orientation
relationships, which gives six possible orientations in total:
A1, A2, B1, B2, C1 and C2 [15]. For the T!M transfor-
mation, there are three correspondences, each of which has
two variants, and each variant has two orientations. In
total, for each tetragonal lattice there are 12 possible lat-
tices in the monoclinic phase. Fig. 4 illustrates the different
variants and orientations of correspondence ABC.

Among possible correspondences, C and B are more
favored because they have the smallest Bain strain and lat-
tice invariant strain, respectively. In correspondence A,
because of ct! am, we have the largest Bain strain, so this
correspondence is rare and the T!M transformation fol-
lows either correspondence B or correspondence C [15].

4. Phase field modeling of the T fi M transformation

In the phase field method, a multidomain microstructure
can be described by a set of phase field variables. In the
case of the T!M phase transformation, phase field vari-
ables are the possible variants of the monoclinic phase.

The temporal and spatial evolution of non-conserved
phase-field variables are described by the phenomenological
time-dependent Ginzburg–Landau kinetic equation [29]:

@gpð r!; tÞ
@t

¼ �L
dF

dgpð r!; tÞ
þ 1pð r!; tÞ p ¼ 1; . . . ; n ð3Þ

where gp represent the pth variant of monoclinic, L is the
kinetic coefficient, F is the total free energy of the system,
dF =dgpð r!; tÞ is the thermodynamic deriving force for spa-
tial and temporal evolution of gp and 1pð r!; tÞ is the Lange-
vin noise describing the thermal fluctuation [24,52]. The
value of gp varies from 0 to 1; where gp = 1, the pth variant
of monoclinic exists, and where gp = 0, it could be the other
variants or the parent phase.

For an MPT, the total free energy can be written as the
summation of chemical free energy and elastic strain energy:

F ¼ F ch þ F el ð4Þ
4.1. Chemical free energy

The driving force of an MPT comes from chemical free
energy. The total chemical free energy can be written as [24]:
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Fig. 4. Different variants and orientations of correspondence ABC.
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F ch ¼
Z

V
f ðg1; g2; . . . ; gnÞ þ

1

2

Xn

p¼1

bijðpÞrigprjgp

" #
dV

n ¼ 1; . . . ; p ð5Þ

where bij(p) is a positive gradient energy coefficient and $ is
the gradient operator. f(g1, g2, . . . ,gn) is the local specific
free energy, which defines the basic bulk thermodynamic
properties of the system. f(g1, g2, . . . ,gn) can be approxi-
mated by the Landau polynomial in terms of long-range
order parameters gp. Since elastic energy and domain wall
energy determine the domain structure after the transfor-
mation is completed, the particular form of the free energy
model has no significant effect on the domain structure [34];
therefore we selected the simplest sixth-order polynomial
form for the local specific free energy:

f ðg1; g2; . . . ; gnÞ ¼ DG
a
2

g2
1 þ g2

2 þ . . .þ g2
n

� �h
� b

4
g4

1 þ g4
2 þ . . .þ g4

n

� �
þ c

6
g2

1 þ g2
2 þ . . .þ g2

n

� �3
�

ð6Þ

where DG is the chemical driving force representing the dif-
ference in the specific chemical free energy between the par-
ent and the equilibrium martensitic phase. DG is calculated
using Eqs. (1) and (2). a, b and c are the expansion coeffi-
cients at a fixed temperature, and although they are not
dominant in microstructure evolution, they must be se-
lected in a way that (1) maintains the same value of the
interfacial energy within the physical reasonable range
and (2) provides global minima at the parent phase (g1 -
= g2 = � � � = gn = 0) and at all the product variants, which
are
g1 ¼ �g0; g2 ¼ g3 ¼ � � � ¼ gn ¼ 0;

g2 ¼ �g0; g1 ¼ g3 ¼ � � � ¼ gn ¼ 0;

..

.

gn ¼ �g0; g1 ¼ g2 ¼ � � � ¼ gn�1 ¼ 0;

where g0 – 0 is the equilibrium long-range parameter and
usually considered to take the value 1.

