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Abstract 

A phase field model for anisotropic grain growth is presented. The model uses multiple-component order parameters to describe 
the grain orientations. These order parameters are the structural amplitudes related to the star of the shortest reciprocal lattice 
vectors of the crystalline phase. The free energy of the system is formulated as a Landau expansion of the order parameters, which 
incorporates the symmetry of the crystalline phase. The spatial and temporal evolution of these order parameters is governed by 
the time-dependent Ginburg-Landau (TDGL) equarions. In this model. the anisotropy is introduced naturally, since the effect of 
the underlying symmetry is taken into account in both the gradient and bulk terms in the free energy expansion. We consider a 
simple binary two-phase solid-liquid mixture in two dimensions with the solid having a square lattice. As an example. we studied 
the growth and morphology of a single solid particle in a liquid. Potential applications of the model to simulating the anisotropic 
grain growth in single-phase polycrystalline materials as well as in the presence of a liquid phase are discussed. 0 1997 Elsevier 
Science S.A. 
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1. Introduction 

In this work, preliminary investigations on a phase 
field model applicable to the simulation of anisotropic 
grain growth are presented. The phenomenon of an- 
isotropic grain growth contrasts that of normal grain 
growth, in which the average grain size increases while 
the shape of the grain size distribution remains con- 
stant. Though grain growth studies were primarily ori- 
ented towards obtaining equiaxed microstructures, it 
has been found that deliberate introduction of an- 
isotropic grains enhances desirable properties in some 
materials. For example, anisotropic grains can blunt 
crack tips leading to an increase in fracture toughness 
in ceramic materials [Zj. Also, in the case of ZnO 
varistors, lath-like grains result in very low clamping 
voltages [3]. The model presented describes the mor- 
phological evolution of a crystalline solid in contact 
with its liquid. Hence, it is also applicable to the 
modeling of liquid phase sintering of ceramics. 
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Various factors have been suggested to cause an- 
isotropic grain growth, which include grain boundary 
energy and mobility anisotropy [4,5], segregation of 
solutes on boundaries [6] and the presence of a liquid at 
the boundary [7]. Monte Carlo simulations have been 
applied to model anisotropic grain growth, which in- 
clude both effects of interfacial energy and grain 
boundary mobility anisotropies [S]. Similar methods 
have also been used to study the effect of different 
shapes of Wulff plots on the nature of the resulting 
anisotropic microstructures [9]. 

Phase field models have been applied to the computer 
simulation of solidification, with a lot of success [IO- 
131. There are various methods for introducing an- 
isotropy in a phase field model. One way to introduce 
anisotropy is to make the gradient energy coefficients 
and the mobility coefficients depend on the direction of 
the gradient of the order parameter [14]. Although the 
physical origin of the anisotropy that appears in these 
models is unclear, the approach successfully simulates 
dendritic growth with proper qualitative behavior. 

Recently, one of the authors (AGK) discussed the 
physical origin of the long range order parameter 



(LRO) in computer simulation models of solidification 
[l]. It was shown that the ~simplesr kinetic~m%del of 
solidification is described by a multiple component 
order parameter, with the role of the component played 
by structural amplitudes related to the star of the 
shortest reciprocal lattice vectors of the crystalline 
phase. The time-dependent Ginzburg-Landau equations 
that govern the kinetics are derived by identifying and 
separating the ‘slow’ and ‘fast’ relaxing thermodynamic 
parameters. 

The main objective of this paper is to explore the 
possibility of applying phase-field models to anisotropic 
grain growth. Following [l], a model is developed for 
studying anisotropic growth of a single-grain from a 
liquid phase, in which the anisotropy arises solely from 
the orientation dependence of the interfacial energy 
between the solid particle and the liquid. It may be 
pointed out that, in this model, the anisotropy arises in 
a natural way, since both the free energy model and the 
gradient energy coefficients are specific to the crystal 
structure being considered. As discussed by Khachatu- 
ryan [I], it is also possible to include the effect of mobility 
anisotropy in a rather natural way in this model. 

We consider a two-component solid-liquid two-phase 
system. As a first attempt, we assume that the solid has 
the square symmetry in two dimensions. Our focus is 
on the shape of a single solid particle in a liquid. The 
possibility of applying this model to the coarsening and 
grain growth of many solid particles is discussed. 