We assume that the positive gradient energy coefficient
is isotropic (bij = bdij); therefore the chemical free energy
can be simplified as:

F ch ¼
Z

V
f ðg1; g2; . . . ; gnÞ þ

1

2

Xn

p¼1

bðrigpÞ
2

" #
dV ð7Þ
4.2. Elastic strain energy

In MPT, an important contribution to the total free
energy comes from the strain energy caused by the lattice
mismatch between the product precipitates and the parent
matrix. It has been shown by Khachaturyan [53] that strain
energy can be expressed as a function of the transforma-
tion-induced stress-free strain e0

ijð r!Þ. In fact, the degree
of lattice mismatch between precipitates and the matrix
can be characterized by stress-free strain. Because of our
diffusive interface description, we need to express the
stress-free strain in terms of phase field variables; therefore
the local stress-free strain is related to order parameters
through [24]:

e0
ijð r!Þ ¼

Xn

p¼1

e00
ij ðpÞg2

pð r!Þ ð8Þ



Table 1
Lattice parameters for tetragonal and monoclinic zirconia [49].

Crystal parameter a b c b

Tetragonal 5.141 5.141 5.2609 90�
Monoclinic 5.184 5.207 5.370 98.8�
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where e00
ij ðpÞ is the transformation strain of the pth variant.

The elastic strain energy of a system is given by:

F el ¼
1

2

Z
V

rije
el
ij dV ¼ 1

2

Z
V

Cijkle
el
kle

el
ij dV ð9Þ

where the elastic strain eel
ij ð r!Þ is the difference between the

total strain, etot
ij ð r!Þ, and the stress-free strain, e0

ijð r!Þ:

eel
ij ð~rÞ ¼ etot

ij ð~rÞ � e0
ijð~rÞ ¼ etot

ij ð~rÞ �
X

p

e00
ij ðpÞg2

pð~rÞ

¼ 1

2

@uið r!Þ
@rj

þ @ujð r!Þ
@ri

� �
�
X

p

e00
ij ðpÞg2

pð r!Þ ð10Þ

Stress-free strain, which has different names in the liter-
ature such as transformation strain [54], eigenstrain [55] or
Bain strain [56], is the strain that occurs inside the material
during phase transformation in the absence of external
constrains. In MPT, each variant has its own stress-free
strain and can be calculated from lattice parameters of par-
ent and product. For small strains the transformation
strain is [54]:

e00
ij ðpÞ ¼ UijðpÞ � dij ð11Þ

where Uij(p) is the symmetric right stretch tensor of the
deformation gradient which maps the parent crystal to
the pth variant of the product. In two dimensions, the
smallest transformation strain is for correspondence
ABC. Fig. 5 shows possible monoclinic variants of corre-
spondence ABC in two dimensions and Tables 1 and 2
show the lattice parameters of zirconia and transformation
strain tensors for correspondence ABC, respectively.

4.3. Evolution equations

The Ginzburg–Landau equation for the T!M trans-
formation with the energy function given in the previous
section is:
Fig. 5. Possible variants of monoclinic phase in the T!M phase
transformation in two dimensions.
@gpð~r; tÞ
@t

¼ �L �br2gpð~r; tÞ þ
@f

@gpð~r; tÞ
þ dF el

dgpð~r; tÞ

 !

þ 1pð~r; tÞ p ¼ 1; . . . ; n ð12Þ

where f was defined in Eq. (6), and

dF el

dgpð r!; tÞ
¼ � 1

2
Cijkle

00
kl ðpÞgpð r!; tÞðui;jð r!Þ þ uj;ið r!ÞÞ

þ Cijkle
00
kl ðpÞgpð r!; tÞ

Xn

z¼1

e00
ij ðzÞg2

z ð r!; tÞ

� 1

2
Cijkle

00
ij ðpÞgpð r!; tÞðuk;lð r!Þ þ ul;kð r!ÞÞ

þ Cijkle
00
ij ðpÞgpð r!; tÞ

Xn

z¼1

e00
kl ðzÞg2

z ð r!; tÞ ð13Þ

The Ginzburg–Landau equations are coupled to the
mechanical equilibrium equations to find the displacement
of domain:

@rij

@rj
¼ 0)Cijkl

1

2
ðuk;ljð r!Þþul;kjð r!ÞÞ�

X
p

e00
kl ðpÞ

@

@rj
ðg2

pð~rÞÞ
" #

¼ 0 ð14Þ
5. Results and discussion

In this work, we studied the T!M phase transforma-
tion in a two-dimensional (2-D) single crystal; 2 lm � 2 lm
square domains were used in all the simulations, except in
Section 5.3 where a 3 lm � 3 lm domain was used. We
considered the Langevin noise to be zero and imposed
two different initial conditions for order parameters: (1)
randomly distributed initial condition, and (2) multivariant
martensitic embryo initial condition. The initial condition
for displacement is zero in the whole domain, and bound-
ary conditions for the ith order parameter are periodic and

n � rgi ¼ 0; i ¼ 1; . . . ; p ð15Þ
The boundary conditions for the mechanical equilib-

rium Eq. (14) at all the boundaries are:

u1 ¼ u2 ¼ 0 ð16Þ
The homogeneous constant temperature T = 1170 K

was considered.
Unlike most of the phase field simulations which

assumed elastic homogeneity [44,46,57–60], we considered
inhomogeneous elasticity and defined a smooth T!M
transition with elastic constants given by the following
equation:



Table 2
Deformation gradient (Fij), right stretch tensor (Uij) and transformation strain (e00

ij ) of monoclinic variants.

Correspondence Fij Uij e00
ij e00

ij for self-accommodating variant

ABC am
at

�cm cosðbÞ
ct

0 cm sinðbÞ
ct

" #
1:0049 0:0761
0:0761 1:0180

� �
0:0049 0:0761
0:0761 0:0180

� �
ABC

0:0049 �0:0761
�0:0761 0:0180

� �

Table 4
Elastic constants for tetragonal zirconia (GPa) [4,63].

C11 C33 C44 C66 C12 C13

327 264 59 64 100 62

Table 5
Numerical values used for calculation.

Temperature (K) 1170

Chemical driving force (J mol�1) 800 (36.8 � 106 J m�3)
Gradient energy coefficient, b (J m�1) 1 � 10�8

Energy density coefficient, a 0.14
Energy density coefficient, b 12.42
Energy density coefficient, c 12.28
Kinetic coefficient, L (m3 J�1 s�1) 2
Domain size (nm � nm) 2000 � 2000

Ju
nc

tio
n 

Pl
an

e 
(1

00
) m

8.1
o

Variant 1 Variant 2 Tetragonal 

Fig. 6. Junction and habit planes predicted by simulation.
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C ¼ P
Xn

i¼1

gi

 !
CM þ 1� Pð

Xn

i¼1

giÞ
 !

CT ð17Þ

where CM and CT are monoclinic and tetragonal elastic
constants, respectively, n is the number of order parameters
and

P ðgÞ ¼ g3ð6g2 � 15gþ 10Þ ð18Þ
In previous works, we developed a mixed-order finite

element model for the coupled phase field equation and
elasticity equations to study solid-state phase transforma-
tions [19,23,61,62]. Although in the present work all the
equations in the model are second order partial differential
equations (PDEs), a similar algorithm was adopted. We
used COMSOL Multiphysics to solve the PDEs [63]. The
calculation domain was discretized by 10,000 four-noded
quadratic rectangular elements, and the whole system had
161,604 degrees of freedom. For time integration, an adap-
tive time-step algorithm was implemented; at the initial
stages of the growth, time steps less than 3 � 10�11 s were
used to guarantee the convergence of the solution, and at
the later stages of growth, time steps less than 2 � 10�9 s
were sufficient to ensure the convergence.

The input parameters of the model are given in Tables
3–5.