2. The model 

We describe an arbitrary two-phase microstructure 
using a scalar conservation concentration field and a 
multicomponent nonconserved vector order parameter 
field. The concentration field describes the inhomoge- 
neous concentration or composition distribution in a 
two-phase mixture. Within a solid particle, the value of 
the concentration field is equal to the equilibrium 
concentration in the solid and within the liquid it is 
equal to the liquid concentration. Across an interface 
between a solid particle and the liquid. the concentra- 
tion varies gradually from that corresponding to the 
liquid to that of the solid. The values of the compo- 
nents of the nonconserved order parameter field are 
proportional to the structural amplitudes related to the 
star of the shortest reciprocal lattice vectors of the solid 
crystalline phase [l]. Therefore, they assume a value of 
zero within the liquid and have finite values in the solid. 
Similar to the concentration field, the values of the 
components of the nonconserved vector order parame- 
ter change continuously from zero to finite values 
across the interface from liquid to solid. 

Within such a diffuse-interface context, the total free 
energy of a twophase mixture is described by a 
Ginzburg-Landau form as: 

F= f(r) d3r 
c 

(1) 
, 

where the specific free energy f(f(r*) is a sum of the 
gradient and local terms: 

The local part of the free energy can be expressed as a 
Landau expansion over symmetry variants of the LRO 
parameters 0,“. Here,, @‘I-I,, represents the set of order 
parameters EoECpondmg to the set of shortest recipro- 
cal lattice vectors. They are the coefficients in the 
Fourier expansion of the single particle density p(r), as 
detailed in [l]. The concentration dependence ofJ;,o,(r) 
will be introduced through the concentration depen- 
dence of the expansion coefficients. In order that the 
free energy be invariant with respect to a rigid body 
translation, the coefficients of the Landau expansion 
A(Qff,, Q’ ‘.‘, qfB) should be such that 
A(@,:, Qff2, ..., CD,,,?) = 0 if HA + Hz + ...H;; # 0 [15] 
(The s’et of’reciprocll lattice vectors {HA, . .., H’;} is the 
set of shortest reciprocal lattice vectors for the lattice). 

For the square lattice, the star of the shortest recipro- 
cal lattice vectors consists of four vectors, HA, . . . , Hi as 
illustrated in Fig. 1. So, following the condition for 
translational invariance, we formulate the local free 
energy as: 

0 i Q 
4 

Fig. 1, For the square lattice, there are four vectors that form the star 
of the shortest ieciprocal lattice vectors. 



Here,& is the free energy of the liquid. Simplifying the 
above equation using the fact that QD,, = @* ,$,> (This 
follows from the condition that ~(1’. I) ghould bg real), 
we get 

+ ; c,(l%$/%;I’ + I%#q’) (4) 

For ease of notation, we replace /@,,tl/ by qa. Thus, the 
local free energy can be rewritten as: 

The above Landau expansion gives us four ‘variants’ of 
the square lattice at the same free energy minima. with 
equilibrium order parameters 

11 being a positive constant. Each one of these four 
solutions represents square lattices shifted from one 
another by one-half lattice spacing. There is no third 
order term in the above expansion, since in this case 
(i.e. square lattice) there cannot be three reciprocal 
lattice vectors such that Hh + HI + Ht = 0. The sixth 
order term is essential for the above free energy polyno- 
mial to exhibit a first order transition. 

We assume that only& and A, in Eq. (8) depend on 
the concentration (‘(I’, t). The local free energy can now 
be written as: 

The coefficients in the above equation are chosen such 
that an equilibrium free energy-composition diagram, 
consistent with the phase diagram for the solid-liquid 
two phase system, is obtained. In this work, the con- 
stants are chosen as A, = 6.0, A, = 3.5, B, = 2.5, Bz = 
- 0.5, C, = 2.5, C, = - 0.5. The free energy of the 

Fig. 2. Free energy (J.) versus composition CC) diagram obtained from 
Eq. ~9). The initial average composition is indicated in the figure. 

liquid phase is obtained by setting all the order 
parametrs equal to zero. The free energy of the solid 
phase is obtained as follows. The local free energy in 
Eq. (9) is first minimized as: 

This is a polynomial equation in ‘1 and solving this 
gives us the equilibrium order parameter as a function 
of composition. i.e. 