5.1. Evolution of the monoclinic with random initially

distributed order parameters

In this section, the evolution of the monoclinic phase is
investigated for cases with randomly distributed order
parameters as their initial condition. First, a Gaussian ran-
dom distribution from 0 to 1 was assigned to one variant as
the initial condition and the other order parameters were
kept zero throughout the system initially. In this case, the
MPT did not start, and it showed that the presence of
two twin related variants are necessary for martensitic
nucleation; a similar result was suggested in Refs. [24,37].
In our second try, we assigned a Gaussian random distribu-
tion from 0 to 0.5 to both order parameters as their initial
conditions and set the boundary condition clamped. The
results showed that in the initial steps there are several
nuclei which have the same chance to grow, but the system
Table 3
Elastic constants for monoclinic zirconia (GPa) [4,62].

C11 C22 C33 C44 C55 C66

361 408 258 100 81 126
only allows the growth of critical nuclei (the nuclei having
both twin related variants) and the non-critical nuclei even-
tually disappear; similar results for MPT of cubic to tetrag-
onal was reported in Ref. [24].

The temporal and special evolution of monoclinic vari-
ants (g1, g2) and the stresses r11 and r11 � r22 are shown
in Fig. 7. The simulation results show that the twinning
plane (junction plane) is (100)m, which is in agreement with
C12 C13 C16 C23 C26 C36 C45

142 55 �21 196 31 �18 �23



σ11 σ11−σ22
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(2) 
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(5) 

Vari. 1 Vari. 2 Tetra. (Pa) (Pa) 

Fig. 7. Temporal and spatial evolution of monoclinic phase with initially randomly distributed order parameters and clamped boundary condition. The
left column shows the evolution of monoclinic variants. The second and third columns show the evolution of r11 and r11 � r22. Rows (1)–(5) correspond
to times 0, 9 � 10�8, 1.65 � 10�7, 2.25 � 10�7 and 1 � 10�6 s, respectively.
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Vari. 1 Vari. 2 Tetra.

Fig. 8. Left picture is the simulation result for random initially distributed order parameters in a constrained single crystal. Right picture is a TEM
micrograph of partially transformed t-ZrO2 grains in CeO2-stabilized polycrystalline TZP [2].
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Fig. 9. A 2-D tetragonal phase with clamped boundary and multivariant
embryo initial conditions.
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Bansal and Heuer [10,64] observations. Simha [56] calcula-
tions also show the same result. Kelly and Rose [15] men-
tioned (107)m as a significant habit plane in the T!M
phase transformation. This plane has been well predicted
by simulation (Fig. 6).

Fig. 8 shows a comparison between the simulation result
and an experimental transmission electron microscopy
(TEM) image of the T!M; from this figure, we can see
that habit planes formed as a pair of plates arranged in a
“V” shape and the sequence arranged in a chain of “N”

shapes. The same results based on crystallographic phe-
nomenological theory have been reported in Ref. [15].

5.2. Evolution of the monoclinic with middle seed embryo

At the next step we studied the evolution of a mono-
clinic embryo. Fig. 9 shows the initial and boundary
conditions of the tetragonal single crystal with a small
multivariant monoclinic embryo in the middle.

The evolution of a single embryo is shown in Fig. 10: at
the initial steps of transformation the embryo grows in both
directions, then some lenticular monoclinic variants are
formed in the (100)m plane. The variants grow and join
together in a “V” type pattern. Transformation time in the
single embryo initial condition is longer than randomly dis-
tributed order parameters because in the latter case transfor-
mation is triggered in several critical nuclei simultaneously.

Fig. 11 shows the growth rate of volume fraction of dif-
ferent variants and parent phase for the single embryo ini-
tial condition. We defined the volume fraction of each
variant by the following equation:

VF i ¼
R

gidA
A

ð19Þ

where VFi is the volume fraction of the ith variant and A is
the total area of the domain. In this case the system relaxed
after 1.6 ls and volume fractions remained unchanged.
Fig. 12 shows the volume fraction of parent and products
for randomly distributed order parameter initial condi-
tions. Unlike Fig. 11, in which the monoclinic volume frac-
tion starts from zero and increases to the final value of
22%, in Fig. 12 because of initial disturbance the volume
fraction of each monoclinic variant starts from 24%. After
that the disturbance relaxes and the volume fraction de-
crease to 8% and then monoclinic variants start to grow
from critical embryos to the final equilibrium, which is
22% for each variant. The final volume fractions in Figs. 11
and 12 show that the amount of tetragonal transformation
to monoclinic does not depend on the initial condition.