3‘45 + 4) 
(8) 

Substituting this back into Eq. (9) gives us the equili- 
&rum free energy JIG ~equitibrlutn(~)* ~Iequitibrium(C))~ The 
equilibrium free energy versus composition diagram is 
illustrated in Fig. 2. 

The gradient part of the local free energy represents 
the excess free energy due to the presence of boundaries 
in the system. Here. it is expressed as: 

The first term represents the isotropic part of the gradi- 
ents and the second, the anisotropic part, which takes 
into account the direction dependence of the interfacial 
free energy. Here vI is the order parameter in the 
reciprocal lattice direction Hi/H. 

Thus, the expression for the total free energy of the 
system is: 



(10) 

The kinetic equations that describe the spatial and 
temporal evolution of the compositor variable c(r. t) 
and the LRO parameters ijh are: 

(11) 

and 

(12) 

Here, D is the diffusivity and L, the mobility. 
The variational derivatives used in the above equa- 

tions are obtained as follows: 

here 

(13) 

(14) 

(15) 

The anisotropy of the coefficients ~h!j and different 
values of the amplitudes @f,,,,(r) within the boundary 
layer results in the crystallographic anisotropy of the 
interfacial boundary. For a square lattice, the above 
expression results in: 

Thus, the kinetic equations used for the simulation are: 

a(O)V’c 
= DV’ (A,(c - c,) +; A,(?/: + ‘7:) - a(0)V2c) (17) 

and 

2 2’7 
417:‘1:+,+2rli’l;i+,)=a~;)~ 

?Y, 2.q 
(18) 

3. Simulation 

The above model was used to simulate the morpho- 
logical evolution of a solid in contact with a liquid. The 

coefficients in the Landau polynomial were chosen such 
that n_equilibriutieeenergy vs. composition dia- 
gram such as the one shown if Fig. 2 is obtained. Once 
the alloy composition cA is fixed, the equilibrium vol- 
ume fraction of the solid is fixed. The simulations were 
carried out in a square cell with 64 x 64 and 128 x 125 
grid points with periodic boundary conditions along 
both I and J’ directions. 

The initial conditions for the simulation are that of a 
circular solid particle in contact with the liquid. The 
size of the particle is such that the volume fraction of 
the solid is less than that at equilibrium. Hence, the 
particle grows to reach the equilibrium volume fraction 
and its shape can be studied by tracking the concentra- 
tion and order parameter variables as a function of 
time. 

The following discretization scheme was used for the 
Laplacian and gradient terms in the kinetic equations: 

v'C(.Y, J') = 
[ 

; (c(s + A, j,) + c(s, J* + A) + C(X - A, J*) 

+ c(s. J’ - A)) 

+ t (c(s + A, 1’ + A) + C(X + A, 1’ - A) 

+ c(.x - A, J’ + A) + c(s - A, 3% - A)) 

(1% 

and 

+ 2d~z’(t7i(.~ + A. J’ + A) + rli(s - A. 2’ - A) 

- qi(x - A, 1’ + A) 

- ~T~(.Y + A, ,r’ - A))]/4A’ (20) 

To visualize the growth of the solid particle, we define 
a function: 

Z(s, J-) = C qH, exp (i27cHg) 
HO 

= q, cos (2iTa.u) + 1/l cos (27mJ’) (21) 

which goes to zero inside the liquid and attains a 
certain peak at any lattice position. The shape of the 
particle is studied by plotting Z(X, I>) at different time 
steps during the simulation. This is illustrated in Fig. 3. 

A convenient way of representing the particle is to 
plot the composition variable C(X, ~1) at different time 
steps. since the equilibrium concentration of the com- 
ponent is different in the liquid and the solid. Such a 
plot is shown in Fig. 4(a). Yet another way to visualize 
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the kinetics is to plor f(x, J’) = y:(~, 3’) + y~:(s, ~1. This 
is illustrated in Fig. 4(b). 

The growth of a single grain was studied employing 
the local free energies described in Eq. (9). The initial 
conditions for the simulation are ~7~ = f/z = 
11 equilibnum(Cs); c = s c within the solid and /71 = tj2 = 0; 
c = c( inside the liquid. For each run of the simulation, 
the composition cp, is fixed and this fixes the equi- 
librium volume fraction of the solid. The initial size of 
the particle is less than that corresponding to this value. 
Hence, the particle grows to attain this volume fraction 
and its shape can be studied. The result of such a 
simulation is shown in Fig. 4(a) and (b). The order 
parameter and concentration profiles along a cross 
section of the particle are shown in Fig. 5(a) and (b). 
The particle shape is that of a rounded square, which is 
consistent with the free energy formulation in Eq. (,9) 
and the matrix of gradient coefficients in Eq. (17). The 
resulting particle shape has the symmetry of the square 
lattice. The effect of anisotropy is small here, but that is 
not surprising, since the Landau expansion of the free 
energy is based on only the nearest neighbors in the 
reciprocal lattice. A discussion on how the model could 
be modified to allow for rotated variants of the lattice 
is given below. 

3.1. Discussion 

The local free energy in Eq. (6) is formulated by 
considering only the shortest reciprocal lattice vectors 
(nearest neighbors). Typically, an anisotropic mi- 
crostructure consists of anisotropic grains of varying 
orientations with respect to each other. The above 

Fig. 3. The result of simulations that uses the free energy Eq. (9). (A 
128 x 128 grid is used for the simulation). 

(4 

(b) 

Fig. 4. (a) A plot of the concentration variable c(s, J’). The concen- 
tration and order parameter profiles for a cross-section through the 
center are shown in Fig. S(a) and (b). The simulation is performed on 
a 128 x 128 grid. (b) An alternate way to represent the particle shape 
is to plot the sum of the squares of the order parameters. The 
simulation is performed on a 128 x 128 grid. 

model results in a single variant, it does not describe an 
anisotropic microstructure. This effect can be included 
in the free energy model by considering ordering along 
reciprocal lattice vectors in these directions. For exam- 
ple, in order that the local free energy give rise to three 
variants rotated at 30” with respect to each other, it can 
be formulated as follows. In this case, there are twelve 
order parameters (Fig. 6) and the local free energy can 
be written as: 
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Simplifying the above equation in the manner that Eq. 
(6) was simplified, we get: 

(23) 

The coefficients in the above equation are chosen such 
that there are three sets of ‘roots’ at which the free 
energy is a minimum, each of which represents a square 
lattice. These variants are at 30” with respect to each 
other. The three sets of solutions are: 

{?I lilq?ilibrium = 01 O O )I O O> 

{1;7jC2).. =(Oiy 00’1 0) equ~hbrium 

{ !I )~$ilibrium = (0 0 ir’ 0 0 iI ) 
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Fig. 5. (a) Concentration profile across the particle shown in Fig. 
4(a). (b) Order parameter profile across the particle shown in Fig. 
W. 

10 
Fig. 6. The twelve reciprocal lattice vectors used in the free energy 
equation which allows for rotated variants of the square lattice. 

The kinetics of these order parameters are again gov- 
erned by Eqs. (17) and (18), but now there would be six 
equations to solve for the order parameters instead of 
two. Using a similar approach, we could increase the 
number of such rotated variants. For example, to ob- 
tain six variants rotated at 15” with respect to each 
other, the number of order parameters would be 12. 
However, there would be a significant increase in the 
computational time due to the increase in the number 
of equations to be solved. The above method may 
hence be applied to simulate the evolution of an an- 
isotropic microstructure with grains at different orienta- 
tions. 

4. Summary 

A model has been developed, which uses multiple 
order parameters in a phase field model to describe the 
anisotropic growth of a crystal from its liquid. An 
extension of the same method, which allows for the 
inclusion of rotated variants of the crystalline lattice, is 
also discussed. Once the rotations are allowed for, the 
above model can be applied to simulate anisotropic 
grain growth. It can also be applied to study the 
morphological evolution during liquid phase sintering 
of ceramics. 

The focus of the current work was on formulating a 
specific free energy model using the general theory 
described in [l] for a simple lattice, and performing 
simulations on the growth of such a crystal from its 
liquid. The next step would be to calculate the energy 
of an interface as a function of the interface orienta- 



tion. Such calculations have been performed on phase 
field models for antiphase boundaries [l&17]. The 
model can also readily be extended to three dimensions, 
though this would make the computation much more 
time intensive. 
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