5.3. “Gable patterns” formation on free surfaces

Atomic force microscopy (AFM) investigations [65,66]
showed that the martensitic T!M transformation results



σ11 σ11−σ22 
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(5) 

Vari. 1 Vari. 2 Tetra. (Pa) (Pa) 

Fig. 10. Temporal and spatial evolution of monoclinic phase with initial multivariant embryo and clamped boundary conditions. The left column shows
the evolution of monoclinic variants. The second and third columns show the evolution of r11 and r11 � r22. Rows (1)–(5) correspond to times 0, 4 � 10�7,
5 � 10�7, 8 � 10�7 and 2.7 � 10�6 s, respectively.
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Fig. 11. Temporal evolution of parent and product volume fraction for
clamped boundary condition with seed embryo initial condition.

Fig. 12. Temporal evolution of parent and product volume fraction for
clamped boundary condition with randomly distributed order parameter
initial condition.
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Monoclinic embryo 
(η1=0.5, η2=0.5)

Fig. 13. Selected boundary condition to study free surfaces.

Fig. 14. The top picture shows the monoclinic evolution, the middle
picture shows the displacement (color bar: 0–75 � 10�9 m) and the bottom
picture is the AFM micrograph of surface relief resulting from the
martensitic T!M phase transformation [67]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)
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in surface relief. To investigate this phenomenon we stud-
ied the T!M transformation with free boundary condi-
tions. A single crystal 3 lm � 3 lm square domain was
discretized by 14,400 four-noded quadratic rectangular ele-
ments and the whole system had 232,324 degrees of free-
dom. For time integration, at the initial stages of the
growth, time steps less than 1 � 10�9 s were used to guar-
antee the convergence of the solution, and at the later
stages of growth, time steps less than 5 � 10�10 s were suf-
ficient to ensure the convergence.

Fig. 13 shows the boundary conditions for displace-
ment, and the boundary conditions for order parameters
are n � rgi ¼ 0; i ¼ 1; . . . ; p with the initial embryo seed
in the top right corner as the initial condition.

The unconstrained simulation shows that the T!M
transformation does not produce a strain-accommodating
state because the strain-accommodating multivariants do
not relax the dilatational strain. This dilatational strain
causes surface relief at free surfaces. For the case of variant
ABC, when the free surface is (001)t, the junction plane
would be (100)m, and we can see an inverse “V” come
out of the free surface and its maximum is at the junction
plane; the same result was reported in AFM investigations
on transformation-induced relief in zirconia by Deville
et al. [67]. Fig. 14 shows a comparison between surface
relief results of the phase field model and experiment [67].
It needs to be noted that although variants with a (100)m

junction plane are favorable, because of our restriction
on the u2 direction on the lower boundary, some variants
of the (001)m junction plane and some small gable roof
patterns on the (100)t plane are formed.

6. Conclusion

A 2-D phase field model was developed to predict the
microstructural evolution during the T!M phase trans-
formation in zirconia. Inhomogeneous and anisotropic
elastic properties were considered in the model and govern-
ing equations were solved in a finite element framework.
The model shows high fidelity as the simulation results
reproduced the main crystallographic, kinetic and morpho-
logical features, which were observed by experiments to be
characteristic of the transformation. For instance, the “V”

type variants with (100)t junction plane observed by Hann-
ink et al. [2] were successfully predicted. The model also
predicted the “gable roof” pattern on free surfaces reported
by observations using AFM. The simulation results
showed that the initial condition on order parameters does
not affect twinning patterns and martensitic volume frac-
tion, which was in marked contrast to the effect of mechan-
ical boundary conditions.
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